1
|
Li K, Hassan MA, Guo J, Zhao X, Gan Q, Lin C, Ten B, Zhou K, Li M, Shi Y, Ni D, Song F. Analysis of genome-wide association studies of low-temperature germination in Xian and Geng rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1404879. [PMID: 39166241 PMCID: PMC11333256 DOI: 10.3389/fpls.2024.1404879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024]
Abstract
Rice is the leading global staple crop. Low temperatures pose negative impacts on rice's optimal growth and development. Rice cultivars acclimating to low temperatures exhibited improved seedling emergence under direct-seeded sowing conditions, yet little is known about the genes that regulate germination at low temperatures (LTG). In this research investigation, we've performed whole genome sequencing for the 273 rice plant materials. Using the best linear unbiased prediction (BLUP) values for each rice material, we identified 7 LTG-related traits and performed the efficient genetic analysis and genome-wide association study (GWAS). As a result of this, 95 quantitative trait loci (QTLs) and 1001 candidate genes associated with LTG in rice were identified. Haplotype analysis and functional annotation of the candidate genes resulted in the identification of three promising candidate genes (LOC_Os08g30520 for regulating LTG4 and LTG5, LOC_Os10g02625 for regulating LTG6, LTg7 and LTG8, and LOC_Os12g31460 for regulating LTG7, LTg8 and LTG9) involving in the regulation of LTG in rice. This research provides a solid foundation for addressing the LTG issue in rice and will be valuable in future direct-seeded rice breeding programs.
Collapse
Affiliation(s)
- Kang Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | | | - Jinmeng Guo
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xueyu Zhao
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Quan Gan
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Cuixiang Lin
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Bin Ten
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Kunneng Zhou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Dahu Ni
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Fengshun Song
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
2
|
Amouzoune M, Rehman S, Benkirane R, Udupa S, Mamidi S, Kehel Z, Al-Jaboobi M, Amri A. Genome wide association study of seedling and adult plant leaf rust resistance in two subsets of barley genetic resources. Sci Rep 2024; 14:15428. [PMID: 38965257 PMCID: PMC11224298 DOI: 10.1038/s41598-024-53149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/29/2024] [Indexed: 07/06/2024] Open
Abstract
Leaf rust (LR) caused by Puccinia hordei is a serious disease of barley worldwide, causing significant yield losses and reduced grain quality. Discovery and incorporation of new sources of resistance from gene bank accessions into barley breeding programs is essential for the development of leaf rust resistant varieties. To identify Quantitative Trait Loci (QTL) conferring LR resistance in the two barley subsets, the Generation Challenge Program (GCP) reference set of 142 accessions and the leaf rust subset constructed using the Focused Identification of Germplasm Strategy (FIGS) of 76 barley accessions, were genotyped to conduct a genome-wide association study (GWAS). The results revealed a total of 59 QTL in the 218 accessions phenotyped against barley leaf rust at the seedling stage using two P. hordei isolates (ISO-SAT and ISO-MRC), and at the adult plant stage in four environments in Morocco. Out of these 59 QTL, 10 QTL were associated with the seedling resistance (SR) and 49 QTL were associated with the adult plant resistance (APR). Four QTL showed stable effects in at least two environments for APR, whereas two common QTL associated with SR and APR were detected on chromosomes 2H and 7H. Furthermore, 39 QTL identified in this study were potentially novel. Interestingly, the sequences of 27 SNP markers encoded the candidate genes (CGs) with predicted protein functions in plant disease resistance. These results will provide new perspectives on the diversity of leaf rust resistance loci for fine mapping, isolation of resistance genes, and for marker-assisted selection for the LR resistance in barley breeding programs worldwide.
Collapse
Affiliation(s)
- Mariam Amouzoune
- Faculty of Sciences, University Ibn Tofail, 14000, Kenitra, Morocco.
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco.
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
- Field Crop Development Center, The Olds College, Lacombe, AB, T4L 1W8, Canada
| | - Rachid Benkirane
- Faculty of Sciences, University Ibn Tofail, 14000, Kenitra, Morocco
| | - Sripada Udupa
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| | - Sujan Mamidi
- Hudson Alpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| | - Muamer Al-Jaboobi
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| | - Ahmed Amri
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| |
Collapse
|
3
|
Li T, Yang H, Zhang X, Zhu L, Zhang J, Wei N, Li R, Dong Y, Feng Z, Zhang X, Xue J, Xu S. Genetic architecture of ear traits based on association mapping and co-expression networks in maize inbred lines and hybrids. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:78. [PMID: 37928364 PMCID: PMC10624778 DOI: 10.1007/s11032-023-01426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Ear traits are key contributors to grain yield in maize; therefore, exploring their genetic basis facilitates the improvement of grain yield. However, the underlying molecular mechanisms of ear traits remain obscure in both inbred lines and hybrids. Here, two association panels, respectively, comprising 203 inbred lines (IP) and 246 F1 hybrids (HP) were employed to identify candidate genes for six ear traits. The IP showed higher phenotypic variation and lower phenotypic mean than the HP for all traits, except ear tip-barrenness length. By conducting a genome-wide association study (GWAS) across multiple environments, 101 and 228 significant single-nucleotide polymorphisms (SNPs) associated with six ear traits were identified in the IP and HP, respectively. Of these significant SNPs identified in the HP, most showed complete-incomplete dominance and over-dominance effects for each ear trait. Combining a gene co-expression network with GWAS results, 186 and 440 candidate genes were predicted in the IP and HP, respectively, including known ear development genes ids1 and sid1. Of these, nine candidate genes were detected in both populations and expressed in maize ear and spikelet tissues. Furthermore, two key shared genes (GRMZM2G143330 and GRMZM2G171139) in both populations were found to be significantly associated with ear traits in the maize Goodman diversity panel with high-density variations. These findings advance our knowledge of the genetic architecture of ear traits between inbred lines and hybrids and provide a valuable resource for the genetic improvement of ear traits in maize. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01426-9.
Collapse
Affiliation(s)
- Ting Li
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Haoxiang Yang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Xiaojun Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Liangjia Zhu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Jun Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Ningning Wei
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Ranran Li
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Yuan Dong
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Zhiqian Feng
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Xinghua Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Jiquan Xue
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Shutu Xu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| |
Collapse
|
4
|
Joshi B, Singh S, Tiwari GJ, Kumar H, Boopathi NM, Jaiswal S, Adhikari D, Kumar D, Sawant SV, Iquebal MA, Jena SN. Genome-wide association study of fiber yield-related traits uncovers the novel genomic regions and candidate genes in Indian upland cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1252746. [PMID: 37941674 PMCID: PMC10630025 DOI: 10.3389/fpls.2023.1252746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
Upland cotton (Gossypium hirsutum L.) is a major fiber crop that is cultivated worldwide and has significant economic importance. India harbors the largest area for cotton cultivation, but its fiber yield is still compromised and ranks 22nd in terms of productivity. Genetic improvement of cotton fiber yield traits is one of the major goals of cotton breeding, but the understanding of the genetic architecture underlying cotton fiber yield traits remains limited and unclear. To better decipher the genetic variation associated with fiber yield traits, we conducted a comprehensive genome-wide association mapping study using 117 Indian cotton germplasm for six yield-related traits. To accomplish this, we generated 2,41,086 high-quality single nucleotide polymorphism (SNP) markers using genotyping-by-sequencing (GBS) methods. Population structure, PCA, kinship, and phylogenetic analyses divided the germplasm into two sub-populations, showing weak relatedness among the germplasms. Through association analysis, 205 SNPs and 134 QTLs were identified to be significantly associated with the six fiber yield traits. In total, 39 novel QTLs were identified in the current study, whereas 95 QTLs overlapped with existing public domain data in a comparative analysis. Eight QTLs, qGhBN_SCY_D6-1, qGhBN_SCY_D6-2, qGhBN_SCY_D6-3, qGhSI_LI_A5, qGhLI_SI_A13, qGhLI_SI_D9, qGhBW_SCY_A10, and qGhLP_BN_A8 were identified. Gene annotation of these fiber yield QTLs revealed 2,509 unique genes. These genes were predominantly enriched for different biological processes, such as plant cell wall synthesis, nutrient metabolism, and vegetative growth development in the gene ontology (GO) enrichment study. Furthermore, gene expression analysis using RNAseq data from 12 diverse cotton tissues identified 40 candidate genes (23 stable and 17 novel genes) to be transcriptionally active in different stages of fiber, ovule, and seed development. These findings have revealed a rich tapestry of genetic elements, including SNPs, QTLs, and candidate genes, and may have a high potential for improving fiber yield in future breeding programs for Indian cotton.
Collapse
Affiliation(s)
- Babita Joshi
- Plant Genetic Resources and Improvement, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Singh
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gopal Ji Tiwari
- Plant Genetic Resources and Improvement, CSIR-National Botanical Research Institute, Lucknow, India
| | - Harish Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Regional Research Station, Faridkot, Punjab, India
| | - Narayanan Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dibyendu Adhikari
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Lucknow, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Samir V. Sawant
- Molecular Biology & Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Satya Narayan Jena
- Plant Genetic Resources and Improvement, CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
5
|
Ziems LA, Singh L, Dracatos PM, Dieters MJ, Sanchez-Garcia M, Amri A, Verma RPS, Park RF, Singh D. Characterization of Leaf Rust Resistance in International Barley Germplasm Using Genome-Wide Association Studies. PLANTS (BASEL, SWITZERLAND) 2023; 12:862. [PMID: 36840210 PMCID: PMC9963359 DOI: 10.3390/plants12040862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
A panel of 114 genetically diverse barley lines were assessed in the greenhouse and field for resistance to the pathogen Puccinia hordei, the causal agent of barley leaf rust. Multi-pathotype tests revealed that 16.6% of the lines carried the all-stage resistance (ASR) gene Rph3, followed by Rph2 (4.4%), Rph1 (1.7%), Rph12 (1.7%) or Rph19 (1.7%). Five lines (4.4%) were postulated to carry the gene combinations Rph2+9.am, Rph2+19 and Rph8+19. Three lines (2.6%) were postulated to carry Rph15 based on seedling rust tests and genotyping with a marker linked closely to this gene. Based on greenhouse seedling tests and adult-plant field tests, 84 genotypes (73.7%) were identified as carrying APR, and genotyping with molecular markers linked closely to three known APR genes (Rph20, Rph23 and Rph24) revealed that 48 of the 84 genotypes (57.1%) likely carry novel (uncharacterized) sources of APR. Seven lines were found to carry known APR gene combinations (Rph20+Rph23, Rph23+Rph24 and Rph20+Rph24), and these lines had higher levels of field resistance compared to those carrying each of these three APR genes singly. GWAS identified 12 putative QTLs; strongly associated markers located on chromosomes 1H, 2H, 3H, 5H and 7H. Of these, the QTL on chromosome 7H had the largest effect on resistance response to P. hordei. Overall, these studies detected several potentially novel genomic regions associated with resistance. The findings provide useful information for breeders to support the utilization of these sources of resistance to diversify resistance to leaf rust in barley and increase resistance durability.
Collapse
Affiliation(s)
- Laura A. Ziems
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
| | - Lovepreet Singh
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
| | - Peter M. Dracatos
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC 3086, Australia
| | - Mark J. Dieters
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Miguel Sanchez-Garcia
- International Centre for Agriculture Research in Dry Areas (ICARDA), Rabat 10170, Morocco
| | - Ahmed Amri
- International Centre for Agriculture Research in Dry Areas (ICARDA), Rabat 10170, Morocco
| | - Ramesh Pal Singh Verma
- International Centre for Agriculture Research in Dry Areas (ICARDA), Rabat 10170, Morocco
- Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Robert F. Park
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
| | - Davinder Singh
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
| |
Collapse
|
6
|
Wang N, Chen H, Qian Y, Liang Z, Zheng G, Xiang J, Feng T, Li M, Zeng W, Bao Y, Liu E, Zhang C, Xu J, Shi Y. Genome-Wide Association Study of Rice Grain Shape and Chalkiness in a Worldwide Collection of Xian Accessions. PLANTS (BASEL, SWITZERLAND) 2023; 12:419. [PMID: 36771503 PMCID: PMC9919668 DOI: 10.3390/plants12030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Rice (Oryza sativa L.) appearance quality, which is mainly defined by grain shape and chalkiness, is an important target in rice breeding. In this study, we first re-sequenced 137 indica accessions and then conducted a genome-wide association study (GWAS) for six agronomic traits with the 2,998,034 derived single nucleotide polymorphisms (SNPs) by using the best linear unbiased prediction (BLUP) values for each trait. The results revealed that 195 SNPs had significant associations with the six agronomic traits. Based on the genome-wide linkage disequilibrium (LD) blocks, candidate genes for the target traits were detected within 100 kb upstream and downstream of the relevant SNP loci. Results indicate that six quantitative trait loci (QTLs) significantly associated with six traits (qTGW4.1, qTGW4.2, qGL4.1, qGL12.1, qGL12.2, qGW2.1, qGW4.1, qGW6.1, qGW8.1, qGW8.2, qGW9.1, qGW11.1, qGLWR2.1, qGLWR2.2, qGLWR4.2, qPGWC5.1 and qDEC6.1) were identified for haplotype analysis. Among these QTLs, two (qTGW4.2 and qGW6.1), were overlapped with FLO19 and OsbZIP47, respectively, and the remaining four were novel QTLs. These candidate genes were further validated by haplotype block construction.
Collapse
Affiliation(s)
- Nansheng Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Huguang Chen
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingzhi Qian
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Zhaojie Liang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Guiqiang Zheng
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Jun Xiang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Ting Feng
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Wei Zeng
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yaling Bao
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Erbao Liu
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chaopu Zhang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Sandro P, Kucek LK, Sorrells ME, Dawson JC, Gutierrez L. Developing high-quality value-added cereals for organic systems in the US Upper Midwest: hard red winter wheat (Triticum aestivum L.) breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4005-4027. [PMID: 35633380 PMCID: PMC9142347 DOI: 10.1007/s00122-022-04112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
There is an increased demand for food-grade grains grown sustainably. Hard red winter wheat has comparative advantages for organic farm rotations due to fall soil cover, weed competition, and grain yields. However, limitations of currently available cultivars such as poor disease resistance, winter hardiness, and baking quality, challenges its adoption and use. Our goal was to develop a participatory hard red winter wheat breeding program for the US Upper Midwest involving farmers, millers, and bakers. Specifically, our goals include (1) an evaluation of genotype-by-environment interaction (GEI) and genotypic stability for both agronomic and quality traits, and (2) the development of on-farm trials as well as baking and sensory evaluations of genotypes to include farmers, millers, and bakers' perspectives in the breeding process. Selection in early generations for diseases and protein content was followed by multi-environment evaluations for agronomic, disease, and quality traits in three locations during five years, on-farm evaluations, baking trials, and sensory evaluations. GEI was substantial for most traits, but no repeatable environmental conditions were significant contributors to GEI making selection for stability a critical trait. Breeding lines had similar performance in on-station and on-farm trials compared to commercial checks, but some breeding lines were more stable than the checks for agronomic, quality traits, and baking performance. These results suggest that stable lines can be developed using a participatory breeding approach under organic management. Crop improvement explicitly targeting sustainable agriculture practices for selection with farm to table participatory perspectives are critical to achieve long-term sustainable crop production. KEY MESSAGE: We describe a hard red winter wheat breeding program focused on developing genotypes adapted to organic systems in the US Upper Midwest for high-end artisan baking quality using participatory approaches.
Collapse
Affiliation(s)
- Pablo Sandro
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Mark E Sorrells
- Plant Breeding, and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Julie C Dawson
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Lucia Gutierrez
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Lim YW, Mansfeld BN, Schläpfer P, Gilbert KB, Narayanan NN, Qi W, Wang Q, Zhong Z, Boyher A, Gehan J, Beyene G, Lin ZJD, Esuma W, Feng S, Chanez C, Eggenberger N, Adiga G, Alicai T, Jacobsen SE, Taylor NJ, Gruissem W, Bart RS. Mutations in DNA polymerase δ subunit 1 co-segregate with CMD2-type resistance to Cassava Mosaic Geminiviruses. Nat Commun 2022; 13:3933. [PMID: 35798722 PMCID: PMC9262879 DOI: 10.1038/s41467-022-31414-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022] Open
Abstract
Cassava mosaic disease (CMD) suppresses cassava yields across the tropics. The dominant CMD2 locus confers resistance to cassava mosaic geminiviruses. It has been reported that CMD2-type landraces lose resistance after regeneration through de novo morphogenesis. As full genome bisulfite sequencing failed to uncover an epigenetic mechanism for this loss of resistance, whole genome sequencing and genetic variant analysis was performed and the CMD2 locus was fine-mapped to a 190 kilobase interval. Collectively, these data indicate that CMD2-type resistance is caused by a nonsynonymous, single nucleotide polymorphism in DNA polymerase δ subunit 1 (MePOLD1) located within this region. Virus-induced gene silencing of MePOLD1 in a CMD-susceptible cassava variety produced a recovery phenotype typical of CMD2-type resistance. Analysis of other CMD2-type cassava varieties identified additional candidate resistance alleles within MePOLD1. Genetic variation of MePOLD1, therefore, could represent an important genetic resource for resistance breeding and/or genome editing, and elucidating mechanisms of resistance to geminiviruses.
Collapse
Affiliation(s)
- Yi-Wen Lim
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092, Zürich, Switzerland
| | - Ben N Mansfeld
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Pascal Schläpfer
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092, Zürich, Switzerland
| | - Kerrigan B Gilbert
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Narayanan N Narayanan
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Qi Wang
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Adam Boyher
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Jackson Gehan
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Getu Beyene
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Zuh-Jyh Daniel Lin
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Williams Esuma
- Root Crops Program, National Crops Resources Research Institute, P. O. Box 7084, Kampala, Uganda
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Christelle Chanez
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092, Zürich, Switzerland
| | - Nadine Eggenberger
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092, Zürich, Switzerland
| | - Gerald Adiga
- Root Crops Program, National Crops Resources Research Institute, P. O. Box 7084, Kampala, Uganda
| | - Titus Alicai
- Root Crops Program, National Crops Resources Research Institute, P. O. Box 7084, Kampala, Uganda
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute University of California Los Angeles, Los Angeles, CA, USA
| | - Nigel J Taylor
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Wilhelm Gruissem
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092, Zürich, Switzerland.
- Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung City, 40227, Taiwan.
| | - Rebecca S Bart
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.
| |
Collapse
|
9
|
Frontini M, Boisnard A, Frouin J, Ouikene M, Morel JB, Ballini E. Genome-wide association of rice response to blast fungus identifies loci for robust resistance under high nitrogen. BMC PLANT BIOLOGY 2021; 21:99. [PMID: 33602120 PMCID: PMC7893971 DOI: 10.1186/s12870-021-02864-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/01/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Nitrogen fertilization is known to increase disease susceptibility, a phenomenon called Nitrogen-Induced Susceptibility (NIS). In rice, this phenomenon has been observed in infections with the blast fungus Magnaporthe oryzae. A previous classical genetic study revealed a locus (NIS1) that enhances susceptibility to rice blast under high nitrogen fertilization. In order to further address the underlying genetics of plasticity in susceptibility to rice blast after fertilization, we analyzed NIS under greenhouse-controlled conditions in a panel of 139 temperate japonica rice strains. A genome-wide association analysis was conducted to identify loci potentially involved in NIS by comparing susceptibility loci identified under high and low nitrogen conditions, an approach allowing for the identification of loci validated across different nitrogen environments. We also used a novel NIS Index to identify loci potentially contributing to plasticity in susceptibility under different nitrogen fertilization regimes. RESULTS A global NIS effect was observed in the population, with the density of lesions increasing by 8%, on average, under high nitrogen fertilization. Three new QTL, other than NIS1, were identified. A rare allele of the RRobN1 locus on chromosome 6 provides robust resistance in high and low nitrogen environments. A frequent allele of the NIS2 locus, on chromosome 5, exacerbates blast susceptibility under the high nitrogen condition. Finally, an allele of NIS3, on chromosome 10, buffers the increase of susceptibility arising from nitrogen fertilization but increases global levels of susceptibility. This allele is almost fixed in temperate japonicas, as a probable consequence of genetic hitchhiking with a locus involved in cold stress adaptation. CONCLUSIONS Our results extend to an entire rice subspecies the initial finding that nitrogen increases rice blast susceptibility. We demonstrate the usefulness of estimating plasticity for the identification of novel loci involved in the response of rice to the blast fungus under different nitrogen regimes.
Collapse
Affiliation(s)
- Mathias Frontini
- BGPI, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Julien Frouin
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Malika Ouikene
- Groupe de Valorisation des Produits Agricoles (GVAPRO), Alger, Algeria
| | - Jean Benoit Morel
- BGPI, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Elsa Ballini
- BGPI, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
10
|
Hernandez J, Meints B, Hayes P. Introgression Breeding in Barley: Perspectives and Case Studies. FRONTIERS IN PLANT SCIENCE 2020; 11:761. [PMID: 32595671 PMCID: PMC7303309 DOI: 10.3389/fpls.2020.00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 05/04/2023]
Abstract
Changing production scenarios resulting from unstable climatic conditions are challenging crop improvement efforts. A deeper and more practical understanding of plant genetic resources is necessary if these assets are to be used effectively in developing improved varieties. In general, current varieties and potential varieties have a narrow genetic base, making them prone to suffer the consequences of new and different abiotic and biotic stresses that can reduce crop yield and quality. The deployment of genomic technologies and sophisticated statistical analysis procedures has generated a dramatic change in the way we characterize and access genetic diversity in crop plants, including barley. Various mapping strategies can be used to identify the genetic variants that lead to target phenotypes and these variants can be assigned coordinates in reference genomes. In this way, new genes and/or new alleles at known loci present in wild ancestors, germplasm accessions, land races, and un-adapted introductions can be located and targeted for introgression. In principle, the introgression process can now be streamlined and linkage drag reduced. In this review, we present an overview of (1) past and current efforts to identify diversity that can be tapped to improve barley yield and quality, and (2) case studies of our efforts to introgress resistance to stripe and stem rust from un-adapted germplasm. We conclude with a description of a modified Nested Association Mapping (NAM) population strategy that we are implementing for the development of multi-use naked barley for organic systems and share perspectives on the use of genome editing in introgression breeding.
Collapse
Affiliation(s)
- Javier Hernandez
- Department Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | | | | |
Collapse
|
11
|
Hernandez J, Del Blanco A, Filichkin T, Fisk S, Gallagher L, Helgerson L, Meints B, Mundt C, Steffenson B, Hayes P. A Genome-Wide Association Study of Resistance to Puccinia striiformis f. sp. hordei and P. graminis f. sp. tritici in Barley and Development of Resistant Germplasm. PHYTOPATHOLOGY 2020; 110:1082-1092. [PMID: 32023173 DOI: 10.1094/phyto-11-19-0415-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stripe rust (incited by Puccinia striiformis f. sp. hordei) and stem rust (incited by P. graminis f. sp. tritici) are two of the most important diseases affecting barley. Building on prior work involving the introgression of the resistance genes rpg4/Rpg5 into diverse genetic backgrounds and the discovery of additional quantitative trait locus (QTLs) for stem rust resistance, we generated an array of germplasm in which we mapped resistance to stripe rust and stem rust. Stem rust races TTKSK and QCCJB were used for resistance mapping at the seedling and adult plant stages, respectively. Resistance to stripe rust, at the adult plant stage, was determined by QTLs on chromosomes 1H, 4H, and 5H that were previously reported in the literature. The rpg4/Rpg5 complex was validated as a source of resistance to stem rust at the seedling stage. Some parental germplasm, selected as potentially resistant to stem rust or susceptible but having other positive attributes, showed resistance at the seedling stage, which appears to be allelic to rpg4/Rpg5. The rpg4/Rpg5 complex, and this new allele, were not sufficient for adult plant resistance to stem rust in one environment. A QTL on 5H, distinct from Rpg5 and a previously reported resistance QTL, was required for resistance at the adult plant stage in all environments. This QTL is coincident with the QTL for stripe rust resistance. Germplasm with mapped genes/QTLs conferring resistance to stripe and stem rust was identified and is available as a resource to the research and breeding communities.
Collapse
Affiliation(s)
- Javier Hernandez
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Alicia Del Blanco
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616
| | - Tanya Filichkin
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Scott Fisk
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Lynn Gallagher
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616
| | - Laura Helgerson
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Brigid Meints
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Chris Mundt
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Brian Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Patrick Hayes
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
12
|
Bhatta M, Gutierrez L, Cammarota L, Cardozo F, Germán S, Gómez-Guerrero B, Pardo MF, Lanaro V, Sayas M, Castro AJ. Multi-trait Genomic Prediction Model Increased the Predictive Ability for Agronomic and Malting Quality Traits in Barley ( Hordeum vulgare L.). G3 (BETHESDA, MD.) 2020; 10:1113-1124. [PMID: 31974097 PMCID: PMC7056970 DOI: 10.1534/g3.119.400968] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Plant breeders regularly evaluate multiple traits across multiple environments, which opens an avenue for using multiple traits in genomic prediction models. We assessed the potential of multi-trait (MT) genomic prediction model through evaluating several strategies of incorporating multiple traits (eight agronomic and malting quality traits) into the prediction models with two cross-validation schemes (CV1, predicting new lines with genotypic information only and CV2, predicting partially phenotyped lines using both genotypic and phenotypic information from correlated traits) in barley. The predictive ability was similar for single (ST-CV1) and multi-trait (MT-CV1) models to predict new lines. However, the predictive ability for agronomic traits was considerably increased when partially phenotyped lines (MT-CV2) were used. The predictive ability for grain yield using the MT-CV2 model with other agronomic traits resulted in 57% and 61% higher predictive ability than ST-CV1 and MT-CV1 models, respectively. Therefore, complex traits such as grain yield are better predicted when correlated traits are used. Similarly, a considerable increase in the predictive ability of malting quality traits was observed when correlated traits were used. The predictive ability for grain protein content using the MT-CV2 model with both agronomic and malting traits resulted in a 76% higher predictive ability than ST-CV1 and MT-CV1 models. Additionally, the higher predictive ability for new environments was obtained for all traits using the MT-CV2 model compared to the MT-CV1 model. This study showed the potential of improving the genomic prediction of complex traits by incorporating the information from multiple traits (cost-friendly and easy to measure traits) collected throughout breeding programs which could assist in speeding up breeding cycles.
Collapse
Affiliation(s)
- Madhav Bhatta
- Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Dr., WI, 53706
| | - Lucia Gutierrez
- Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Dr., WI, 53706,
| | - Lorena Cammarota
- Department of plant production, Facultad de Agronomía, Universidad de la República, Ruta 3, Km363, Paysandú 60000, Uruguay
- Maltería Uruguay S.A. Ruta 55, Km26, Ombúes de Lavalle, Uruguay
| | | | - Silvia Germán
- Instituto Nacional de Investigación Agropuecuaria, Estación Experimental La Estanzuela, Ruta 50, Km11, Colonia, Uruguay
| | | | | | - Valeria Lanaro
- Latitud, LATU Foundation, Av Italia 6201, Montevideo 11500, Uruguay, and
| | - Mercedes Sayas
- Maltería Oriental S.A., Camino Abrevadero 5525, Montevideo 12400, Uruguay
| | - Ariel J Castro
- Department of plant production, Facultad de Agronomía, Universidad de la República, Ruta 3, Km363, Paysandú 60000, Uruguay
| |
Collapse
|
13
|
Visioni A, Rehman S, Viash SS, Singh SP, Vishwakarma R, Gyawali S, Al-Abdallat AM, Verma RPS. Genome Wide Association Mapping of Spot Blotch Resistance at Seedling and Adult Plant Stages in Barley. FRONTIERS IN PLANT SCIENCE 2020; 11:642. [PMID: 32670303 PMCID: PMC7326046 DOI: 10.3389/fpls.2020.00642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 04/24/2020] [Indexed: 05/05/2023]
Abstract
Barley spot blotch (SB) caused by Cochliobolus sativus is one of the major constrains to barley production in warmer regions worldwide. The study was undertaken to identify and estimate effects of loci underlying quantitative resistance to SB at the seedling and adult plant stages. A panel of 261 high input (HI-AM) barley genotypes consisting of released cultivars, advanced breeding lines, and landraces, was screened for resistance to SB. The seedling resistance screening was conducted using two virulent isolates from Morocco (ICSB3 and SB54) while the adult plant stage resistance was evaluated at two hot spot locations, Faizabad and Varanasi, in India under artificial inoculation using a mixture of prevalent virulent isolates. The HI-AM panel was genotyped using DArT-Seq high-throughput genotyping platform. Genome wide association mapping (GWAM) was conducted using 13,182 PAV and 6,311 SNP markers, for seedling and adult plant resistance. Both GLM and MLM model were employed in TASSEL (v 5.0) using principal component analysis and Kinship Matrix as covariates. Final disease rating and Area Under Disease Progress Curve (AUDPC) were used for the evaluation of adult stage plant resistance. The GWAM analysis indicated 23 QTL at the seedling stage (14 for isolate ICSB3 and 9 for isolate SB54), while 15 QTL were detected at the adult plant stage resistance (6 at Faizabad and 9 at Varanasi) and 5 for AUDPC based resistance at Varanasi. Common QTL at seedling and adult plant stages were found across all barley chromosomes. Seedling stage QTL explained together 73.24% of the variance for seedling resistance to isolate ICSB3 and 49.26% for isolate SB54, whereas, QTL for adult plant stage resistance explained together 38.32%, 44.09% and 26.42% of the variance at Faizabad and Varanasi and AUDPC at Varanasi, respectively. Several QTL identified in this study were also reported in previous studies using bi-parental and association mapping populations, corroborating our results. The promising QTL detected at both stages, once validated, can be used for marker assisted selection (MAS) in SB resistance barley breeding program.
Collapse
Affiliation(s)
- Andrea Visioni
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- *Correspondence: Andrea Visioni,
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Shyam Saran Viash
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Shiw Pratap Singh
- Department of Plant Pathology, Narendra Dev University of Agriculture and Technology, Faizabad, India
| | - Ram Vishwakarma
- Department of Plant Pathology, Narendra Dev University of Agriculture and Technology, Faizabad, India
| | - Sanjaya Gyawali
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Vegetable Seed Pathology Department, Washington State University, Northwest Washington Research and Extension Center, Mount Vernon, WA, United States
| | - Ayed M. Al-Abdallat
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Department of Horticulture and Crop Science, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Ramesh Pal Singh Verma
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| |
Collapse
|
14
|
Hernandez J, Steffenson BJ, Filichkin T, Fisk SP, Helgerson L, Meints B, Vining KJ, Marshall D, Del Blanco A, Chen X, Hayes PM. Introgression of rpg4/ Rpg5 Into Barley Germplasm Provides Insights Into the Genetics of Resistance to Puccinia graminis f. sp. tritici Race TTKSK and Resources for Developing Resistant Cultivars. PHYTOPATHOLOGY 2019; 109:1018-1028. [PMID: 30714882 DOI: 10.1094/phyto-09-18-0350-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stem rust (incited by Puccinia graminis f. sp. tritici) is a devastating disease of wheat and barley in many production areas. The widely virulent African P. graminis f. sp. tritici race TTKSK is of particular concern, because most cultivars are susceptible. To prepare for the possible arrival of race TTKSK in North America, we crossed a range of barley germplasm-representing different growth habits and end uses-with donors of stem rust resistance genes Rpg1 and rpg4/Rpg5. The former confers resistance to prevalent races of P. graminis f. sp. tritici in North America, and the latter confers resistance to TTKSK and other closely related races from Africa. We produced doubled haploids from these crosses and determined their allele type at the Rpg loci and haplotype at 7,864 single-nucleotide polymorphism loci. The doubled haploids were phenotyped for TTKSK resistance at the seedling stage. Integration of genotype and phenotype data revealed that (i) Rpg1 was not associated with TTKSK resistance, (ii) rpg4/Rpg5 was necessary but was not sufficient for resistance, and (iii) specific haplotypes at two quantitative trait loci were required for rpg4/Rpg5 to confer resistance to TTKSK. To confirm whether lines found resistant to TTKSK at the seedling resistance were also resistant at the adult plant stage, a subset of doubled haploids was evaluated in Kenya. Additionally, adult plant resistance to leaf rust and stripe rust (incited by Puccinia hordei and Puccinia striiformis f. sp. hordei, respectively) was also assessed on the doubled haploids in field trials at three locations in the United States over a 2-year period. Doubled haploids were identified with adult plant resistance to all three rusts, and this germplasm is available to the research and breeding communities.
Collapse
Affiliation(s)
- Javier Hernandez
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Brian J Steffenson
- 2 Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Tanya Filichkin
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Scott P Fisk
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Laura Helgerson
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Brigid Meints
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Kelly J Vining
- 3 Department of Horticulture, Oregon State University, Corvallis, OR 97331
| | - David Marshall
- 4 U.S. Department of Agriculture Agricultural Research Service, Raleigh, NC 27695
| | - Alicia Del Blanco
- 5 Department of Plant Sciences, University of California, Davis, CA 95616
| | - Xianming Chen
- 6 U.S. Department of Agriculture Agricultural Research Service Wheat Health, Genetics, and Quality Research Unit and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | - Patrick M Hayes
- 1 Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
15
|
Monteverde E, Gutierrez L, Blanco P, Pérez de Vida F, Rosas JE, Bonnecarrère V, Quero G, McCouch S. Integrating Molecular Markers and Environmental Covariates To Interpret Genotype by Environment Interaction in Rice ( Oryza sativa L.) Grown in Subtropical Areas. G3 (BETHESDA, MD.) 2019; 9:1519-1531. [PMID: 30877079 PMCID: PMC6505146 DOI: 10.1534/g3.119.400064] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/05/2019] [Indexed: 01/11/2023]
Abstract
Understanding the genetic and environmental basis of genotype × environment interaction (G×E) is of fundamental importance in plant breeding. If we consider G×E in the context of genotype × year interactions (G×Y), predicting which lines will have stable and superior performance across years is an important challenge for breeders. A better understanding of the factors that contribute to the overall grain yield and quality of rice (Oryza sativa L.) will lay the foundation for developing new breeding and selection strategies for combining high quality, with high yield. In this study, we used molecular marker data and environmental covariates (EC) simultaneously to predict rice yield, milling quality traits and plant height in untested environments (years), using both reaction norm models and partial least squares (PLS), in two rice breeding populations (indica and tropical japonica). We also sought to explain G×E by differential quantitative trait loci (QTL) expression in relation to EC. Our results showed that PLS models trained with both molecular markers and EC gave better prediction accuracies than reaction norm models when predicting future years. We also detected milling quality QTL that showed a differential expression conditional on humidity and solar radiation, providing insight for the main environmental factors affecting milling quality in subtropical and temperate rice growing areas.
Collapse
Affiliation(s)
- Eliana Monteverde
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca NY 14853
| | - Lucía Gutierrez
- Department of Agronomy, University of Wisconsin - Madison WI 53706
| | - Pedro Blanco
- Programa Nacional de Investigación en arroz, Instituto Nacional de Investigación Agropecuaria (INIA), INIA Treinta y Tres 33000, Uruguay
| | - Fernando Pérez de Vida
- Programa Nacional de Investigación en arroz, Instituto Nacional de Investigación Agropecuaria (INIA), INIA Treinta y Tres 33000, Uruguay
| | - Juan E Rosas
- Programa Nacional de Investigación en arroz, Instituto Nacional de Investigación Agropecuaria (INIA), INIA Treinta y Tres 33000, Uruguay
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental Wilson Ferreira Aldunate 90200, Uruguay
| | - Victoria Bonnecarrère
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental Wilson Ferreira Aldunate 90200, Uruguay
| | - Gastón Quero
- Department of Plant Biology, College of Agriculture, Universidad de la República, Montevideo, Uruguay
| | - Susan McCouch
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca NY 14853
| |
Collapse
|
16
|
Dracatos PM, Haghdoust R, Singh RP, Huerta Espino J, Barnes CW, Forrest K, Hayden M, Niks RE, Park RF, Singh D. High-Density Mapping of Triple Rust Resistance in Barley Using DArT-Seq Markers. FRONTIERS IN PLANT SCIENCE 2019; 10:467. [PMID: 31105717 PMCID: PMC6498947 DOI: 10.3389/fpls.2019.00467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/28/2019] [Indexed: 05/31/2023]
Abstract
The recent availability of an assembled and annotated genome reference sequence for the diploid crop barley (Hordeum vulgare L.) provides new opportunities to study the genetic basis of agronomically important traits such as resistance to stripe [Puccinia striiformis f. sp. hordei (Psh)], leaf [P. hordei (Ph)], and stem [P. graminis f. sp. tritici (Pgt)] rust diseases. The European barley cultivar Pompadour is known to possess high levels of resistance to leaf rust, predominantly due to adult plant resistance (APR) gene Rph20. We developed a barley recombinant inbred line (RIL) population from a cross between Pompadour and the leaf rust and stripe rust susceptible selection Biosaline-19 (B-19), and genotyped this population using DArT-Seq genotyping by sequencing (GBS) markers. In the current study, we produced a high-density linkage map comprising 8,610 (SNP and in silico) markers spanning 5957.6 cM, with the aim of mapping loci for resistance to leaf rust, stem rust, and stripe rust. The RIL population was phenotyped in the field with Psh (Mexico and Ecuador) and Ph (Australia) and in the greenhouse at the seedling stage with Australian Ph and Pgt races, and at Wageningen University with a European variant of Psh race 24 (PshWUR). For Psh, we identified a consistent field QTL on chromosome 2H across all South American field sites and years. Two complementary resistance genes were mapped to chromosomes 1H and 4H at the seedling stage in response to PshWUR, likely to be the loci rpsEm1 and rpsEm2 previously reported from the cultivar Emir from which Pompadour was bred. For leaf rust, we determined that Rph20 in addition to two minor-effect QTL on 1H and 3H were effective at the seedling stage, whilst seedling resistance to stem rust was due to QTL on chromosomes 3H and 7H conferred by Pompadour and B-19, respectively.
Collapse
Affiliation(s)
- Peter M. Dracatos
- Plant Breeding Institute Cobbitty, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Rouja Haghdoust
- Plant Breeding Institute Cobbitty, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center, Texcoco, Mexico
- Campo Experimental Valle de México, INIFAP, Chapingo, Mexico
| | - Julio Huerta Espino
- International Maize and Wheat Improvement Center, Texcoco, Mexico
- Campo Experimental Valle de México, INIFAP, Chapingo, Mexico
| | - Charles W. Barnes
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), Quito, Ecuador
| | - Kerrie Forrest
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, Australia
| | - Matthew Hayden
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, Australia
| | - Rients E. Niks
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Robert F. Park
- Plant Breeding Institute Cobbitty, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Davinder Singh
- Plant Breeding Institute Cobbitty, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Sánchez-Martín J, Keller B. Contribution of recent technological advances to future resistance breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:713-732. [PMID: 30756126 DOI: 10.1007/s00122-019-03297-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/02/2019] [Indexed: 05/23/2023]
Abstract
The development of durable host resistance strategies to control crop diseases is a primary need for sustainable agricultural production in the future. This article highlights the potential of recent progress in the understanding of host resistance for future cereal breeding. Much of the novel work is based on advancements in large-scale sequencing and genomics, rapid gene isolation techniques and high-throughput molecular marker technologies. Moreover, emerging applications on the pathogen side like effector identification or field pathogenomics are discussed. The combination of knowledge from both sides of cereal pathosystems will result in new approaches for resistance breeding. We describe future applications and innovative strategies to implement effective and durable strategies to combat diseases of major cereal crops while reducing pesticide dependency.
Collapse
Affiliation(s)
- Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| |
Collapse
|
18
|
Marker-trait associations in two-rowed spring barley accessions from Kazakhstan and the USA. PLoS One 2018; 13:e0205421. [PMID: 30308008 PMCID: PMC6181366 DOI: 10.1371/journal.pone.0205421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/25/2018] [Indexed: 01/02/2023] Open
Abstract
In this study, phenotyping and single nucleotide polymorphism (SNP) genotyping data of 272 accessions of two-rowed spring barley from the USA along with 94 accessions from Kazakhstan were assessed in field trials at six breeding organizations in Kazakhstan to evaluate the performance of the USA samples over three years (2009-2011). The average grain yield over the six locations was not significantly higher in Kazakh accessions in comparison to the USA samples. Twenty four samples from Montana, Washington, the USDA station in Aberdeen Idaho, and the Anheuser-Busch breeding programs showed heavier average yield than the local standard cultivar "Ubagan". Principal Coordinate analysis based on two sets of SNP data suggested that Kazakh accessions were closest to the USA accessions among eight groups of samples from different parts of the World, and within five US barley origin groups the samples from Montana and Washington perfectly matched six groups of Kazakh breeding origins. A genome-wide association study (GWAS) using data from eighteen field trials allowed the identification of ninety one marker-trait associations (MTA) in two or more environments for nine traits, including key characters such as heading time (HT), number of kernels per spike (NKS), and thousand grain weight (TGW). Our GWAS allowed the identification of eight MTA for HT and NKS, and sixteen MTA for TGW, when those MTA were linked to mapped SNPs. Based on comparisons of chromosomal positions of MTA identified in this study, and positions of known genes and quantitative trait loci for HT, NKS and TGW, it was suggested that MTA for HT on chromosome 2H (at 158.2 cM, 11_21414), MTA for NKS on 5H (at 118.6 cM, 11_20298), and two MTA for TGW on chromosome 4H (at 94.7 cM, 12_30718, and at 129.3 cM, 11_20013) were potentially new associations in barley. GWAS suggested that six MTA for HT, including two on chromosome 1H, two on chromosome 3H, and one each on chromosomes 4H and 6H, had useful pleiotropic effects for improving barley spike traits.
Collapse
|
19
|
Visioni A, Gyawali S, Selvakumar R, Gangwar OP, Shekhawat PS, Bhardwaj SC, Al-Abdallat AM, Kehel Z, Verma RPS. Genome Wide Association Mapping of Seedling and Adult Plant Resistance to Barley Stripe Rust ( Puccinia striiformis f. sp. hordei) in India. FRONTIERS IN PLANT SCIENCE 2018; 9:520. [PMID: 29740461 PMCID: PMC5928535 DOI: 10.3389/fpls.2018.00520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/04/2018] [Indexed: 05/08/2023]
Abstract
Barley stripe rust is caused by Puccinia striiformis f.sp. hordei, (Psh), occurs worldwide, and is a major disease in South Asia. The aim of this work was to identify and estimate effects of loci underlying quantitative resistance to rust at seedling and adult plant stages. HI-AM panel of 261 barley genotypes consisting of released cultivars from North and South America, Europe, Australia, advanced breeding lines, and local landraces from ICARDA barley program were screened at seedling and adult plant stages for resistance to Psh. Seedling resistance was evaluated with the five prevalent Psh races in India. Screening for the adult plant stage resistance was also performed in two different locations by inoculating with a mixture of the five races used for seedling screeing. The panel was genotyped using DaRT-Seq high-throughput genotyping platform. The genome-wide association mapping (GWAM) showed a total of 45 QTL located across the seven barley chromosomes for seedling resistance to the five races and 18 QTL for adult plant stage resistance. Common QTL for different races at seedling stage were found on all chromosomes except on chromosome 1H. Four common QTL associated with seedling and adult plant stage resistance were found on chromosomes 2, 5, and 6H. Moreover, one of the QTL located on the long arm of chromosome 5H showed stable effects across environments for adult plant stage resistance. Several QTL identified in this study were also reported before in bi-parental and association mapping populations studies validating current GWAM. However 15 new QTL were found at adult plant stage on all chromosomes except the 4H, explaining up to 36.79% of the variance. The promising QTL detected at both stages, once validated, can be used for MAS in Psh resistance breeding program globally.
Collapse
Affiliation(s)
- Andrea Visioni
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- *Correspondence: Andrea Visioni
| | - Sanjaya Gyawali
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Rajan Selvakumar
- Indian Institute of Wheat and Barley Research, Indian Council of Agricultural Research, Karnal, India
| | - Om P. Gangwar
- Indian Institute of Wheat and Barley Research, Indian Council of Agricultural Research, Karnal, India
| | | | - Subhash C. Bhardwaj
- Indian Institute of Wheat and Barley Research, Indian Council of Agricultural Research, Karnal, India
| | - Ayed M. Al-Abdallat
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Department of Horticulture and Crop Science, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Zakaria Kehel
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Ramesh P. S. Verma
- Biodiversity and Integrated Gene Management, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| |
Collapse
|
20
|
Wonneberger R, Ficke A, Lillemo M. Identification of quantitative trait loci associated with resistance to net form net blotch in a collection of Nordic barley germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2025-2043. [PMID: 28653151 DOI: 10.1007/s00122-017-2940-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
Association mapping of resistance to Pyrenophora teres f. teres in a collection of Nordic barley germplasm at different developmental stages revealed 13 quantitative loci with mostly small effects. Net blotch, caused by the necrotrophic fungus Pyrenophora teres, is one of the major diseases in barley in Norway causing quantitative and qualitative yield losses. Resistance in Norwegian cultivars and germplasm is generally insufficient and resistance sources have not been extensively explored yet. In this study, we mapped quantitative trait loci (QTL) associated with resistance to net blotch in Nordic germplasm. We evaluated a collection of 209 mostly Nordic spring barley lines for reactions to net form net blotch (NFNB; Pyrenophora teres f. teres) in inoculations with three single conidia isolates at the seedling stage and in inoculated field trials at the adult stage in 4 years. Using 5669 SNP markers genotyped with the Illumina iSelect 9k Barley SNP Chip and a mixed linear model accounting for population structure and kinship, we found a total of 35 significant marker-trait associations for net blotch resistance, corresponding to 13 QTL, on all chromosomes. Out of these QTL, seven conferred resistance only in adult plants and four were only detectable in seedlings. Two QTL on chromosomes 3H and 6H were significant during both seedling inoculations and adult stage field trials. These are promising candidates for breeding programs using marker-assisted selection strategies. The results elucidate the genetic background of NFNB resistance in Nordic germplasm and suggest that NB resistance is conferred by a number of genes each with small-to-moderate effects, making it necessary to pyramid these genes to achieve sufficient levels of resistance.
Collapse
Affiliation(s)
- Ronja Wonneberger
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Andrea Ficke
- Division for Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1430, Ås, Norway
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| |
Collapse
|
21
|
Hori T, Montcho D, Agbangla C, Ebana K, Futakuchi K, Iwata H. Multi-task Gaussian process for imputing missing data in multi-trait and multi-environment trials. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2101-2115. [PMID: 27540725 DOI: 10.1007/s00122-016-2760-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
A method based on a multi-task Gaussian process using self-measuring similarity gave increased accuracy for imputing missing phenotypic data in multi-trait and multi-environment trials. Multi-environmental trial (MET) data often encounter the problem of missing data. Accurate imputation of missing data makes subsequent analysis more effective and the results easier to understand. Moreover, accurate imputation may help to reduce the cost of phenotyping for thinned-out lines tested in METs. METs are generally performed for multiple traits that are correlated to each other. Correlation among traits can be useful information for imputation, but single-trait-based methods cannot utilize information shared by traits that are correlated. In this paper, we propose imputation methods based on a multi-task Gaussian process (MTGP) using self-measuring similarity kernels reflecting relationships among traits, genotypes, and environments. This framework allows us to use genetic correlation among multi-trait multi-environment data and also to combine MET data and marker genotype data. We compared the accuracy of three MTGP methods and iterative regularized PCA using rice MET data. Two scenarios for the generation of missing data at various missing rates were considered. The MTGP performed a better imputation accuracy than regularized PCA, especially at high missing rates. Under the 'uniform' scenario, in which missing data arise randomly, inclusion of marker genotype data in the imputation increased the imputation accuracy at high missing rates. Under the 'fiber' scenario, in which missing data arise in all traits for some combinations between genotypes and environments, the inclusion of marker genotype data decreased the imputation accuracy for most traits while increasing the accuracy in a few traits remarkably. The proposed methods will be useful for solving the missing data problem in MET data.
Collapse
Affiliation(s)
- Tomoaki Hori
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | - Clement Agbangla
- Laboratory of Genetic and Biotechnologies, Faculty of Sciences and Techniques, University of Abomey-Calavi, 01 B.P. 526, Cotonou, Benin
| | - Kaworu Ebana
- Genetic Resources Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | | | - Hiroyoshi Iwata
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
22
|
Brandariz SP, González Reymúndez A, Lado B, Malosetti M, Garcia AAF, Quincke M, von Zitzewitz J, Castro M, Matus I, del Pozo A, Castro AJ, Gutiérrez L. Ascertainment bias from imputation methods evaluation in wheat. BMC Genomics 2016; 17:773. [PMID: 27716058 PMCID: PMC5050639 DOI: 10.1186/s12864-016-3120-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/23/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Whole-genome genotyping techniques like Genotyping-by-sequencing (GBS) are being used for genetic studies such as Genome-Wide Association (GWAS) and Genomewide Selection (GS), where different strategies for imputation have been developed. Nevertheless, imputation error may lead to poor performance (i.e. smaller power or higher false positive rate) when complete data is not required as it is for GWAS, and each marker is taken at a time. The aim of this study was to compare the performance of GWAS analysis for Quantitative Trait Loci (QTL) of major and minor effect using different imputation methods when no reference panel is available in a wheat GBS panel. RESULTS In this study, we compared the power and false positive rate of dissecting quantitative traits for imputed and not-imputed marker score matrices in: (1) a complete molecular marker barley panel array, and (2) a GBS wheat panel with missing data. We found that there is an ascertainment bias in imputation method comparisons. Simulating over a complete matrix and creating missing data at random proved that imputation methods have a poorer performance. Furthermore, we found that when QTL were simulated with imputed data, the imputation methods performed better than the not-imputed ones. On the other hand, when QTL were simulated with not-imputed data, the not-imputed method and one of the imputation methods performed better for dissecting quantitative traits. Moreover, larger differences between imputation methods were detected for QTL of major effect than QTL of minor effect. We also compared the different marker score matrices for GWAS analysis in a real wheat phenotype dataset, and we found minimal differences indicating that imputation did not improve the GWAS performance when a reference panel was not available. CONCLUSIONS Poorer performance was found in GWAS analysis when an imputed marker score matrix was used, no reference panel is available, in a wheat GBS panel.
Collapse
Affiliation(s)
- Sofía P. Brandariz
- Statistics Department, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, 12900 Uruguay
| | - Agustín González Reymúndez
- Statistics Department, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, 12900 Uruguay
| | - Bettina Lado
- Statistics Department, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, 12900 Uruguay
| | - Marcos Malosetti
- Biometris - Applied Statistics, Department of Plant Science, Wageningen University and Research Center, P.O. Box 16, 6700 AA Wageningen, Netherlands
| | - Antonio Augusto Franco Garcia
- Departamento de Ciências Exatas, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), CP 9, CEP 13400-970 Piracicaba, SP Brazil
| | - Martín Quincke
- Programa Nacional de Investigación Cultivos de Secano, Instituto Nacional de investigación Agropecuaria, Est. Exp. La Estanzuela, Colonia, 70000 Uruguay
| | | | - Marina Castro
- Programa Nacional de Investigación Cultivos de Secano, Instituto Nacional de investigación Agropecuaria, Est. Exp. La Estanzuela, Colonia, 70000 Uruguay
| | - Iván Matus
- Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Quilamapu, Casilla 426, Chillán, Chile
| | - Alejandro del Pozo
- Facultad de Ciencias Agrarias, Universidad de Talca, Casilla 747, Talca, Chile
| | - Ariel J. Castro
- Department of Plant Production, Facultad de Agronomía, Universidad de la República, Ruta 3, Km.363, Paysandú, 60000 Uruguay
| | - Lucía Gutiérrez
- Statistics Department, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, 12900 Uruguay
- Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Dr, Madison, WI 53706 USA
| |
Collapse
|
23
|
Racedo J, Gutiérrez L, Perera MF, Ostengo S, Pardo EM, Cuenya MI, Welin B, Castagnaro AP. Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC PLANT BIOLOGY 2016; 16:142. [PMID: 27342657 PMCID: PMC4921039 DOI: 10.1186/s12870-016-0829-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/14/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Molecular markers associated with relevant agronomic traits could significantly reduce the time and cost involved in developing new sugarcane varieties. Previous sugarcane genome-wide association analyses (GWAS) have found few molecular markers associated with relevant traits at plant-cane stage. The aim of this study was to establish an appropriate GWAS to find molecular markers associated with yield related traits consistent across harvesting seasons in a breeding population. Sugarcane clones were genotyped with DArT (Diversity Array Technology) and TRAP (Target Region Amplified Polymorphism) markers, and evaluated for cane yield (CY) and sugar content (SC) at two locations during three successive crop cycles. GWAS mapping was applied within a novel mixed-model framework accounting for population structure with Principal Component Analysis scores as random component. RESULTS A total of 43 markers significantly associated with CY in plant-cane, 42 in first ratoon, and 41 in second ratoon were detected. Out of these markers, 20 were associated with CY in 2 years. Additionally, 38 significant associations for SC were detected in plant-cane, 34 in first ratoon, and 47 in second ratoon. For SC, one marker-trait association was found significant for the 3 years of the study, while twelve markers presented association for 2 years. In the multi-QTL model several markers with large allelic substitution effect were found. Sequences of four DArT markers showed high similitude and e-value with coding sequences of Sorghum bicolor, confirming the high gene microlinearity between sorghum and sugarcane. CONCLUSIONS In contrast with other sugarcane GWAS studies reported earlier, the novel methodology to analyze multi-QTLs through successive crop cycles used in the present study allowed us to find several markers associated with relevant traits. Combining existing phenotypic trial data and genotypic DArT and TRAP marker characterizations within a GWAS approach including population structure as random covariates may prove to be highly successful. Moreover, sequences of DArT marker associated with the traits of interest were aligned in chromosomal regions where sorghum QTLs has previously been reported. This approach could be a valuable tool to assist the improvement of sugarcane and better supply sugarcane demand that has been projected for the upcoming decades.
Collapse
Affiliation(s)
- Josefina Racedo
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Lucía Gutiérrez
- />Departamento de Biometría, Estadística y Cómputos, Facultad de Agronomía, Universidad de la República, Garzón 780, 12900 Montevideo, Uruguay
- />Agronomy Department, University of Wisconsin – Madison, 1575 Linden Dr., Madison, WI 53706 USA
| | - María Francisca Perera
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Santiago Ostengo
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Esteban Mariano Pardo
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - María Inés Cuenya
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Bjorn Welin
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| | - Atilio Pedro Castagnaro
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Av. William Cross 3150, Las Talitas, T4101XAC Tucumán Argentina
| |
Collapse
|
24
|
Zhou G, Broughton S, Zhang XQ, Ma Y, Zhou M, Li C. Genome-Wide Association Mapping of Acid Soil Resistance in Barley (Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2016; 7:406. [PMID: 27064793 PMCID: PMC4814478 DOI: 10.3389/fpls.2016.00406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/16/2016] [Indexed: 05/18/2023]
Abstract
Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) have been used to detect QTLs underlying complex traits in major crops. In this study, we collected 218 barley (Hordeum vulgare L.) lines including wild barley and cultivated barley from China, Canada, Australia, and Europe. A total of 408 polymorphic markers were used for population structure and LD analysis. GWAS for acid soil resistance were performed on the population using a general linkage model (GLM) and a mixed linkage model (MLM), respectively. A total of 22 QTLs (quantitative trait loci) were detected with the GLM and MLM analyses. Two QTLs, close to markers bPb-1959 (133.1 cM) and bPb-8013 (86.7 cM), localized on chromosome 1H and 4H respectively, were consistently detected in two different trials with both the GLM and MLM analyses. Furthermore, bPb-8013, the closest marker to the major Al(3+) resistance gene HvAACT1 in barley, was identified to be QTL5. The QTLs could be used in marker-assisted selection to identify and pyramid different loci for improved acid soil resistance in barley.
Collapse
Affiliation(s)
- Gaofeng Zhou
- Western Barley Genetics Alliance, Department of Agriculture and Food, Government of Western Australia, PerthWA, Australia
- Western Barley Genetics Alliance, Murdoch University, MurdochWA, Australia
| | - Sue Broughton
- Western Barley Genetics Alliance, Department of Agriculture and Food, Government of Western Australia, PerthWA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Murdoch University, MurdochWA, Australia
| | - Yanling Ma
- TIA – Tasmanian Institute of Agriculture, University of Tasmania, Kings MeadowsTAS, Australia
| | - Meixue Zhou
- TIA – Tasmanian Institute of Agriculture, University of Tasmania, Kings MeadowsTAS, Australia
- *Correspondence: Chengdao Li, ; Meixue Zhou,
| | - Chengdao Li
- Western Barley Genetics Alliance, Department of Agriculture and Food, Government of Western Australia, PerthWA, Australia
- Western Barley Genetics Alliance, Murdoch University, MurdochWA, Australia
- *Correspondence: Chengdao Li, ; Meixue Zhou,
| |
Collapse
|