1
|
Першина ЛА, Трубачеева НВ, Шумный ВК. The effect of T. aestivum chromosomes 1A and 1D on fertility of alloplasmic recombinant (H. vulgare)-T. aestivum lines depending on cytonuclear compatibility. Vavilovskii Zhurnal Genet Selektsii 2024; 28:610-618. [PMID: 39440307 PMCID: PMC11491484 DOI: 10.18699/vjgb-24-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 10/25/2024] Open
Abstract
The effect of T. aestivum L. chromosomes 1A and 1D on fertility of recombinant bread wheat allolines of the same origin carrying the cytoplasm of barley H. vulgare L. and different levels of cytonuclear compatibility was studied. Alloline L-56 included mainly fully sterile (FS) and partially sterile (PS) plants, alloline L-57 included partially fertile (PF) plants and line L-58 included fertile (F) ones. Analysis of morphobiological traits and pollen painting indicated complete or partial male sterility in plants of allolines L-56 and L-57. To differentiate genotypes with cytonuclear coadaptation and genotypes with cytonuclear incompatibility, PCR analysis of the 18S/5S mitochondrial (mt) repeat was performed. Heteroplasmy (simultaneous presence of barley and wheat mtDNA copies) was found in FS, PS, PF and some F plants, which was associated with a violation of cytonuclear compatibility. Wheat-type homoplasmy (hm) was detected in the majority of the fertile plants, which was associated with cytonuclear coadaptation. The allolines used as maternal genotypes were crossed with wheat-rye substitution lines 1R(1A) and 1R(1D). In F1, all plants of PF×1R(1A) and PF×1R(1D) combinations were fertile, and in F2, a segregation close to 3 (fertile) : 1 (sterile) was observed. These results showed for the first time that chromosomes 1A and 1D carry one dominant Rf gene, which controls the restoration of male fertility of bread wheat carrying the cytoplasm of H. vulgare. All plants of F1 combinations FS×1R(1A), FS×1R(1D), PS×1R(1A), PS×1R(1D) were sterile, which indicates that a single dose of genes localized on wheat chromosomes 1A or 1D is not enough to restore male fertility in FS and PS plants. All plants of hybrid combinations F(hm)×1R(1A) and F(hm)×1R(1D) in both F1 and F2 were fertile, that is, fertility of allolines with cytonuclear coadaptation does not depend on wheat chromosomes 1A and 1D.
Collapse
Affiliation(s)
- Л А Першина
- Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия Курчатовский геномный центр ИЦиГ СО РАН, Новосибирск, Россия
| | - Н В Трубачеева
- Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия Курчатовский геномный центр ИЦиГ СО РАН, Новосибирск, Россия
| | - В К Шумный
- Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия
| |
Collapse
|
2
|
Fan C, Melonek J, Lukaszewski AJ. New Observations of the Effects of the Cytoplasm of Aegilops kotschyi Boiss. in Bread Wheat Triticum aestivum L. Genes (Basel) 2024; 15:855. [PMID: 39062634 PMCID: PMC11275946 DOI: 10.3390/genes15070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The cytoplasm of Aegilops kotschyi is known for the induction of male sterility and haploidy in wheat. Both systems originally appeared rather simple, but manipulation of the standard chromosome constitution of the nuclear genome revealed additional interactions. This study shows that while there is little or no allelic variation at the main fertility restorer locus Rfmulti on chromosome arm 1BS, additional genes may also be involved in the nuclear-mitochondrial genome interactions, affecting not only male fertility but also the growth rate, from pollen competition for fertilization and early endosperm divisions all the way to seed size and plant maturity. Some of these effects appear to be of a sporophytic nature; others are gametophytic. Induction of parthenogenesis by a rye inducer in conjunction with the Ae. kotschyi cytoplasm is well known. However, here we show that the cytoplasmic-nuclear interactions affect all aspects of double fertilization: producing maternal haploids from unfertilized eggs, diploids from fertilized eggs or synergids, embryo-less kernels, and fertilized eggs without fertilization of the double nucleus in the embryo sack. It is unclear how frequent the inducers of parthenogenesis are, as variation, if any, is obscured by suppressors present in the wheat genome. Genetic dissection of a single wheat accession revealed five distinct loci affecting the rate of maternal haploid production: four acting as suppressors and one as an enhancer. Only when the suppressing haplotypes are confirmed may it be possible to the identify genetic variation of haploidy inducers, map their position(s), and determine their nature and the mode of action.
Collapse
Affiliation(s)
- Chaolan Fan
- Triticeae Research Institute, Chengdu Campus, Sichuan Agricultural University, Chengdu 611130, China;
| | - Joanna Melonek
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra 2601, Australia;
| | - Adam J. Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Gautam R, Shukla P, Kirti PB. Male sterility in plants: an overview of advancements from natural CMS to genetically manipulated systems for hybrid seed production. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:195. [PMID: 37606708 DOI: 10.1007/s00122-023-04444-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
KEY MESSAGE The male sterility system in plants has traditionally been utilized for hybrid seed production. In last three decades, genetic manipulation for male sterility has revolutionized this area of research related to hybrid seed production technology. Here, we have surveyed some of the natural cytoplasmic male sterility (CMS) systems that existed/ were developed in different crop plants for developing male sterility-fertility restoration systems used in hybrid seed production and highlighted some of the recent biotechnological advancements in the development of genetically engineered systems that occurred in this area. We have indicated the possible future directions toward the development of engineered male sterility systems. Cytoplasmic male sterility (CMS) is an important trait that is naturally prevalent in many plant species, which has been used in the development of hybrid varieties. This is associated with the use of appropriate genes for fertility restoration provided by the restorer line that restores fertility on the corresponding CMS line. The development of hybrids based on a CMS system has been demonstrated in several different crops. However, there are examples of species, which do not have usable cytoplasmic male sterility and fertility restoration systems (Cytoplasmic Genetic Male Sterility Systems-CGMS) for hybrid variety development. In such plants, it is necessary to develop usable male sterile lines through genetic engineering with the use of heterologous expression of suitable genes that control the development of male gametophyte and fertile male gamete formation. They can also be developed through gene editing using the recently developed CRISPR-Cas technology to knock out suitable genes that are responsible for the development of male gametes. The present review aims at providing an insight into the development of various technologies for successful production of hybrid varieties and is intended to provide only essential information on male sterility systems starting from naturally occurring ones to the genetically engineered systems obtained through different means.
Collapse
Affiliation(s)
- Ranjana Gautam
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Pawan Shukla
- Seri-Biotech Research Laboratory, Central Silk Board, Carmelram Post, Kodathi, Bangalore, 560035, India.
| | - P B Kirti
- Agri Biotech Foundation, PJTS Agricultural University Campus, Rajendranagar, Hyderabad, Telangana, 500030, India
| |
Collapse
|
4
|
|
5
|
Wang Q, He Z, Wang L, Qi Z. 染色体工程在杂交小麦育种中的应用进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Melonek J, Small I. Triticeae genome sequences reveal huge expansions of gene families implicated in fertility restoration. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102166. [PMID: 35021148 DOI: 10.1016/j.pbi.2021.102166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Breakthroughs in assembly of whole-genome sequencing and targeted sequence capture data have accelerated comparative genomics analyses in cereals with big and complex genomes such as wheat. This newly acquired information has revealed unexpected expansions in two large gene families linked to restoration of fertility in species that exhibit cytoplasmic male sterility. Extreme levels of copy-number and structural variation detected within and between species illustrate the genetic diversity among the family members and reveal the evolutionary mechanisms at work. This new knowledge will greatly facilitate the development of hybrid production strategies in wheat and related species.
Collapse
Affiliation(s)
- Joanna Melonek
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
7
|
Tyrka M, Bakera B, Szeliga M, Święcicka M, Krajewski P, Mokrzycka M, Rakoczy-Trojanowska M. Identification of Rf Genes in Hexaploid Wheat ( Triticumaestivum L.) by RNA-Seq and Paralog Analyses. Int J Mol Sci 2021; 22:ijms22179146. [PMID: 34502055 PMCID: PMC8431562 DOI: 10.3390/ijms22179146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Among the natural mechanisms used for wheat hybrid breeding, the most desirable is the system combining the cytoplasmic male sterility (cms) of the female parent with the fertility-restoring genes (Rf) of the male parent. The objective of this study was to identify Rf candidate genes in the wheat genome on the basis of transcriptome sequencing (RNA-seq) and paralog analysis data. Total RNA was isolated from the anthers of two fertility-restorer (Primépi and Patras) and two non-restorer (Astoria and Grana) varieties at the tetrad and late uninucleate microspore stages. Of 36,912 differentially expressed genes (DEGs), 21 encoding domains in known fertility-restoring proteins were selected. To enrich the pool of Rf candidates, 52 paralogs (PAGs) of the 21 selected DEGs were included in the analyses. The expression profiles of most of the DEGs and PAGs determined bioinformatically were as expected (i.e., they were overexpressed in at least one fertility-restorer variety). However, these results were only partially consistent with the quantitative real-time PCR data. The DEG and PAG promoters included cis-regulatory elements common among PPR-encoding genes. On the basis of the obtained results, we designated seven genes as Rf candidate genes, six of which were identified for the first time in this study.
Collapse
Affiliation(s)
- Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland; (M.T.); (M.S.)
| | - Beata Bakera
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (B.B.); (M.Ś.)
| | - Magdalena Szeliga
- Department of Biotechnology and Bioinformatics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland; (M.T.); (M.S.)
| | - Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (B.B.); (M.Ś.)
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (P.K.); (M.M.)
| | - Monika Mokrzycka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (P.K.); (M.M.)
| | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (B.B.); (M.Ś.)
- Correspondence: ; Tel./Fax: +48-22-59-32152
| |
Collapse
|
8
|
Trubacheeva NV, Divashuk MG, Chernook AG, Belan IA, Rosseeva LP, Pershina LA. The Effect of Chromosome Arm 1BS on the Fertility of Alloplasmic Recombinant Lines in Bread Wheat with the Hordeum vulgare Cytoplasm. PLANTS (BASEL, SWITZERLAND) 2021; 10:1120. [PMID: 34073148 PMCID: PMC8228278 DOI: 10.3390/plants10061120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 11/17/2022]
Abstract
The genetic mechanisms of fertility restoration in alloplasmic bread wheat with the barley cytoplasm are poorly explored. The effect of the 1BS chromosome arm on the fertility of bread wheat with the H. vulgare cytoplasm was studied depending on the incompleteness/completeness of the cytonuclear compatibility. (i) Three self-fertile (SF) lines and one partially fertile (PF) line with an incomplete cytonuclear compatibility and (ii) four self-fertile (SF) lines with a complete cytonuclear compatibility were studied. For the lines in group (i), the heteroplasmy (simultaneous presence of barley and wheat copies) of the 18S/5S mitochondrial (mt) repeat was revealed as well as the barley-type homoplasmy of chloroplast simple sequence repeats (cpSSRs). In the lines in group (ii), the 18S/5S mt repeat and cpSSRs were found in the wheat-type homoplasmic state. In all of the lines, the 1BS chromosome arm was substituted for the 1RS arm. The F1 plants of SF(i)-1BS × 1RS hybrids were fertile. The results of a segregation analysis in the F2 plants of SF(i)-1BS × 1RS showed that 1BS carries a single dominant fertility restorer gene (Rf) of bread wheat with the H. vulgare cytoplasm. All of the F1 plants of PF(i)-1BS × 1RS hybrids were sterile. A single dose of this restorer gene is not sufficient to restore fertility in this alloplasmic PF(i) line. All of the F1 and F2 plants of SF(ii)-1BS × 1RS hybrids were self-fertile.
Collapse
Affiliation(s)
- Nataliya V. Trubacheeva
- Institute of Cytology and Genetics, SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia;
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia
| | - Mikhail G. Divashuk
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia;
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 49, 127550 Moscow, Russia;
| | - Anastasiya G. Chernook
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 49, 127550 Moscow, Russia;
| | - Igor A. Belan
- Omsk Agricultural Scientific Center, 644012 Omsk, Russia; (I.A.B.); (L.P.R.)
| | - Ludmila P. Rosseeva
- Omsk Agricultural Scientific Center, 644012 Omsk, Russia; (I.A.B.); (L.P.R.)
| | - Lidiya A. Pershina
- Institute of Cytology and Genetics, SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia;
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia
| |
Collapse
|
9
|
Chen Y, Jia Y, Niu F, Wu Y, Ye J, Yang X, Zhang L, Song X. Identification and validation of genetic locus Rfk1 for wheat fertility restoration in the presence of Aegilops kotschyi cytoplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:875-885. [PMID: 33392709 DOI: 10.1007/s00122-020-03738-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Major fertility restorer locus for Aegilops kotschyi cytoplasm in wheat, Rfk1, was mapped to chromosome arm 1BS. Most likely candidate gene is TraesCS1B02G197400LC, which is predicted to encode a pectinesterase/pectinesterase inhibitor. Cytoplasmic male sterility (CMS) is widely used for heterosis and hybrid seed production in wheat. Genes related to male fertility restoration in the presence of Aegilops kotschyi cytoplasm have been reported, but the fertility restoration-associated gene loci have not been investigated systematically. In this study, a BC1F1 population derived from a backcross between KTP116A, its maintainer line TP116B, and its restorer line LK783 was employed to map fertility restoration by bulked segregant RNA-Seq (BSR-Seq). A major fertility allele restorer locus for Ae. kotschyi cytoplasm in wheat, Rfk1, was mapped to chromosome arm 1BS, and it was contributed by LK783. Morphological and cytological studies showed that male fertility restoration occurred mainly after the late uninucleate stage. Based on simple sequence repeat and single-nucleotide polymorphism genotyping, the gene locus was located between Xnwafu_6 and Xbarc137 on chromosome arm 1BS. To further isolate the specific region, six Kompetitive allele-specific polymerase chain reaction markers derived from BSR-Seq were developed to delimit Rfk1 within physical intervals of 26.0 Mb. After searching for differentially expressed genes within the candidate interval in the anthers and sequencing analysis, TraesCS1B02G197400LC was identified as a candidate gene for Rfk1 and it was predicted to encode a pectinesterase/pectinesterase inhibitor. Expression analysis also confirmed that it was specifically expressed in the anthers, and its expression level was higher in fertile lines compared with sterile lines. Thus, TraesCS1B02G197400LC was identified as the most likely candidate gene for Rfk1, thereby providing insights into the fertility restoration mechanism for K-type CMS in wheat.
Collapse
Affiliation(s)
- Yanru Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulin Jia
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongfeng Wu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiali Ye
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
10
|
Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat Genet 2021; 53:564-573. [PMID: 33737754 PMCID: PMC8035072 DOI: 10.1038/s41588-021-00807-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye's incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye-wheat introgressions.
Collapse
|
11
|
Zhang Z, Zhu Y, Cao Y, Yu H, Bai R, Zhao H, Zhang B, Wang L. Fine mapping of the male fertility restoration gene CaRf032 in Capsicum annuum L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1177-1187. [PMID: 31925462 DOI: 10.1007/s00122-020-03540-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
A novel strong candidate gene CA00g82510 for the male fertility restoration locus CaRf032 in Capsicum annuum was identified by genome re-sequencing and recombination analysis. A single dominant locus (CaRf032) for fertility restoration of cytoplasmic male sterility was identified in the strong restorer inbred line IVF2014032 of chili pepper (Capsicum annuum L.). CaRf032 was localized within an 8.81-Mb candidate intervals on chromosome 6 using bulked segregant analysis based on high-throughput sequencing data. Subsequently, the candidate interval was genetically mapped and defined to a 249.41-kb region using an F2 population of 441 individuals generated by crossing the male-sterile line 77013A and the restorer line IVF2014032. To fine map CaRf032, eight newly developed KASP markers were used to genotype 23 recombinants screened from a larger F2 population of 2877 individuals. The CaRf032 locus was localized to a 148.05-kb region between the KASP markers S1402 and S1354, which was predicted to contain 22 open reading frames (ORFs). One ORF with an incomplete sequence was predicted to contain a PPR motif, and its physical position overlapped with the Rf candidate gene CaPPR6_46. The PPR ORF sequence before the gap showed 100% identity with the CA00g82510 locus of the CM334 reference genome. CA00g82510 encodes a protein of 583 amino acids, containing 14 PPR motifs, and shows significantly differential expression between the flower buds of the maintainer line 77013 and the restorer line IVF2014032. These results indicated that CA00g82510 is a strong candidate gene for CaRf032. Five KASP markers, which detected single-nucleotide polymorphisms in CA00g82510 of 77013 and IVF2014032, co-segregated with CaRf032 and showed 64.4% successful genotyping of 38 maintainer and 63 restorer lines.
Collapse
Affiliation(s)
- Zhenghai Zhang
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Yanshu Zhu
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Yacong Cao
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Hailong Yu
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Ruiqin Bai
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Hong Zhao
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Baoxi Zhang
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Lihao Wang
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China.
| |
Collapse
|
12
|
Gupta PK, Balyan HS, Gahlaut V, Saripalli G, Pal B, Basnet BR, Joshi AK. Hybrid wheat: past, present and future. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2463-2483. [PMID: 31321476 DOI: 10.1007/s00122-019-03397-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/11/2019] [Indexed: 05/02/2023]
Abstract
The review outlines past failures, present status and future prospects of hybrid wheat, and includes information on CMS/CHA/transgenic approaches for male sterility, heterotic groups and cost-effective hybrid seed production. Hybrid varieties give increased yield and improved grain quality in both cross- and self-pollinated crops. However, hybrid varieties in self-pollinated crops (particularly cereals) have not been very successful, except for hybrid rice in China. In case of hybrid wheat, despite the earlier failures, renewed efforts in recent years have been made and hybrid varieties with desirable attributes have been produced and marketed in some European countries. This review builds upon previous reviews, with a new outlook and improved knowledge base, not covered in earlier reviews. New technologies have been described, which include the Hordeum chilense-based CMS-fertility restorer system, chromosomal XYZ-4E-ms system and the following transgenic technologies: (1) conditional male sterility involving use of tapetum-specific expression of a gene that converts a pro-toxin into a phytotoxin causing male sterility; (2) barnase-barstar SeedLink system of Bayer CropScience; (3) split-barnase system that obviates the need of a barstar-based male restorer line; and (4) seed production technology of DuPont-Pioneer that makes use of transgenes in production of male-sterile lines, but gives hybrid seed with no transgenes. This review also includes a brief account of studies for discovery of heterotic QTL, genomic prediction of hybrid vigour and the development of heterotic groups/patterns and their importance in hybrid wheat production. The problem of high cost of hybrid seed due to required high seed rate in wheat relative to hybrid rice has also been addressed. The review concludes with a brief account of the current efforts and future possibilities in making hybrid wheat a commercial success.
Collapse
Affiliation(s)
- Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250001, India.
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250001, India
| | - Vijay Gahlaut
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250001, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250001, India
| | - Bijendra Pal
- Bioseed Research India Pvt. Ltd., Hyderabad, 500 033, India
| | | | | |
Collapse
|
13
|
Takenaka S, Yamamoto R, Nakamura C. Differential and interactive effects of cytoplasmic substitution and seed ageing on submergence stress response in wheat ( Triticum aestivum L.). BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1549960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Shotaro Takenaka
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Ryohei Yamamoto
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Chiharu Nakamura
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
14
|
Takenaka S, Yamamoto R, Nakamura C. Genetic diversity of submergence stress response in cytoplasms of the Triticum-Aegilops complex. Sci Rep 2018; 8:16267. [PMID: 30390041 PMCID: PMC6214928 DOI: 10.1038/s41598-018-34682-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Genetic diversity in cytoplasmic and nuclear genomes and their interaction affecting adaptive traits is an attractive research subject in plants. We addressed submergence stress response of wheat that has become increasingly important but remained largely uninvestigated. Our primary aim was to disclose cytoplasmic diversity using nucleus-cytoplasm (NC) hybrids possessing a series of heterologous cytoplasms in a common nuclear background. Effects of submergence on seedling emergence and growth from imbibed seeds were studied and compared with euplasmic lines. Marked phenotypic variabilities were observed among both lines, demonstrating divergent cytoplasmic and nuclear effects on submergence response. NC hybrids with cytoplasm of Aegilops mutica showed a less inhibition, indicative of their positive contribution to submergence tolerance, whereas cytoplasms of Aegilops umbellulata and related species caused a greater inhibition. Superoxide dismutase (SOD) activity showed a marked increase accompanied by retardation of seedling growth in a susceptible NC hybrid. The observation suggested that the elevated SOD activity was resulted from a high level of reactive oxygen species accumulated and remained in susceptible seedlings. Taken together, our results point to the usefulness of NC hybrids in further studies needed to clarify molecular mechanisms underlying the nucleus-cytoplasm interaction regulating submergence stress response in wheat.
Collapse
Affiliation(s)
- Shotaro Takenaka
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Ohe-cho, Seta, Otsu, 520-2194, Japan
| | - Ryohei Yamamoto
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Ohe-cho, Seta, Otsu, 520-2194, Japan
| | - Chiharu Nakamura
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Ohe-cho, Seta, Otsu, 520-2194, Japan.
| |
Collapse
|
15
|
Pershina LA, Belova LI, Trubacheeva NV, Osadсhaya TS, Shumny VK, Belan IA, Rosseeva LP, Nemchenko VV, Abakumov SN. Alloplasmic recombinant lines (H. vulgare)-T. aestivum with 1RS.1BL translocation: initial genotypes for production of common wheat varieties. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alloplasmic lines are formed when the cytoplasm of one species is replaced by the cytoplasm of another as a result of repeated recurrent crosses of wide hybrids with the paternal genotype. Since the cytoplasm replacement results in new intergenomic interactions between a nucleus and cytoplasm leading to variability of plant characteristics, alloplasmic lines with restored fertility can be an additional source of biodiversity of cultivated plants. Earlier, recombinant alloplasmic lines (H. vulgare)-T. aestivumdesignated as L-17(1)–L-17(37) were formed from a plant with partially restored fertility of the BC3 generation of barley-wheat hybridH. vulgare(cv. Nepolegayushchii) ×T. aestivum(cv. Saratovskaya 29). This male-sterile hybrid was consistently backcrossed with wheat varieties Mironovskaya 808 (twice) and Saratovskaya 29, and Mironovskaya 808 had a positive impact on the restoration of fertility. This paper presents the results of investigation into a group of recombinant alloplasmic lines (L-17F4), as well as into doubled haploids (DH) lines – alloplasmic DH-17-lines obtained from anther culture of alloplasmic lines (L-17F2). The most productive of these lines were used as initial breeding genotypes. Hybrid form Lutescens 311/00-22 developed from the crossing of the alloplasmic DH(1)-17 line (as maternal genotype) with euplasmic line Com37 (CIMMYT), the source of the 1RS.1BL wheat-rye translocation, proved to be successful for breeding. The presence of the 1RS.1BL translocation in the genome of the Lutescens 311/00-22 form and the L-311(1)–L-311(6) alloplasmic lines isolated from it did not lead to a decrease of fertility or sterility in the plants. This indicates that the chromosome of the 1BS wheat does not carry the gene(s) that determine the restoration of fertility in the studied (H. vulgare)-T. aestivumalloplasmic lines. Alloplasmic lines L-311(1)–L-311(6) showed their advantage in comparison with the standard varieties for resistance to leaf and stem rust, yield, and grain quality. The breeding tests performed at Omsk Agricultural Scientific Center, Agrocomplex “Kurgansemena”, Federal State Unitary Enterprise “Ishimskoe” (Tyumen Region), using alloplasmic lines L-311(5), L-311(4) and L-311(6) resulted in varieties of spring common wheat Sigma, Uralosibirskaya 2 and Ishimskaya 11, respectively.
Collapse
|
16
|
Lukaszewski AJ. Chromosomes 1BS and 1RS for control of male fertility in wheats and triticales with cytoplasms of Aegilops kotschyi, Ae. mutica and Ae. uniaristata. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2521-2526. [PMID: 28835997 DOI: 10.1007/s00122-017-2973-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/18/2017] [Indexed: 05/25/2023]
Abstract
Engineered chromosomes 1BS and 1RS offer a new alternative in the development of hybrid systems in bread wheat and triticale. In the cytoplasmic male sterility system for hybrid wheat based on the cytoplasm of Triticum timopheevi fertility restoration is difficult, with few good restorer genes available. In the system based on the cytoplasms of Aegilops kotschyi, Ae. uniaristata and Ae. mutica, essentially all chromosomes 1B carry locus Rf multi that restores male fertility; male sterility manifests itself in wheats with the 1RS.1BL translocation where 1BS chromosome arm is missing. To generate male sterile wheats without the 1RS.1BL translocation, the 1BS arm was cytogenetically engineered to replace the segment with Rf multi with two short inserts of rye chromatin. Conversely, to enhance fertility restoration by doubling the number of restorers present for eventual use in wheat and triticale, a region of 1BS with Rf multi was inserted into 1RS. Alloplasmic wheats with Rf multi removed were completely male sterile; alloplasmic wheats with engineered 1RS carrying Rf multi and without normal 1B were male fertile. An exception to the ubiquitous presence of Rf multi is T. spelta var. duhamelianum; four accessions tested in this study gave inconsistent results but some did not restore male fertility. Engineered chromosomes 1BS and 1RS and chromosomes 1B of T. spelta offer a new alternative for practical application of a cytoplasmic male sterility system in the development of hybrid wheat and hexaploid triticale.
Collapse
Affiliation(s)
- Adam J Lukaszewski
- Department of Botany and Plant Sci., University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
17
|
Würschum T, Leiser WL, Weissmann S, Maurer HP. Genetic architecture of male fertility restoration of Triticum timopheevii cytoplasm and fine-mapping of the major restorer locus Rf3 on chromosome 1B. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1253-1266. [PMID: 28326434 DOI: 10.1007/s00122-017-2885-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/21/2017] [Indexed: 05/02/2023]
Abstract
Restoration of fertility in the cytoplasmic male sterility-inducing Triticum timopheevii cytoplasm can be achieved with the major restorer locus Rf3 located on chromosome 1B, but is also dependent on modifier loci. Hybrid breeding relies on a hybrid mechanism enabling a cost-efficient hybrid seed production. In wheat and triticale, cytoplasmic male sterility based on the T. timopheevii cytoplasm is commonly used, and the aim of this study was to dissect the genetic architecture underlying fertility restoration. Our study was based on two segregating F2 triticale populations with 313 and 188 individuals that share a common female parent and have two different lines with high fertility restoration ability as male parents. The plants were cloned to enable replicated assessments of their phenotype and fertility restoration was evaluated based on seed set or staining for pollen fertility. The traits showed high heritabilities but their distributions differed between the two populations. In one population, a quarter of the lines were sterile, conforming to a 3:1 segregation ratio. QTL mapping identified two and three QTL in these populations, with the major QTL being detected on chromosome 1B. This QTL was collinear in both populations and likely corresponds to Rf3. We found that Rf3 explained approximately 30 and 50% of the genotypic variance, has a dominant mode of inheritance, and that the female parent lacks this locus, probably due to a 1B.1R translocation. Taken together, Rf3 is a major restorer locus that enables fertility restoration of the T. timopheevii cytoplasm, but additional modifier loci are needed for full restoration of male fertility. Consequently, Rf3 holds great potential for hybrid wheat and triticale breeding, but other loci must also be considered, either through marker-assisted or phenotypic selection.
Collapse
Affiliation(s)
- Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | | | - Hans Peter Maurer
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
18
|
Hohn CE, Lukaszewski AJ. Engineering the 1BS chromosome arm in wheat to remove the Rf (multi) locus restoring male fertility in cytoplasms of Aegilops kotschyi, Ae. uniaristata and Ae. mutica. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1769-1774. [PMID: 27325523 DOI: 10.1007/s00122-016-2738-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
By removing the Rf (multi) locus from chromosome 1BS of wheat via chromosome engineering we were able to generate a resource for the production of male sterile wheats in three new cytoplasms. Cytoplasmic male sterility is an essential component in the development of many hybrid crops. In wheat (Triticum aestivum L.) only the cytoplasm of T. timopheevi cytoplasm has been extensively tested even though many other cytoplasms are also known to produce male sterility. Among them are the cytoplasms of Ae. kotschyi, Ae. uniaristata and Ae. mutica but here male sterility manifests itself only when the 1RS.1BL rye-wheat translocation is present in the nuclear genome. The location of the male fertility restoring gene on the chromosome arm 1BS (Rf (multi) ) has recently been determined using a set of primary recombinants of chromosome arms 1RS with 1BS. Using this knowledge the same recombinants were used to create chromosome arm 1BS in wheat with a small insert from rye that removes the restorer locus. The disomic engineered chromosome 1B1:6 assures male sterility in all three cytoplasms and any standard chromosome 1B in wheat is capable of restoring it. This newly engineered chromosome in combination with the three cytoplasms of Aegilops sp extends the range of possibilities in attempts to create a viable system for hybrid wheat production.
Collapse
Affiliation(s)
- Christopher E Hohn
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| | - Adam J Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
19
|
Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. PLANT CELL REPORTS 2016; 35:967-93. [PMID: 26905724 DOI: 10.1007/s00299-016-1949-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/02/2016] [Indexed: 05/20/2023]
Abstract
A comprehensive understanding of CMS/Rf system enabled by modern omics tools and technologies considerably improves our ability to harness hybrid technology for enhancing the productivity of field crops. Harnessing hybrid vigor or heterosis is a promising approach to tackle the current challenge of sustaining enhanced yield gains of field crops. In the context, cytoplasmic male sterility (CMS) owing to its heritable nature to manifest non-functional male gametophyte remains a cost-effective system to promote efficient hybrid seed production. The phenomenon of CMS stems from a complex interplay between maternally-inherited (mitochondrion) and bi-parental (nucleus) genomic elements. In recent years, attempts aimed to comprehend the sterility-inducing factors (orfs) and corresponding fertility determinants (Rf) in plants have greatly increased our access to candidate genomic segments and the cloned genes. To this end, novel insights obtained by applying state-of-the-art omics platforms have substantially enriched our understanding of cytoplasmic-nuclear communication. Concomitantly, molecular tools including DNA markers have been implicated in crop hybrid breeding in order to greatly expedite the progress. Here, we review the status of diverse sterility-inducing cytoplasms and associated Rf factors reported across different field crops along with exploring opportunities for integrating modern omics tools with CMS-based hybrid breeding.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur, India.
| | - Uday C Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, India
| | | | - Deepak Bisht
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi, India
| | | |
Collapse
|