1
|
Li S, Jiang F, Bi Y, Yin X, Li L, Zhang X, Li J, Liu M, Shaw RK, Fan X. Utilizing Two Populations Derived from Tropical Maize for Genome-Wide Association Analysis of Banded Leaf and Sheath Blight Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:456. [PMID: 38337988 PMCID: PMC10856972 DOI: 10.3390/plants13030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Banded leaf and sheath blight (BLSB) in maize is a soil-borne fungal disease caused by Rhizoctonia solani Kühn, resulting in significant yield losses. Investigating the genes responsible for regulating resistance to BLSB is crucial for yield enhancement. In this study, a multiparent maize population was developed, comprising two recombinant inbred line (RIL) populations totaling 442 F8RILs. The populations were generated by crossing two tropical inbred lines, CML444 and NK40-1, known for their BLSB resistance, as female parents, with the high-yielding but BLSB-susceptible inbred line Ye107 serving as the common male parent. Subsequently, we utilized 562,212 high-quality single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing (GBS) for a comprehensive genome-wide association study (GWAS) aimed at identifying genes responsible for BLSB resistance. The objectives of this study were to (1) identify SNPs associated with BLSB resistance through genome-wide association analyses, (2) explore candidate genes regulating BLSB resistance in maize, and (3) investigate pathways involved in BLSB resistance and discover key candidate genes through Gene Ontology (GO) analysis. The GWAS analysis revealed nineteen SNPs significantly associated with BLSB that were consistently identified across four environments in the GWAS, with phenotypic variation explained (PVE) ranging from 2.48% to 11.71%. Screening a 40 kb region upstream and downstream of the significant SNPs revealed several potential candidate genes. By integrating information from maize GDB and the NCBI, we identified five novel candidate genes, namely, Zm00001d009723, Zm00001d009975, Zm00001d009566, Zm00001d009567, located on chromosome 8, and Zm00001d026376, on chromosome 10, related to BLSB resistance. These candidate genes exhibit association with various aspects, including maize cell membrane proteins and cell immune proteins, as well as connections to cell metabolism, transport, transcriptional regulation, and structural proteins. These proteins and biochemical processes play crucial roles in maize defense against BLSB. When Rhizoctonia solani invades maize plants, it induces the expression of genes encoding specific proteins and regulates corresponding metabolic pathways to thwart the invasion of this fungus. The present study significantly contributes to our understanding of the genetic basis of BLSB resistance in maize, offering valuable insights into novel candidate genes that could be instrumental in future breeding efforts to develop maize varieties with enhanced BLSB resistance.
Collapse
Affiliation(s)
- Shaoxiong Li
- College of Agriculture, Yunnan University, Kunming 650500, China; (S.L.); (L.L.); (X.Z.); (J.L.); (M.L.)
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (F.J.); (Y.B.); (X.Y.); (R.K.S.)
| | - Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (F.J.); (Y.B.); (X.Y.); (R.K.S.)
| | - Xingfu Yin
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (F.J.); (Y.B.); (X.Y.); (R.K.S.)
| | - Linzhuo Li
- College of Agriculture, Yunnan University, Kunming 650500, China; (S.L.); (L.L.); (X.Z.); (J.L.); (M.L.)
| | - Xingjie Zhang
- College of Agriculture, Yunnan University, Kunming 650500, China; (S.L.); (L.L.); (X.Z.); (J.L.); (M.L.)
| | - Jinfeng Li
- College of Agriculture, Yunnan University, Kunming 650500, China; (S.L.); (L.L.); (X.Z.); (J.L.); (M.L.)
| | - Meichen Liu
- College of Agriculture, Yunnan University, Kunming 650500, China; (S.L.); (L.L.); (X.Z.); (J.L.); (M.L.)
| | - Ranjan K. Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (F.J.); (Y.B.); (X.Y.); (R.K.S.)
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (F.J.); (Y.B.); (X.Y.); (R.K.S.)
| |
Collapse
|
2
|
Luyckx M, Hausman JF, Sergeant K, Guerriero G, Lutts S. Molecular and Biochemical Insights Into Early Responses of Hemp to Cd and Zn Exposure and the Potential Effect of Si on Stress Response. FRONTIERS IN PLANT SCIENCE 2021; 12:711853. [PMID: 34539703 PMCID: PMC8446647 DOI: 10.3389/fpls.2021.711853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
With the intensification of human activities, plants are more frequently exposed to heavy metals (HM). Zinc (Zn) and cadmium (Cd) are frequently and simultaneously found in contaminated soils, including agronomic soils contaminated by the atmospheric fallout near smelters. The fiber crop Cannabis sativa L. is a suitable alternative to food crops for crop cultivation on these soils. In this study, Cd (20 μM) and Zn (100 μM) were shown to induce comparable growth inhibition in C. sativa. To devise agricultural strategies aimed at improving crop yield, the effect of silicon (Si; 2 mM) on the stress tolerance of plants was considered. Targeted gene expression and proteomic analysis were performed on leaves and roots after 1 week of treatment. Both Cd- and Zn-stimulated genes involved in proline biosynthesis [pyrroline-5-carboxylate reductase (P5CR)] and phenylpropanoid pathway [phenylalanine ammonia-lyase (PAL)] but Cd also specifically increased the expression of PCS1-1 involved in phytochelatin (PC) synthesis. Si exposure influences the expression of numerous genes in a contrasting way in Cd- and Zn-exposed plants. At the leaf level, the accumulation of 122 proteins was affected by Cd, whereas 47 proteins were affected by Zn: only 16 proteins were affected by both Cd and Zn. The number of proteins affected due to Si exposure (27) alone was by far lower, and 12 were not modified by heavy metal treatment while no common protein seemed to be modified by both CdSi and ZnSi treatment. It is concluded that Cd and Zn had a clear different impact on plant metabolism and that Si confers a specific physiological status to stressed plants, with quite distinct impacts on hemp proteome depending on the considered heavy metal.
Collapse
Affiliation(s)
- Marie Luyckx
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute – Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-François Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute – Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Combining conventional QTL analysis and whole-exome capture-based bulk-segregant analysis provides new genetic insights into tuber sprout elongation and dormancy release in a diploid potato population. Heredity (Edinb) 2021; 127:253-265. [PMID: 34331028 PMCID: PMC8405706 DOI: 10.1038/s41437-021-00459-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Tuber dormancy and sprouting are commercially important potato traits as long-term tuber storage is necessary to ensure year-round availability. Premature dormancy release and sprout growth in tubers during storage can result in a significant deterioration in product quality. In addition, the main chemical sprout suppressant chlorpropham has been withdrawn in Europe, necessitating alternative approaches for controlling sprouting. Breeding potato cultivars with longer dormancy and slower sprout growth is a desirable goal, although this must be tempered by the needs of the seed potato industry, where dormancy break and sprout vigour are required for rapid emergence. We have performed a detailed genetic analysis of tuber sprout growth using a diploid potato population derived from two highly heterozygous parents. A dual approach employing conventional QTL analysis allied to a combined bulk-segregant analysis (BSA) using a novel potato whole-exome capture (WEC) platform was evaluated. Tubers were assessed for sprout growth in storage at six time-points over two consecutive growing seasons. Genetic analysis revealed the presence of main QTL on five chromosomes, several of which were consistent across two growing seasons. In addition, phenotypic bulks displaying extreme sprout growth phenotypes were subjected to WEC sequencing for performing BSA. The combined BSA and WEC approach corroborated QTL locations and served to narrow the associated genomic regions, while also identifying new QTL for further investigation. Overall, our findings reveal a very complex genetic architecture for tuber sprouting and sprout growth, which has implications both for potato and other root, bulb and tuber crops where long-term storage is essential.
Collapse
|
4
|
Wang B, Xie G, Liu Z, He R, Han J, Huang S, Liu L, Cheng X. Mutagenesis Reveals That the OsPPa6 Gene Is Required for Enhancing the Alkaline Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:759. [PMID: 31244876 PMCID: PMC6580931 DOI: 10.3389/fpls.2019.00759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/24/2019] [Indexed: 05/30/2023]
Abstract
Alkaline stress (AS) is one of the abiotic stressful factors limiting plant's growth and development. Inorganic pyrophosphatase is usually involved in a variety of biological processes in plant in response to the abiotic stresses. Here, to clarify the responsive regulation of inorganic pyrophosphatase in rice under AS, the mutagenesis of the OsPPa6 gene encoding an inorganic pyrophosphatase in rice cv. Kitaake (Oryza sativa L. ssp. japonica) was performed by the CRISPR/Cas9 system. Two homozygous independent mutants with cas9-free were obtained by continuously screening. qPCR reveals that the OsPPa6 gene was significantly induced by AS, and the mutagenesis of the OsPPa6 gene apparently delayed rice's growth and development, especially under AS. Measurements demonstrate that the contents of pyrophosphate in the mutants were higher than those in the wild type under AS, however, the accumulation of inorganic phosphate, ATP, chlorophyll, sucrose, and starch in the mutants were decreased significantly, and the mutagenesis of the OsPPa6 gene remarkably lowered the net photosynthetic rate of rice mutants, thus reducing the contents of soluble sugar and proline, but remarkably increasing MDA, osmotic potentials and Na+/K+ ratio in the mutants under AS. Metabonomics measurement shows that the mutants obviously down-regulated the accumulation of phosphorylcholine, choline, anthranilic acid, apigenin, coniferol and dodecanoic acid, but up-regulated the accumulation of L-valine, alpha-ketoglutarate, phenylpyruvate and L-phenylalanine under AS. This study suggests that the OsPPa6 gene is an important osmotic regulatory factor in rice, and the gene-editing of CRISPR/Cas9-guided is an effective method evaluating the responsive regulation of the stress-induced gene, and simultaneously provides a scientific support for the application of the gene encoding a soluble inorganic pyrophosphatase in molecular breeding.
Collapse
Affiliation(s)
- Bing Wang
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guoqiang Xie
- Jiujiang Academy of Agricultural Sciences, Jiujiang, China
| | - Zhonglai Liu
- Jiujiang Academy of Agricultural Sciences, Jiujiang, China
| | - Rui He
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiao Han
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengcai Huang
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Laihua Liu
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xianguo Cheng
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Deokar A, Sagi M, Daba K, Tar'an B. QTL sequencing strategy to map genomic regions associated with resistance to ascochyta blight in chickpea. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:275-288. [PMID: 29890030 PMCID: PMC6330535 DOI: 10.1111/pbi.12964] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 05/21/2023]
Abstract
Whole-genome sequencing-based bulked segregant analysis (BSA) for mapping quantitative trait loci (QTL) provides an efficient alternative approach to conventional QTL analysis as it significantly reduces the scale and cost of analysis with comparable power to QTL detection using full mapping population. We tested the application of next-generation sequencing (NGS)-based BSA approach for mapping QTLs for ascochyta blight resistance in chickpea using two recombinant inbred line populations CPR-01 and CPR-02. Eleven QTLs in CPR-01 and six QTLs in CPR-02 populations were mapped on chromosomes Ca1, Ca2, Ca4, Ca6 and Ca7. The QTLs identified in CPR-01 using conventional biparental mapping approach were used to compare the efficiency of NGS-based BSA in detecting QTLs for ascochyta blight resistance. The QTLs on chromosomes Ca1, Ca4, Ca6 and Ca7 overlapped with the QTLs previously detected in CPR-01 using conventional QTL mapping method. The QTLs on chromosome Ca4 were detected in both populations and overlapped with the previously reported QTLs indicating conserved region for ascochyta blight resistance across different chickpea genotypes. Six candidate genes in the QTL regions identified using NGS-based BSA on chromosomes Ca2 and Ca4 were validated for their association with ascochyta blight resistance in the CPR-02 population. This study demonstrated the efficiency of NGS-based BSA as a rapid and cost-effective method to identify QTLs associated with ascochyta blight in chickpea.
Collapse
Affiliation(s)
- Amit Deokar
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKCanada
| | - Mandeep Sagi
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKCanada
| | - Ketema Daba
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKCanada
| | - Bunyamin Tar'an
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKCanada
| |
Collapse
|
6
|
Tang W, Huang L, Bu S, Zhang X, Wu W. Estimation of QTL heritability based on pooled sequencing data. Bioinformatics 2019; 34:978-984. [PMID: 29106443 DOI: 10.1093/bioinformatics/btx703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022] Open
Abstract
Motivation Bulked segregant analysis combined with next generation sequencing has proven to be a simple and efficient approach for fast mapping of quantitative trait loci (QTLs). However, how to estimate the proportion of phenotypic variance explained by a QTL (or termed QTL heritability) in such pooled QTL mapping is an unsolved problem. Results In this paper, we propose a method called PQHE to estimate QTL heritability using pooled sequencing data obtained under different experimental designs. Simulation studies indicated that our method is correct and feasible. Four practical examples from rice and yeast are demonstrated, each representing a different situation. Availability and implementation The R scripts of our method are open source under GPLv3 license at http://genetics.fafu.edu.cn/PQHE or https://github.com/biotangweiqi/PQHE. The R scripts require the R package rootSolve. Contact wuwr@fafu.edu.cn. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Weiqi Tang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Likun Huang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Suhong Bu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xuzhang Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Weiren Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
7
|
Prinzenberg AE, Víquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. Chlorophyll fluorescence imaging reveals genetic variation and loci for a photosynthetic trait in diploid potato. PHYSIOLOGIA PLANTARUM 2018; 164:163-175. [PMID: 29314007 DOI: 10.1111/ppl.12689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/02/2018] [Indexed: 05/28/2023]
Abstract
Physiology and genetics are tightly interrelated. Understanding the genetic basis of a physiological trait such as the quantum yield of the photosystem II, or photosynthetic responses to environmental changes will benefit the understanding of these processes. By means of chlorophyll fluorescence (CF) imaging, the quantum yield of photosystem II can be determined rapidly, precisely and non-invasively. In this article, the genetic control and variation in the steady-state quantum yield of PSII (ΦPSII ) is analyzed for diploid potato plants. Current progress in potato research and breeding is slow due to high levels of heterozygosity and complexity of tetraploid genetics. Diploid potatoes offer the possibility of overcoming this problem and advance research for one of the globally most important staple foods. With the help of a diploid genetic mapping population two genetic loci that were strongly associated with differences in ΦPSII were identified. This is a proof of principle that genetic analysis for ΦPSII can be done on potato. The effects of three different stress conditions that are important in potato cultivation were also tested: salt stress, low temperature and deficiency in the macronutrient phosphate. For the last two stresses, significant decreases in photosynthetic activity could be shown, revealing potential for stress detection with CF based tools. In general, our findings show the potential of high-throughput phenotyping for physiological research and breeding in potato.
Collapse
Affiliation(s)
- Aina E Prinzenberg
- Solynta, Dreijenlaan 2, Wageningen 6703HA, The Netherlands
- Horticulture and Product Physiology, Wageningen University and Research, P.O. Box 16, Wageningen 6700AA, The Netherlands
| | | | - Jeremy Harbinson
- Horticulture and Product Physiology, Wageningen University and Research, P.O. Box 16, Wageningen 6700AA, The Netherlands
| | - Pim Lindhout
- Solynta, Dreijenlaan 2, Wageningen 6703HA, The Netherlands
| | - Sjaak van Heusden
- Solynta, Dreijenlaan 2, Wageningen 6703HA, The Netherlands
- Plant Breeding, Wageningen University and Research, P.O. Box 386, Wageningen 6700 AJ, The Netherlands
| |
Collapse
|
8
|
Moreira JT, Moreira TM, Cunha JB, Azenha M, Fidalgo F, Teixeira J. Differential effects of acetophenone on shoots' and roots' metabolism of Solanum nigrum L. plants and implications in its phytoremediation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:391-398. [PMID: 30064095 DOI: 10.1016/j.plaphy.2018.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
The wide ranges of uses for acetophenone make it more available and expected to accumulate in the biosphere, where consequently it can threat ecosystems. To remediate this problem, the use of Solanum nigrum L. plants for the clean-up of acetophenone-contaminated sites was explored. Also, plant root and shoot biometry and metabolism where assayed to better understand the effects of this organic compound and to pinpoint possible metabolic pathways to be targeted for future manipulations for increasing this plant species' remediation efficiency. Although undergoing through some stress, detected by increases in ROS and lipid peroxidation in both organs, plants were able to rapidly eliminate all acetophenone from the nutrient solution after 7 days of exposure, being this compound mainly detoxified at the root level. Additionally, acetophenone lead to a differential metabolic response in roots and shoots, where antioxidant mechanisms where differentially activated, while nitrogen assimilation was repressed in shoots and activated in roots. These results confirm that S. nigrum is a good phytoremediation tool for acetophenone and suggest that enhancing shoot GS activity may provide more nitrogen precursors for the synthesis of thiolated proteins and glutathione to increase tolerance to acetophenone in roots and shoots, respectively.
Collapse
Affiliation(s)
- José Tiago Moreira
- BioISI - BioSystems & Integrative Sciences Institute, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - Tiago M Moreira
- BioISI - BioSystems & Integrative Sciences Institute, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - João B Cunha
- BioISI - BioSystems & Integrative Sciences Institute, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - Manuel Azenha
- CIQ-UP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Fernanda Fidalgo
- BioISI - BioSystems & Integrative Sciences Institute, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; GreenUPorto, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - Jorge Teixeira
- BioISI - BioSystems & Integrative Sciences Institute, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; GreenUPorto, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
9
|
James D, Borphukan B, Fartyal D, Ram B, Singh J, Manna M, Sheri V, Panditi V, Yadav R, Achary VMM, Reddy MK. Concurrent Overexpression of OsGS1;1 and OsGS2 Genes in Transgenic Rice ( Oryza sativa L.): Impact on Tolerance to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2018; 9:786. [PMID: 29977247 PMCID: PMC6021690 DOI: 10.3389/fpls.2018.00786] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/23/2018] [Indexed: 05/18/2023]
Abstract
Glutamine synthetase (GS) is a key enzyme involved in the nitrogen metabolism of higher plants. Abiotic stresses have adverse effects on crop production and pose a serious threat to global food security. GS activity and expression is known to be significantly modulated by various abiotic stresses. However, very few transgenic overexpression studies of GS have studied its impact on abiotic stress tolerance. GS is also the target enzyme of the broad spectrum herbicide Glufosinate (active ingredient: phosphinothricin). In this study, we investigated the effect of concurrent overexpression of the rice cytosolic GS1 (OsGS1;1) and chloroplastic GS2 (OsGS2) genes in transgenic rice on its tolerance to abiotic stresses and the herbicide Glufosinate. Our results demonstrate that the co-overexpression of OsGS1;1 and OsGS2 isoforms in transgenic rice plants enhanced its tolerance to osmotic and salinity stress at the seedling stage. The transgenic lines maintained significantly higher fresh weight, chlorophyll content, and relative water content than wild type (wt) and null segregant (ns) controls, under both osmotic and salinity stress. The OsGS1;1/OsGS2 co-overexpressing transgenic plants accumulated higher levels of proline but showed lower electrolyte leakage and had lower malondialdehyde (MDA) content under the stress treatments. The transgenic lines showed considerably enhanced photosynthetic and agronomic performance under drought and salinity stress imposed during the reproductive stage, as compared to wt and ns control plants. The grain filling rates of the transgenic rice plants under reproductive stage drought stress (64.6 ± 4.7%) and salinity stress (58.2 ± 4.5%) were significantly higher than control plants, thereby leading to higher yields under these abiotic stress conditions. Preliminary analysis also revealed that the transgenic lines had improved tolerance to methyl viologen induced photo-oxidative stress. Taken together, our results demonstrate that the concurrent overexpression of OsGS1;1 and OsGS2 isoforms in rice enhanced physiological tolerance and agronomic performance under adverse abiotic stress conditions, apparently acting through multiple mechanistic routes. The transgenic rice plants also showed limited tolerance to the herbicide Glufosinate. The advantages and limitations of glutamine synthetase overexpression in crop plants, along with future strategies to overcome these limitations for utilization in crop improvement have also been discussed briefly.
Collapse
Affiliation(s)
- Donald James
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bhabesh Borphukan
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dhirendra Fartyal
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Uttarakhand Technical University, Dehradun, India
| | - Babu Ram
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Uttarakhand Technical University, Dehradun, India
| | - Jitender Singh
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- National Institute of Plant Genome Research, New Delhi, India
| | - Mrinalini Manna
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vijay Sheri
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Varakumar Panditi
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Renu Yadav
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - V. Mohan M. Achary
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mallireddy K. Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|