1
|
Li L, Liu S, Wang Y, Shang Y, Qi Z, Lin H, Niu L. Transcriptomic Analysis of Self-Incompatibility in Alfalfa. PLANTS (BASEL, SWITZERLAND) 2024; 13:875. [PMID: 38592914 PMCID: PMC10975240 DOI: 10.3390/plants13060875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Alfalfa (Medicago sativa L.) is an important forage crop worldwide, but molecular genetics and breeding research in this species are hindered by its self-incompatibility (SI). Although the mechanisms underlying SI have been extensively studied in other plant families, SI in legumes, including alfalfa, remains poorly understood. Here, we determined that self-pollinated pollen tubes could germinate on the stigma of alfalfa, grow through the style, and reach the ovarian cavity, but the ovules collapsed ~48 h after self-pollination. A transcriptomic analysis of dissected pistils 24 h after self-pollination identified 941 differently expressed genes (DEGs), including 784 upregulated and 157 downregulated genes. A gene ontology (GO) analysis showed that the DEGs were highly enriched in functions associated with the regulation of pollen tube growth and pollen germination. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that pentose and glucuronate interconversion, plant hormone signal transduction, the spliceosome, and ribosomes might play important roles in SI. Our co-expression analysis showed that F-box proteins, serine/threonine protein kinases, calcium-dependent protein kinases (CDPKs), bHLHs, bZIPs, and MYB-related family proteins were likely involved in the SI response. Our study provides a catalog of candidate genes for further study to understand SI in alfalfa and related legumes.
Collapse
Affiliation(s)
- Lulu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.)
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Sinan Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.)
| | - Yulu Wang
- College of Life Science, Shanxi University, Taiyuan 030006, China;
| | - Yangzhou Shang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.)
| | - Zhi Qi
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.)
| | - Lifang Niu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.)
| |
Collapse
|
2
|
Innes SG, Santangelo JS, Kooyers NJ, Olsen KM, Johnson MTJ. Evolution in response to climate in the native and introduced ranges of a globally distributed plant. Evolution 2022; 76:1495-1511. [PMID: 35589013 DOI: 10.1111/evo.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023]
Abstract
The extent to which species can adapt to spatiotemporal climatic variation in their native and introduced ranges remains unresolved. To address this, we examined how clines in cyanogenesis (hydrogen cyanide [HCN] production-an antiherbivore defense associated with decreased tolerance to freezing) have shifted in response to climatic variation in space and time over a 60-year period in both the native and introduced ranges of Trifolium repens. HCN production is a polymorphic trait controlled by variation at two Mendelian loci (Ac and Li). Using phenotypic assays, we estimated within-population frequencies of HCN production and dominant alleles at both loci (i.e., Ac and Li) from 10,575 plants sampled from 131 populations on five continents, and then compared these frequencies to those from historical data collected in the 1950s. There were no clear relationships between changes in the frequency of HCN production, Ac, or Li and changes in temperature between contemporary and historical samples. We did detect evidence of continued evolution to temperature gradients in the introduced range, whereby the slope of contemporary clines for HCN and Ac in relation to winter temperature became steeper than historical clines and more similar to native clines. These results suggest that cyanogenesis clines show no clear changes through time in response to global warming, but introduced populations continue to adapt to their contemporary environments.
Collapse
Affiliation(s)
- Simon G Innes
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.,Department of Biology, University of Louisiana, Lafayette, Louisiana, 70504
| | - James S Santangelo
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Nicholas J Kooyers
- Department of Biology, University of Louisiana, Lafayette, Louisiana, 70504
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
3
|
Roldan MB, Cousins G, Muetzel S, Zeller WE, Fraser K, Salminen JP, Blanc A, Kaur R, Richardson K, Maher D, Jahufer Z, Woodfield DR, Caradus JR, Voisey CR. Condensed Tannins in White Clover ( Trifolium repens) Foliar Tissues Expressing the Transcription Factor TaMYB14-1 Bind to Forage Protein and Reduce Ammonia and Methane Emissions in vitro. FRONTIERS IN PLANT SCIENCE 2022; 12:777354. [PMID: 35069633 PMCID: PMC8774771 DOI: 10.3389/fpls.2021.777354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/26/2021] [Indexed: 05/29/2023]
Abstract
Grazing ruminants contribute to global climate change through enteric methane and nitrous oxide emissions. However, animal consumption of the plant polyphenolics, proanthocyanidins, or condensed tannins (CTs) can decrease both methane emissions and urine nitrogen levels, leading to reduced nitrous oxide emissions, and concomitantly increase animal health and production. CTs are largely absent in the foliage of important temperate pasture legumes, such as white clover (Trifolium repens), but found in flowers and seed coats. Attempts at enhancing levels of CT expression in white clover leaves by mutagenesis and breeding have not been successful. However, the transformation of white clover with the TaMYB14-1 transcription factor from Trifolium arvense has resulted in the production of CTs in leaves up to 1.2% of dry matter (DM). In this study, two generations of breeding elevated foliar CTs to >2% of DM. The CTs consisted predominantly of prodelphinidins (PD, 75-93%) and procyanidins (PC, 17-25%) and had a mean degree of polymerization (mDP) of approximately 10 flavan-3-ol subunits. In vitro studies showed that foliar CTs were bound to bovine serum albumin and white clover proteins at pH 6.5 and were released at pH 2.-2.5. Using rumen in vitro assays, white clover leaves containing soluble CTs of 1.6-2.4% of DM significantly reduced methane production by 19% (p ≤0.01) and ammonia production by 60% (p ≤ 0.01) relative to non-transformed wild type (WT) controls after 6 h of incubation. These results provide valuable information for further studies using CT expressing white clover leaves for bloat prevention and reduced greenhouse gas emissions in vivo.
Collapse
Affiliation(s)
- Marissa B. Roldan
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Greig Cousins
- PGG Wrightson Seeds Ltd, Palmerston North, New Zealand
| | - Stefan Muetzel
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Wayne E. Zeller
- ARS-USDA, US Dairy Forage Research Center, Madison, WI, United States
| | - Karl Fraser
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Alexia Blanc
- PGG Wrightson Seeds Ltd, Palmerston North, New Zealand
- AgroParis Tech, Paris, France
| | - Rupinder Kaur
- PGG Wrightson Seeds Ltd, Palmerston North, New Zealand
| | - Kim Richardson
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Dorothy Maher
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Zulfi Jahufer
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
4
|
Olsen KM, Goad DM, Wright SJ, Dutta ML, Myers SR, Small LL, Li LF. Dual-species origin of an adaptive chemical defense polymorphism. THE NEW PHYTOLOGIST 2021; 232:1477-1487. [PMID: 34320221 DOI: 10.1111/nph.17654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Allopolyploid speciation and chemical defense diversification are two of the most characteristic features of plant evolution; although the former has likely shaped the latter, this has rarely been documented. Here we document allopolyploidy-mediated chemical defense evolution in the origin of cyanogenesis (HCN release upon tissue damage) in white clover (Trifolium repens). We combined linkage mapping of the loci that control cyanogenesis (Ac, controlling production of cyanogenic glucosides; and Li, controlling production of their hydrolyzing enzyme linamarase) with genome sequence comparisons between white clover, a recently evolved allotetraploid, and its diploid progenitors (Trifolium pallescens, Trifolium occidentale). The Ac locus (a three-gene cluster comprising the cyanogenic glucoside pathway) is derived from T. occidentale; it maps to linkage group 2O (occidentale subgenome) and is orthologous to a highly similar cluster in the T. occidentale reference genome. By contrast, Li maps to linkage group 4P (pallescens subgenome), indicating an origin in the other progenitor species. These results indicate that cyanogenesis evolved in white clover as a product of the interspecific hybridization that created the species. This allopolyploidization-derived chemical defense, together with subsequent selection on intraspecific cyanogenesis variation, appears to have contributed to white clover's ecological success as a globally distributed weed species.
Collapse
Affiliation(s)
- Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, 1 Brookings Dr., St Louis, MO, 63130, USA
| | - David M Goad
- Department of Biology, Washington University in St. Louis, 1 Brookings Dr., St Louis, MO, 63130, USA
| | - Sara J Wright
- Department of Biology, Washington University in St. Louis, 1 Brookings Dr., St Louis, MO, 63130, USA
- Biological Sciences Department, Rowan University, Glassboro, NJ, 08028, USA
| | - Maya L Dutta
- Department of Biology, Washington University in St. Louis, 1 Brookings Dr., St Louis, MO, 63130, USA
| | - Samantha R Myers
- Department of Biology, Washington University in St. Louis, 1 Brookings Dr., St Louis, MO, 63130, USA
| | - Linda L Small
- Department of Biology, Washington University in St. Louis, 1 Brookings Dr., St Louis, MO, 63130, USA
| | - Lin-Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
5
|
Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection. SUSTAINABILITY 2018. [DOI: 10.3390/su10030730] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Frye CT, Neel MC. Benefits of gene flow are mediated by individual variability in self-compatibility in small isolated populations of an endemic plant species. Evol Appl 2017; 10:551-562. [PMID: 28616063 PMCID: PMC5469166 DOI: 10.1111/eva.12437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 09/05/2016] [Indexed: 11/30/2022] Open
Abstract
Many rare and endemic species experience increased rates of self-fertilization and mating among close relatives as a consequence of existing in small populations within isolated habitat patches. Variability in self-compatibility among individuals within populations may reflect adaptation to local demography and genetic architecture, inbreeding, or drift. We use experimental hand-pollinations under natural field conditions to assess the effects of gene flow in 21 populations of the central Appalachian endemic Trifolium virginicum that varied in population size and degree of isolation. We quantified the effects of distance from pollen source on pollination success and fruit set. Rates of self-compatibility varied dramatically among maternal plants, ranging from 0% to 100%. This variation was unrelated to population size or degree of isolation. Nearly continuous variation in the success of selfing and near-cross-matings via hand pollination suggests that T. virginicum expresses pseudo-self-fertility, whereby plants carrying the same S-allele mate successfully by altering the self-incompatibility reaction. However, outcrossing among populations produced significantly higher fruit set than within populations, an indication of drift load. These results are consistent with strong selection acting to break down self-incompatibility in these small populations and/or early-acting inbreeding depression expressed upon selfing.
Collapse
Affiliation(s)
- Christopher T. Frye
- Natural Heritage ProgramMaryland Department of Natural ResourcesWildlife and Heritage ServiceWye MillsMDUSA
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
| | - Maile C. Neel
- Department of Plant Science and Landscape Architecture and Department of EntomologyUniversity of MarylandCollege ParkMDUSA
| |
Collapse
|
7
|
Aguiar B, Vieira J, Cunha AE, Vieira CP. No evidence for Fabaceae Gametophytic self-incompatibility being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes. BMC PLANT BIOLOGY 2015; 15:129. [PMID: 26032621 PMCID: PMC4451870 DOI: 10.1186/s12870-015-0497-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/20/2015] [Indexed: 05/30/2023]
Abstract
BACKGROUND Fabaceae species are important in agronomy and livestock nourishment. They have a long breeding history, and most cultivars have lost self-incompatibility (SI), a genetic barrier to self-fertilization. Nevertheless, to improve legume crop breeding, crosses with wild SI relatives of the cultivated varieties are often performed. Therefore, it is fundamental to characterize Fabaceae SI system(s). We address the hypothesis of Fabaceae gametophytic (G)SI being RNase based, by recruiting the same S-RNase lineage gene of Rosaceae, Solanaceae or Plantaginaceae SI species. RESULTS We first identify SSK1 like genes (described only in species having RNase based GSI), in the Trifolium pratense, Medicago truncatula, Cicer arietinum, Glycine max, and Lupinus angustifolius genomes. Then, we characterize the S-lineage T2-RNase genes in these genomes. In T. pratense, M. truncatula, and C. arietinum we identify S-RNase lineage genes that in phylogenetic analyses cluster with Pyrinae S-RNases. In M. truncatula and C. arietinum genomes, where large scaffolds are available, these sequences are surrounded by F-box genes that in phylogenetic analyses also cluster with S-pollen genes. In T. pratense the S-RNase lineage genes show, however, expression in tissues not involved in GSI. Moreover, levels of diversity are lower than those observed for other S-RNase genes. The M. truncatula and C. arietinum S-RNase and S-pollen like genes phylogenetically related to Pyrinae S-genes, are also expressed in tissues other than those involved in GSI. To address if other T2-RNases could be determining Fabaceae GSI, here we obtained a style with stigma transcriptome of Cytisus striatus, a species that shows significant difference on the percentage of pollen growth in self and cross-pollinations. Expression and polymorphism analyses of the C. striatus S-RNase like genes revealed that none of these genes, is the S-pistil gene. CONCLUSION We find no evidence for Fabaceae GSI being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes. There is no evidence that T2-RNase lineage genes could be determining GSI in C. striatus. Therefore, to characterize the Fabaceae S-pistil gene(s), expression analyses, levels of diversity, and segregation analyses in controlled crosses are needed for those genes showing high expression levels in the tissues where GSI occurs.
Collapse
Affiliation(s)
- Bruno Aguiar
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 245, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, Porto, 4150-180, Portugal.
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 245, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, Porto, 4150-180, Portugal.
| | - Ana E Cunha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 245, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, Porto, 4150-180, Portugal.
| | - Cristina P Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 245, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, Porto, 4150-180, Portugal.
| |
Collapse
|
8
|
Ma G, Zhang Z, Sun K, Peng H, Yang Q, Ran F, Lei Z. White clover based nitrogen-doped porous carbon for a high energy density supercapacitor electrode. RSC Adv 2015. [DOI: 10.1039/c5ra20327a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We employed the biomaterial white clover as a carbon precursor and ZnCl2 as an activating agent to prepare white clover carbons (WCCs).
Collapse
Affiliation(s)
- Guofu Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Zhiguo Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Kanjun Sun
- College of Chemistry and Environmental Science
- Lanzhou City University
- Lanzhou 730070
- China
| | - Hui Peng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Qian Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Feitian Ran
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
| |
Collapse
|
9
|
Vaseva II, Anders I, Feller U. Identification and expression of different dehydrin subclasses involved in the drought response of Trifolium repens. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:213-24. [PMID: 24054754 DOI: 10.1016/j.jplph.2013.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 05/08/2023]
Abstract
Reverse transcribed RNAs coding for YnKn, YnSKn, SKn, and KS dehydrin types in drought-stressed white clover (Trifolium repens) were identified and characterized. The nucleotide analyses revealed the complex nature of dehydrin-coding sequences, often featured with alternative start and stop codons within the open reading frames, which could be a prerequisite for high variability among the transcripts originating from a single gene. For some dehydrin sequences, the existence of natural antisense transcripts was predicted. The differential distribution of dehydrin homologues in roots and leaves from a single white clover stolon under normal and drought conditions was evaluated by semi-quantitative RT-PCR and immunoblots with antibodies against the conserved K-, Y- and S-segments. The data suggest that different dehydrin classes have distinct roles in the drought stress response and vegetative development, demonstrating some specific characteristic features. Substantial levels of YSK-type proteins with different molecular weights were immunodetected in the non-stressed developing leaves. The acidic SK2 and KS dehydrin transcripts exhibited some developmental gradient in leaves. A strong increase of YK transcripts was documented in the fully expanded leaves and roots of drought-stressed individuals. The immunodetected drought-induced signals imply that Y- and K-segment containing dehydrins could be the major inducible Late Embryogenesis Abundant class 2 proteins (LEA 2) that accumulate predominantly under drought.
Collapse
Affiliation(s)
- Irina Ivanova Vaseva
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland; Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.
| | - Iwona Anders
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Urs Feller
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
10
|
Griffiths AG, Barrett BA, Simon D, Khan AK, Bickerstaff P, Anderson CB, Franzmayr BK, Hancock KR, Jones CS. An integrated genetic linkage map for white clover (Trifolium repens L.) with alignment to Medicago. BMC Genomics 2013; 14:388. [PMID: 23758831 PMCID: PMC3693905 DOI: 10.1186/1471-2164-14-388] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND White clover (Trifolium repens L.) is a temperate forage legume with an allotetraploid genome (2n=4×=32) estimated at 1093 Mb. Several linkage maps of various sizes, marker sources and completeness are available, however, no integrated map and marker set has explored consistency of linkage analysis among unrelated mapping populations. Such integrative analysis requires tools for homoeologue matching among populations. Development of these tools provides for a consistent framework map of the white clover genome, and facilitates in silico alignment with the model forage legume, Medicago truncatula. RESULTS This is the first report of integration of independent linkage maps in white clover, and adds to the literature on methyl filtered GeneThresher®-derived microsatellite (simple sequence repeat; SSR) markers for linkage mapping. Gene-targeted SSR markers were discovered in a GeneThresher® (TrGT) methyl-filtered database of 364,539 sequences, which yielded 15,647 SSR arrays. Primers were designed for 4,038 arrays and of these, 465 TrGT-SSR markers were used for parental consensus genetic linkage analysis in an F1 mapping population (MP2). This was merged with an EST-SSR consensus genetic map of an independent population (MP1), using markers to match homoeologues and develop a multi-population integrated map of the white clover genome. This integrated map (IM) includes 1109 loci based on 804 SSRs over 1274 cM, covering 97% of the genome at a moderate density of one locus per 1.2 cM. Eighteen candidate genes and one morphological marker were also placed on the IM. Despite being derived from disparate populations and marker sources, the component maps and the derived IM had consistent representations of the white clover genome for marker order and genetic length. In silico analysis at an E-value threshold of 1e-20 revealed substantial co-linearity with the Medicago truncatula genome, and indicates a translocation between T. repens groups 2 and 6 relative to M. truncatula. CONCLUSIONS This integrated genetic linkage analysis provides a consistent and comprehensive linkage analysis of the white clover genome, with alignment to a model forage legume. Associated marker locus information, particularly the homoeologue-specific markers, offers a new resource for forage legume research to enable genetic analysis and improvement of this forage and grassland species.
Collapse
Affiliation(s)
- Andrew G Griffiths
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
- Pastoral Genomics, ℅ AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Brent A Barrett
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Deborah Simon
- Landcorp Farming Limited, PO Box 5349, Wellington, 6145, New Zealand
| | - Anar K Khan
- AgResearch Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053, New Zealand
| | | | - Craig B Anderson
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
- Pastoral Genomics, ℅ AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Benjamin K Franzmayr
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
- Pastoral Genomics, ℅ AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Kerry R Hancock
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
- Pastoral Genomics, ℅ AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Chris S Jones
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| |
Collapse
|
11
|
Nagy I, Barth S, Mehenni-Ciz J, Abberton MT, Milbourne D. A hybrid next generation transcript sequencing-based approach to identify allelic and homeolog-specific single nucleotide polymorphisms in allotetraploid white clover. BMC Genomics 2013; 14:100. [PMID: 23402685 PMCID: PMC3727989 DOI: 10.1186/1471-2164-14-100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 02/01/2013] [Indexed: 11/24/2022] Open
Abstract
Background White clover (Trifolium repens L.) is an allotetraploid species possessing two highly collinear ancestral sub-genomes. The apparent existence of highly similar homeolog copies for the majority of genes in white clover is problematic for the development of genome-based resources in the species. This is especially true for the development of genetic markers based on single nucleotide polymorphisms (SNPs), since it is difficult to distinguish between homeolog-specific and allelic variants. Robust methods for categorising single nucleotide variants as allelic or homeolog-specific in large transcript datasets are required. We illustrate one potential approach in this study. Results We used 454-pyrosequencing sequencing to generate ~760,000 transcript sequences from an 8th generation white clover inbred line. These were assembled and partially annotated to yield a reference transcript set comprising 71,545 sequences. We subsequently performed Illumina sequencing on three further white clover samples, generating 14 million transcript reads from a mixed sample comprising 24 divergent white clover genotypes, and 50 million reads on two further eighth generation white clover inbred lines. Mapping these reads to the reference transcript set allowed us to develop a significant SNP resource for white clover, and to partition the SNPs from the inbred lines into categories reflecting allelic or homeolog-specific variation. The potential for using haplotype reconstruction and progenitor genome comparison to assign haplotypes to specific ancestral sub-genomes of white clover is demonstrated for sequences corresponding to genes encoding dehydration responsive element binding protein and acyl-coA oxidase. Conclusions In total, 208,854 independent SNPs in 31,715 reference sequences were discovered, approximately three quarters of which were categorised as representing allelic or homeolog-specific variation using two inbred lines. This represents a significant resource for white clover genomics and genetics studies. We discuss the potential to extend the analysis to identify a “core set” of ancestrally derived homeolog specific variants in white clover.
Collapse
Affiliation(s)
- Istvan Nagy
- Crops, Environment and Land Use Programme, Teagasc, Oak Park, Carlow, Ireland
| | | | | | | | | |
Collapse
|
12
|
Development of Genomic Resources in the Species of Trifolium L. and Its Application in Forage Legume Breeding. AGRONOMY-BASEL 2012. [DOI: 10.3390/agronomy2020116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Isobe SN, Hisano H, Sato S, Hirakawa H, Okumura K, Shirasawa K, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Tabata S. Comparative Genetic Mapping and Discovery of Linkage Disequilibrium Across Linkage Groups in White Clover (Trifolium repens L.). G3 (BETHESDA, MD.) 2012; 2:607-17. [PMID: 22670230 PMCID: PMC3362943 DOI: 10.1534/g3.112.002600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/16/2012] [Indexed: 11/18/2022]
Abstract
White clover (Trifolium repens L.) is an allotetraploid species (2n = 4X = 32) that is widely distributed in temperate regions and cultivated as a forage legume. In this study, we developed expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers, constructed linkage maps, and performed comparative mapping with other legume species. A total of 7982 ESTs that could be assembled into 5400 contigs and 2582 singletons were generated. Using the EST sequences that were obtained, 1973 primer pairs to amplify EST-derived SSR markers were designed and used for linkage analysis of 188 F(1) progenies, which were generated by a cross between two Japanese plants, '273-7' and 'T17-349,' with previously published SSR markers. An integrated linkage map was constructed by combining parental-specific maps, which consisted of 1743 SSR loci on 16 homeologous linkage groups with a total length of 2511 cM. The primer sequences of the developed EST-SSR markers and their map positions are available on http://clovergarden.jp/. Linkage disequilibrium (LD) was observed on 9 of 16 linkage groups of a parental-specific map. The genome structures were compared among white clover, red clover (T. pratense L.), Medicago truncatula, and Lotus japonicus. Macrosynteny was observed across the four legume species. Surprisingly, the comparative genome structure between white clover and M. truncatula had a higher degree of conservation than that of the two clover species.
Collapse
Affiliation(s)
- Sachiko N. Isobe
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hiroshi Hisano
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Shusei Sato
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hideki Hirakawa
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Kenji Okumura
- Forage Crop Breeding Research Team, National Agricultural Research Center for Hokkaido Region, Sapporo, Hokkaido 062-8555, Japan
| | - Kenta Shirasawa
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Shigemi Sasamoto
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Akiko Watanabe
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tsuyuko Wada
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yoshie Kishida
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hisano Tsuruoka
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tsunakazu Fujishiro
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Manabu Yamada
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Mistuyo Kohara
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Satoshi Tabata
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
14
|
Riday H, Krohn AL. Genetic map-based location of the red clover (Trifolium pratense L.) gametophytic self-incompatibility locus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:761-767. [PMID: 20461353 DOI: 10.1007/s00122-010-1347-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/19/2010] [Indexed: 05/26/2023]
Abstract
Red clover is a hermaphroditic allogamous diploid (2n = 2x = 14) with a homomorphic gametophytic self-incompatibility (GSI) system (Trifolium pratense L.). Red clover GSI has long been studied, and it is thought that the genetic control of GSI constitutes a single locus. Although GSI genes have been identified in other species, the genomic location of the red clover GSI-locus remains unknown. The objective of this study was to use a mapping-based approach to identify simple sequence repeats (SSR) that were closely linked to the GSI-locus. Previously published SSR markers were used in this effort (Sato et al. in DNA Res 12:301-364, 2005). A bi-parental cross was initiated in which the parents were known to have one self-incompatibility allele (S-allele) in common. S-allele genotypes of 100 progeny were determined through test crosses and pollen compatibility. Pseudo F(1) linkage analysis isolated the GSI-locus on red clover linkage-group one within 2.5 cM of markers RCS5615, RCS0810, and RCS3161. A second 256 progeny mapping testcross population of a heterozygous self-compatible mutant revealed that this specific self-compatible mutant mapped to the same location as the GSI-locus. Finally, 82 genotypes were identified whose parents putatively shared one S-allele in common from maternal halfsib families derived from two random mating populations in which paternal identity was determined using molecular markers. Unique S-allele identity in the two random mating populations was tentatively inferred based on haplotypes of two highly allelic linkage-group one SSR (RCS0810 and RCS4956), which were closely linked to each other and the GSI-locus. Paternally derived pollen haplotype linkage analysis of RCS0810 and RCS4956 SSR and the GSI-locus again revealed tight linkage at 2.5 and 4.7 cM between the GSI-locus and RCS0810 and RCS4956, respectively. The map-based location of the GSI-locus in red clover has many immediate applications to red clover plant breeding and could be useful in helping to sequence the GSI-locus.
Collapse
|