1
|
Wang W, Li H, Qiu L, Wang H, Pan W, Yang Z, Wei W, Liu N, Sun J, Hu Z, Ma J, Ni Z, Li Y, Sun Q, Xie C. Fine-mapping of LrN3B on wheat chromosome arm 3BS, one of the two complementary genes for adult-plant leaf rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:203. [PMID: 39134836 DOI: 10.1007/s00122-024-04706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/27/2024] [Indexed: 09/14/2024]
Abstract
The common wheat line 4N0461 showed adult-plant resistance to leaf rust. 4N0461 was crossed with susceptible cultivars Nongda4503 and Shi4185 to map the causal resistance gene(s). Segregation of leaf rust response in F2 populations from both crosses was 9 resistant:7 susceptible, indicative of two complementary dominant resistance genes. The genes were located on chromosome arms 3BS and 4BL and temporarily named LrN3B and LrN4B, respectively. Subpopulations from 4N0461 × Nongda4503 with LrN3B segregating as a single allele were used to fine-map LrN3B locus. LrN3B was delineated in a genetic interval of 0.07 cM, corresponding to 106 kb based on the Chinese Spring reference genome (IWGSC RefSeq v1.1). Four genes were annotated in this region, among which TraesCS3B02G014800 and TraesCS3B02G014900 differed between resistant and susceptible genotypes, and both were required for LrN3B resistance in virus-induced gene silencing experiments. Diagnostic markers developed for checking the polymorphism of each candidate gene, can be used for marker-assisted selection in wheat breeding programs.
Collapse
Affiliation(s)
- Weidong Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huifang Li
- Tongfang Knowledge Network Digital Publishing Technology Co., LTD, Taiyuan, 030006, Shanxi, China
| | - Lina Qiu
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin, 300392, China
| | - Huifang Wang
- Lixian Bureau of Agriculture and Rural Affairs, Baoding, 071400, Hebei, China
| | - Wei Pan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zuhuan Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wenxin Wei
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Nannan Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Junna Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jun Ma
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yinghui Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Wilson S, Dagvadorj B, Tam R, Murphy L, Schulz-Kroenert S, Heng N, Crean E, Greenwood J, Rathjen JP, Schwessinger B. Multiplexed effector screening for recognition by endogenous resistance genes using positive defense reporters in wheat protoplasts. THE NEW PHYTOLOGIST 2024; 241:2621-2636. [PMID: 38282212 DOI: 10.1111/nph.19555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Plant resistance (R) and pathogen avirulence (Avr) gene interactions play a vital role in pathogen resistance. Efficient molecular screening tools for crops lack far behind their model organism counterparts, yet they are essential to rapidly identify agriculturally important molecular interactions that trigger host resistance. Here, we have developed a novel wheat protoplast assay that enables efficient screening of Avr/R interactions at scale. Our assay allows access to the extensive gene pool of phenotypically described R genes because it does not require the overexpression of cloned R genes. It is suitable for multiplexed Avr screening, with interactions tested in pools of up to 50 Avr candidates. We identified Avr/R-induced defense genes to create a promoter-luciferase reporter. Then, we combined this with a dual-color ratiometric reporter system that normalizes read-outs accounting for experimental variability and Avr/R-induced cell death. Moreover, we introduced a self-replicative plasmid reducing the amount of plasmid used in the assay. Our assay increases the throughput of Avr candidate screening, accelerating the study of cellular defense signaling and resistance gene identification in wheat. We anticipate that our assay will significantly accelerate Avr identification for many wheat pathogens, leading to improved genome-guided pathogen surveillance and breeding of disease-resistant crops.
Collapse
Affiliation(s)
- Salome Wilson
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bayantes Dagvadorj
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Rita Tam
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Lydia Murphy
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Sven Schulz-Kroenert
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nigel Heng
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Emma Crean
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Julian Greenwood
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - John P Rathjen
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Benjamin Schwessinger
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
3
|
Li Y, Hu Y, Jiang Y, Zhou Q, He Y, He J, Chen X, Chen X, Jiang B, Hao M, Ning S, Yuan Z, Zhang J, Xia C, Wu B, Feng L, Zhang L, Liu D, Huang L. Identification and fine-mapping of QYrAS286-2BL conferring adult-plant resistance to stripe rust in cultivated emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:5. [PMID: 38091074 DOI: 10.1007/s00122-023-04505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
KEY MESSAGE A novel major adult-plant stripe rust resistance QTL derived from cultivated emmer wheat was mapped to a 123.6-kb region on wheat chromosome 2BL. Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat. Identification of new sources of resistance and their utilization in breeding programs is the effectively control strategy. The objective of this study was to identify and genetically characterize the stripe rust resistance derived from the cultivated emmer accession AS286. A recombinant inbred line population, developed from a cross between the susceptible durum wheat line langdon and AS286, was genotyped using the Wheat55K single nucleotide polymorphism array and evaluated in field conditions with a mixture of the prevalent Chinese Pst races (CYR32, CYR33, CYR34, Zhong4, and HY46) and in growth chamber with race CYR34. Three QTLs conferring resistance were mapped on chromosomes 1BS, 2BL, and 5BL, respectively. The QYrAS286-1BS and QYrAS286-2BL were stable with major effects, explaining 12.91% to 18.82% and 11.31% to 31.43% of phenotypic variation, respectively. QYrAS286-5BL was only detected based on growth chamber seedling data. RILs harboring both QYrAS286-1BS and QYrAS286-2BL showed high levels of stripe rust resistance equal to the parent AS286. The QYrAS286-2BL was only detected at the adult-plant stage, which is different from previously named Yr genes and inherited as a single gene. It was further mapped to a 123.6-kb region using KASP markers derived from SNPs identified by bulked segregant RNA sequencing (BSR-Seq). The identified loci enrich our stripe rust resistance gene pool, and the flanking markers developed here could be useful in marker-assisted selection for incorporating QYrAS286-2BL into wheat cultivars.
Collapse
Affiliation(s)
- Yuqin Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanling Hu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yun Jiang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Yu He
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jingshu He
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jinrui Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chongjing Xia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Bihua Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lihua Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
4
|
Yin Y, Yuan C, Zhang Y, Li S, Bai B, Wu L, Ren Y, Singh RP, Lan C. Genetic analysis of stripe rust resistance in the common wheat line Kfa/2*Kachu under a Chinese rust environment. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:185. [PMID: 37566234 DOI: 10.1007/s00122-023-04432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
KEY MESSAGE We mapped a new race-specific seedling stripe rust resistance gene on wheat chromosome 5BL and a new APR locus QYr.hazu-2BS from CIMMYT wheat line Kfa/2*Kachu. Breeding resistant wheat (Triticum aestivum) varieties is the most economical and efficient way to manage wheat stripe rust, but requires the prior identification of new resistance genes and development of associated molecular markers for marker-assisted selection. To map stripe rust resistance loci in wheat, we used a recombinant inbred line population generated by crossing the stripe rust-resistant parent 'Kfa/2*Kachu' and the susceptible parent 'Apav#1'. We employed genotyping-by-sequencing and bulked segregant RNA sequencing to map a new race-specific seedling stripe rust resistance gene, which we designated YrK, to wheat chromosome arm 5BL. TraesCS5B02G330700 encodes a receptor-like kinase and is a high-confidence candidate gene for YrK based on virus-induced gene silencing results and the significant induction of its expression 24 h after inoculation with wheat stripe rust. To assist breeding, we developed functional molecular markers based on the polymorphic single nucleotide polymorphisms in the coding sequence region of YrK. We also mapped four adult plant resistance (APR) loci to wheat chromosome arms 1BL, 2AS, 2BS and 4AL. Among these APR loci, we determined that QYr.hazu-1BL and QYr.hazu-2AS are allelic to the known pleiotropic resistance gene Lr46/Yr29/Pm39 and the race-specific gene Yr17, respectively. However, QYr.hazu-2BS is likely a new APR locus, for which we converted closely linked SNP polymorphisms into breeder-friendly Kompetitive allele-specific PCR (KASP) markers. In the present study, we provided new stripe rust resistance locus/gene and molecular markers for wheat breeder to develop rust-resistant wheat variety.
Collapse
Affiliation(s)
- Yuruo Yin
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Chan Yuan
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Yichen Zhang
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Shunda Li
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, People's Republic of China
| | - Ling Wu
- Crop Research Institute Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory, Chengdu, 610066, Sichuan Province, China
| | - Yong Ren
- Mianyang Institute of Agricultural Science/Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, 621023, Sichuan, China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, CP 56237, El Batán, Texcoco, E do. de México, Mexico
| | - Caixia Lan
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, 430070, Hubei Province, China.
| |
Collapse
|
5
|
Zhang G, Liu W, Wang L, Ju M, Tian X, Du Z, Kang Z, Zhao J. Genetic Characteristics and Linkage of Virulence Genes of the Puccinia striiformis f. sp. tritici TSA-6 Isolate to Yr5 Host Resistance. PLANT DISEASE 2023; 107:688-700. [PMID: 35869586 DOI: 10.1094/pdis-07-22-1637-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To understand the inheritance of the TSA-6 Puccinia striiformis f. sp. tritici (Pst) isolate that is virulent to Yr5 and was recently detected in China, we analyzed avirulence and virulence of 120 selfed progeny lines from Berberis shensiana. The results showed that the TSA-6 isolate is virulent against the Yr5 resistance gene, and overall progeny lines were categorized into 73 virulence phenotypes (VPs); of these, 72 VPs differed from the isolate TSA-6, and only one VP, including three progeny, was identical to the parental isolate. The analyses indicated that the TSA-6 isolate is homozygous for avirulence at the Yr10, Yr15, and Yr26 resistance loci and virulence at the YrA resistance locus. The TSA-6 isolate is heterozygous for avirulence at the Yr2, Yr3, Yr5, Yr7, and Yr8 resistance loci, which are controlled by a dominant/recessive relationship. The Yr1, Yr6, Yr9, Yr17, Yr27, Yr25, Yr28, Yr29, Yr32, YrTr1, and YrSP resistance loci are governed by two complementary dominant/recessive genes. Avirulence against heterozygous Yr4, Yr43, Yr44, Yr76, and YrExp2 resistance loci is regulated by a dominant and recessive or a dominant and suppressor gene pair. In total, 117 multilocus genotypes were detected at 24 KASP-SNP marker loci among the 120 progenies. Using these marker loci, we constructed a linkage map with a genetic distance interval spanning 624.5 cM. Quantitative trait loci corresponding to phenotypic segregation for virulence at 20 Yr resistance loci in addition to the Yr1 resistance locus were identified. These results facilitate our understanding of Pst virulence evolution and simplify breeding of wheat cultivars with effective resistance to wheat stripe rust.
Collapse
Affiliation(s)
- Gensheng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meng Ju
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaxia Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhimin Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
6
|
Wu N, Ozketen AC, Cheng Y, Jiang W, Zhou X, Zhao X, Guan Y, Xiang Z, Akkaya MS. Puccinia striiformis f. sp. tritici effectors in wheat immune responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1012216. [PMID: 36420019 PMCID: PMC9677129 DOI: 10.3389/fpls.2022.1012216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The obligate biotrophic fungus Puccinia striiformis f. sp. tritici, which causes yellow (stripe) rust disease, is among the leading biological agents resulting in tremendous yield losses on global wheat productions per annum. The combatting strategies include, but are not limited to, fungicide applications and the development of resistant cultivars. However, evolutionary pressure drives rapid changes, especially in its "effectorome" repertoire, thus allowing pathogens to evade and breach resistance. The extracellular and intracellular effectors, predominantly secreted proteins, are tactical arsenals aiming for many defense processes of plants. Hence, the identity of the effectors and the molecular mechanisms of the interactions between the effectors and the plant immune system have long been targeted in research. The obligate biotrophic nature of P. striiformis f. sp. tritici and the challenging nature of its host, the wheat, impede research on this topic. Next-generation sequencing and novel prediction algorithms in bioinformatics, which are accompanied by in vitro and in vivo validation approaches, offer a speedy pace for the discovery of new effectors and investigations of their biological functions. Here, we briefly review recent findings exploring the roles of P. striiformis f. sp. tritici effectors together with their cellular/subcellular localizations, host responses, and interactors. The current status and the challenges will be discussed. We hope that the overall work will provide a broader view of where we stand and a reference point to compare and evaluate new findings.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | | | - Yu Cheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wanqing Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xuan Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinran Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yaorong Guan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Zhaoxia Xiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
7
|
Dinh HX, Pourkheirandish M, Park RF, Singh D. The genetic basis and interaction of genes conferring resistance to Puccinia hordei in an ICARDA barley breeding line GID 5779743. FRONTIERS IN PLANT SCIENCE 2022; 13:988322. [PMID: 36051292 PMCID: PMC9425046 DOI: 10.3389/fpls.2022.988322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Leaf rust of barley causes significant losses in crops of susceptible cultivars. Deploying host resistance is the most cost-effective and eco-sustainable strategy to protect the harvest. However, most known leaf rust resistance genes have been overcome by the pathogen due to the pathogen's evolution and adaptation. The discovery of novel sources of genetic resistance is vital to keep fighting against pathogen evolution. In this study, we investigated the genetic basis of resistance in barley breeding line GID 5779743 (GID) from ICARDA, found to carry high levels of seedling resistance to prevalent Australian pathotypes of Puccinia hordei. Multipathotype tests, genotyping, and marker-trait associations revealed that the resistance in GID is conferred by two independent genes. The first gene, Rph3, was detected using a linked CAPS marker and QTL analysis. The second gene was detected by QTL analysis and mapped to the same location as that of the Rph5 locus on the telomeric region of chromosome 3HS. The segregating ratio in F2 (conforming to 9 resistant: 7 susceptible genetic ratio; p > 0.8) and F3 (1 resistant: 8 segregating: 7 susceptible; p > 0.19) generations of the GID × Gus population, when challenged with pathotype 5477 P- (virulent on Rph3 and Rph5) suggested the interaction of two genes in a complementary fashion. This study demonstrated that Rph3 interacts with Rph5 or an additional locus closely linked to Rph5 (tentatively designated RphGID) in GID to produce an incompatible response when challenged with a pathotype virulent on Rph3+Rph5.
Collapse
Affiliation(s)
- Hoan X. Dinh
- Faculty of Science, Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia
| | - Mohammad Pourkheirandish
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Robert F. Park
- Faculty of Science, Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia
| | - Davinder Singh
- Faculty of Science, Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Bai B, Li Z, Wang H, Du X, Wu L, Du J, Lan C. Genetic Analysis of Adult Plant Resistance to Stripe Rust in Common Wheat Cultivar "Pascal". FRONTIERS IN PLANT SCIENCE 2022; 13:918437. [PMID: 35874020 PMCID: PMC9298664 DOI: 10.3389/fpls.2022.918437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Wheat stripe rust is an important foliar disease that affects the wheat yield globally. Breeding for resistant wheat varieties is one of the most economically and environmentally effective ways to control this disease. The common wheat (Triticum aestivum L.) cultivar "Pascal" exhibited susceptibility to stripe rust at the seedling stage but it showed high resistance to stripe rust at the adult plant stage over 20 years in Gansu, a hotspot of the disease in northwestern China. To understand the genetic mechanism of stripe rust resistance in this cultivar, a 55K SNP array was used to analyze the two parents and the 220 recombinant inbred lines (RILs) derived from the cross of "Huixianhong" × "Pascal." We detected three new stripe rust adult plant resistance (APR) quantitative trait locus (QTL) contributed by Pascal, viz. QYr.gaas-1AL, QYr.gaas-3DL, and QYr.gaas-5AS, using the inclusive composite interval mapping method. They were flanked by SNP markers AX-111218361-AX-110577861, AX-111460455-AX-108798599, and AX-111523523-AX-110028503, respectively, and explained the phenotypic variation ranging from 11.0 to 23.1%. Bulked segregant exome capture sequencing (BSE-Seq) was used for fine mapping of QYr.gaas-1AL and selection of candidate genes, TraesCS1A02G313700, TraesCS1A02G313800, and TraesCS1A02G314900 for QYr.gaas-1AL. KASP markers BSE-1A-12 and HXPA-3D for QYr.gaas-1AL and QYr.gaas-3DL were developed for breeders to develop durable stripe rust-resistant wheat varieties.
Collapse
Affiliation(s)
- Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Zimeng Li
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Wang
- Institute of Biotechnology, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaolin Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jiuyuan Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Caixia Lan
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Assessment of Genetic Diversity and Relatedness in an Andean Potato Collection from Argentina by High-Density Genotyping. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Native potatoes are the most diverse among cultivated potato species and thus constitute a valuable source for identifying genes for potato improvement. Nevertheless, high-density mapping, needed to reveal allelic diversity, has not been performed for native Argentinian potatoes. We present a study of the genetic variability and population structure of 96 Andigena potatoes from Northwestern Argentina performed using a subset of 5035 SNPs with no missing data and full reproducibility. These high-density markers are distributed across the genome and present a good coverage of genomic regions. A Bayesian approach revealed the presence of: (I) a major group comprised of most of the Andean accessions; (II) a smaller group containing the out-group cv. Spunta and the sequenced genotype DM; and (III) a third group containing colored flesh potatoes. This grouping was also consistent when maximum likelihood trees were constructed and further confirmed by a principal coordinate analysis. A group of 19 accessions stored as Andean varieties clustered consistently with group Tuberosum accessions. This was in agreement with previous studies and we hypothesize that they may be reintroductions of European-bred long day-adapted potatoes. The present study constitutes a valuable source for allele mining of genes of interest and thus provides a tool for association mapping studies.
Collapse
|
10
|
Long L, Yao F, Guan F, Cheng Y, Duan L, Zhao X, Li H, Pu Z, Li W, Jiang Q, Wei Y, Ma J, Kang H, Dai S, Qi P, Xu Q, Deng M, Zheng Y, Jiang Y, Chen G. A Stable Quantitative Trait Locus on Chromosome 5BL Combined with Yr18 Conferring High-Level Adult Plant Resistance to Stripe Rust in Chinese Wheat Landrace Anyuehong. PHYTOPATHOLOGY 2021; 111:1594-1601. [PMID: 33599530 DOI: 10.1094/phyto-10-20-0465-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chinese wheat landrace Anyuehong (AYH) has displayed high levels of stable adult plant resistance (APR) to stripe rust for >15 years. To identify quantitative trait loci (QTLs) for stripe rust resistance in AYH, a set of 110 recombinant inbred lines (RILs) was developed from a cross between AYH and susceptible cultivar Taichung 29. The parents and RILs were evaluated for final disease severity (FDS) in six field tests with a mixture of predominant Puccinia striiformis f. sp. tritici races at the adult plant stage and genotyped via the wheat 55K single-nucleotide polymorphism (SNP) array to construct a genetic map with 1,143 SNP markers. Three QTLs, designated as QYr.AYH-1AS, QYr.AYH-5BL, and QYr.AYH-7DS, were mapped on chromosome 1AS, 5BL, and 7DS, respectively. RILs combining three QTLs showed significantly lower FDS compared with the lines in other combinations. Of them, QYr.AYH-5BL and QYr.AYH-7DS were stably detected in all environments, explaining 13.6 to 21.4% and 17.6 to 33.6% of phenotypic variation, respectively. Compared with previous studies, QYr.AYH-5BL may be a new QTL, whereas QYr.AYH-7DS may be Yr18. Haplotype analysis revealed that QYr.AYH-5BL is probably present in 6.2% of the 323 surveyed Chinese wheat landraces. The kompetitive allele specific PCR (KASP) markers for QYr.AYH-5BL were developed by the linked SNP markers to successfully confirm the effects of the QTL in a validation population derived from a residual heterozygous line and were further assessed in 38 Chinese wheat landraces and 92 cultivars. Our results indicated that QYr.AYH-5BL with linked KASP markers has potential value for marker-assisted selection to improve stripe rust resistance in breeding programs.
Collapse
Affiliation(s)
- Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Fangnian Guan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Luyao Duan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Xuyang Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qiang Xu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| |
Collapse
|
11
|
Huang S, Liu S, Zhang Y, Xie Y, Wang X, Jiao H, Wu S, Zeng Q, Wang Q, Singh RP, Bhavani S, Kang Z, Wang C, Han D, Wu J. Genome-Wide Wheat 55K SNP-Based Mapping of Stripe Rust Resistance Loci in Wheat Cultivar Shaannong 33 and Their Alleles Frequencies in Current Chinese Wheat Cultivars and Breeding Lines. PLANT DISEASE 2021; 105:1048-1056. [PMID: 32965178 DOI: 10.1094/pdis-07-20-1516-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wheat cultivar Shaannong 33 (SN33) has remained highly resistant to stripe rust in the field since its release in 2009. To unravel the genetic architecture of stripe rust resistance, seedlings of 161 recombinant inbred lines (RILs) from the cross Avocet S × SN33 were evaluated with two isolates (PST-Lab.1 and PST-Lab.2) of the stripe rust pathogen (Puccinia striiformis f. sp. tritici) in the greenhouse, and the RILs were evaluated in naturally or artificially inoculated field sites during two cropping seasons. The RILs and parents were genotyped with the wheat 55K single-nucleotide polymorphism array. Three genomic regions conferring seedling resistance were mapped on chromosomes 1DS, 2AS, and 3DS, and four consistent quantitative trait loci (QTL) for adult-plant resistance (APR) were detected on 1BL, 2AS, 3DL, and 6BS. The 2AS locus conferring all-stage resistance was identified as the resistant gene Yr17 located on 2NS translocation. The QTL identified on 1BL and 6BS likely correspond to Yr29 and Yr78, respectively. An APR QTL on 3DL explaining 5.8 to 12.2% of the phenotypic variation is likely to be new. Molecular marker detection assays with the 2NS segment (Yr17), Yr29, Yr78, and QYrsn.nwafu-3DL on a panel of 420 current Chinese wheat cultivars and breeding lines indicated that these genes were present in 11.4, 7.6, 14.8, and 7.4% of entries, respectively. The interactions among these genes and QTL were additive, suggesting their potential value in enhancing stripe rust resistance breeding materials as observed in the resistant parent. In addition, we also identified two leaf necrosis genes, Ne1 and Ne2; however, the F1 plants from cross Avocet S × SN33 survived, indicating that SN33 probably has another allele of Ne1 which allows seed to be harvested.
Collapse
Affiliation(s)
- Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yibo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Hanxuan Jiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shushu Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de Mexico 56237, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de Mexico 56237, Mexico
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Chengshe Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
12
|
Abou-Zeid MA, Mourad AMI. Genomic regions associated with stripe rust resistance against the Egyptian race revealed by genome-wide association study. BMC PLANT BIOLOGY 2021; 21:42. [PMID: 33446120 PMCID: PMC7809828 DOI: 10.1186/s12870-020-02813-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/22/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Wheat stripe rust (caused by Puccinia striiformis f. sp. Tritici), is a major disease that causes huge yield damage. New pathogen races appeared in the last few years and caused a broke down in the resistant genotypes. In Egypt, some of the resistant genotypes began to be susceptible to stripe rust in recent years. This situation increases the need to produce new genotypes with durable resistance. Besides, looking for a new resistant source from the available wheat genotypes all over the world help in enhancing the breeding programs. RESULTS In the recent study, a set of 103-spring wheat genotypes from different fourteen countries were evaluated to their field resistant to stripe rust for two years. These genotypes included 17 Egyptian genotypes from the old and new cultivars. The 103-spring wheat genotypes were reported to be well adapted to the Egyptian environmental conditions. Out of the tested genotypes, eight genotypes from four different countries were found to be resistant in both years. Genotyping was carried out using genotyping-by-sequencing and a set of 26,703 SNPs were used in the genome-wide association study. Five SNP markers, located on chromosomes 2A and 4A, were found to be significantly associated with the resistance in both years. Three gene models associated with disease resistance and underlying these significant SNPs were identified. One immune Iranian genotype, with the highest number of different alleles from the most resistant Egyptian genotypes, was detected. CONCLUSION the high variation among the tested genotypes in their resistance to the Egyptian stripe rust race confirming the possible improvement of stripe rust resistance in the Egyptian wheat genotypes. The identified five SNP markers are stable and could be used in marker-assisted selection after validation in different genetic backgrounds. Crossing between the immune Iranian genotype and the Egyptian genotypes will improve stripe rust resistance in Egypt.
Collapse
Affiliation(s)
- Mohamed A. Abou-Zeid
- Wheat Disease Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Amira M. I. Mourad
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| |
Collapse
|
13
|
Wang Y, Yu C, Cheng Y, Yao F, Long L, Wu Y, Li J, Li H, Wang J, Jiang Q, Li W, Pu Z, Qi P, Ma J, Deng M, Wei Y, Chen X, Chen G, Kang H, Jiang Y, Zheng Y. Genome-wide association mapping reveals potential novel loci controlling stripe rust resistance in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. BMC Genomics 2021; 22:34. [PMID: 33413106 PMCID: PMC7791647 DOI: 10.1186/s12864-020-07331-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant cultivars are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions. In addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under a controlled greenhouse environment. RESULTS Seventeen accessions showed stable high-level resistance to stripe rust across all environments in the field tests. Four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers that covered the entire genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99-23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, whereas four and one QTL conferring seedling and adult-plant resistance, respectively, were mapped distantly from previously reported stripe rust resistance genes or QTL and thus may be novel resistance loci. CONCLUSIONS Our results provided an integrated overview of stripe rust resistance resources in a wheat landrace diversity panel from the southern autumn-sown spring wheat zone of China. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.
Collapse
Affiliation(s)
- Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Can Yu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Xianming Chen
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit; and Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| |
Collapse
|
14
|
Babu P, Baranwal DK, Harikrishna, Pal D, Bharti H, Joshi P, Thiyagarajan B, Gaikwad KB, Bhardwaj SC, Singh GP, Singh A. Application of Genomics Tools in Wheat Breeding to Attain Durable Rust Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:567147. [PMID: 33013989 PMCID: PMC7516254 DOI: 10.3389/fpls.2020.567147] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2023]
Abstract
Wheat is an important source of dietary protein and calories for the majority of the world's population. It is one of the largest grown cereal in the world occupying over 215 M ha. Wheat production globally is challenged by biotic stresses such as pests and diseases. Of the 50 diseases of wheat that are of economic importance, the three rust diseases are the most ubiquitous causing significant yield losses in the majority of wheat production environments. Under severe epidemics they can lead to food insecurity threats amid the continuous evolution of new races of the pathogens, shifts in population dynamics and their virulence patterns, thereby rendering several effective resistance genes deployed in wheat breeding programs vulnerable. This emphasizes the need to identify, characterize, and deploy effective rust-resistant genes from diverse sources into pre-breeding lines and future wheat varieties. The use of genetic resistance has been marked as eco-friendly and to curb the further evolution of rust pathogens. Deployment of multiple rust resistance genes including major and minor genes in wheat lines could enhance the durability of resistance thereby reducing pathogen evolution. Advances in next-generation sequencing (NGS) platforms and associated bioinformatics tools have revolutionized wheat genomics. The sequence alignment of the wheat genome is the most important landmark which will enable genomics to identify marker-trait associations, candidate genes and enhanced breeding values in genomic selection (GS) studies. High throughput genotyping platforms have demonstrated their role in the estimation of genetic diversity, construction of the high-density genetic maps, dissecting polygenic traits, and better understanding their interactions through GWAS (genome-wide association studies) and QTL mapping, and isolation of R genes. Application of breeder's friendly KASP assays in the wheat breeding program has expedited the identification and pyramiding of rust resistance alleles/genes in elite lines. The present review covers the evolutionary trends of the rust pathogen and contemporary wheat varieties, and how these research strategies galvanized to control the wheat killer genus Puccinia. It will also highlight the outcome and research impact of cost-effective NGS technologies and cloning of rust resistance genes amid the public availability of common and tetraploid wheat reference genomes.
Collapse
Affiliation(s)
- Prashanth Babu
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | - Harikrishna
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Dharam Pal
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Hemlata Bharti
- Directorate of Medicinal and Aromatic Plants Research (ICAR), Anand, India
| | - Priyanka Joshi
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | | | | | | | | - Anupam Singh
- DCM SHRIRAM-Bioseed Research India, ICRISAT, Hyderabad, India
| |
Collapse
|
15
|
An Avirulence Gene Cluster in the Wheat Stripe Rust Pathogen (Puccinia striiformis f. sp. tritici) Identified through Genetic Mapping and Whole-Genome Sequencing of a Sexual Population. mSphere 2020; 5:5/3/e00128-20. [PMID: 32554716 PMCID: PMC7300351 DOI: 10.1128/msphere.00128-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe (yellow) rust, is an obligate, biotrophic fungus. It was difficult to study the genetics of the pathogen due to the lack of sexual reproduction. The recent discovery of alternate hosts for P. striiformis f. sp. tritici makes it possible to study inheritance and map genes involved in its interaction with plant hosts. To identify avirulence (Avr) genes in P. striiformis f. sp. tritici, we developed a segregating population by selfing isolate 12-368 on barberry (Berberis vulgaris) plants under controlled conditions. The dikaryotic sexual population segregated for avirulent/virulent phenotypes on nine Yr single-gene lines. The parental and progeny isolates were whole-genome sequenced at >30× coverage using Illumina HiSeq PE150 technology. A total of 2,637 high-quality markers were discovered by mapping the whole-genome sequencing (WGS) reads to the reference genome of strain 93-210 and used to construct a genetic map, consisting of 41 linkage groups, spanning 7,715.0 centimorgans (cM) and covering 68 Mb of the reference genome. The recombination rate was estimated to be 1.81 ± 2.32 cM/10 kb. Quantitative trait locus analysis mapped six Avr gene loci to the genetic map, including an Avr cluster harboring four Avr genes, AvYr7, AvYr43, AvYr44, and AvYrExp2 Aligning the genetic map to the reference genome identified Avr candidates and narrowed them to a small genomic region (<200 kb). The discovery of the Avr gene cluster is useful for understanding pathogen evolution, and the identification of candidate genes is an important step toward cloning Avr genes for studying molecular mechanisms of pathogen-host interactions.IMPORTANCE Stripe rust is a destructive disease of wheat worldwide. Growing resistant cultivars is the most effective, easy-to-use, economical, and environmentally friendly strategy for the control of the disease. However, P. striiformis f. sp. tritici can produce new virulent races that may circumvent race-specific resistance. Therefore, understanding the genetic basis of the interactions between wheat genes for resistance and P. striiformis f. sp. tritici genes for avirulence is useful for improving cultivar resistance for more effective control of the disease. This study developed a high-quality map that facilitates genomic and genetic studies of important traits related to pathogen pathogenicity and adaptation to different environments and crop cultivars carrying different resistance genes. The information on avirulence/virulence genes identified in this study can be used for guiding breeding programs to select combinations of genes for developing new cultivars with effective resistance to mitigate this devastating disease.
Collapse
|
16
|
Mehmood S, Sajid M, Husnain SK, Zhao J, Huang L, Kang Z. Study of Inheritance and Linkage of Virulence Genes in a Selfing Population of a Pakistani Dominant Race of Puccinia striiformis f. sp. tritici. Int J Mol Sci 2020; 21:ijms21051685. [PMID: 32121459 PMCID: PMC7084513 DOI: 10.3390/ijms21051685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
Wheat stripe rust is a severe threat of almost all wheat-growing regions in the world. Being an obligate biotrophic fungus, Puccinia striiformis f. sp. tritici (PST) produces new virulent races that break the resistance of wheat varieties. In this study, 115 progeny isolates were generated through sexual reproduction on susceptible Himalayan Berberis pseudumbellata using a dominant Pakistani race (574232) of PST. The parental isolate and progeny isolates were characterized using 24 wheat Yr single-gene lines and ten simple sequence repeat (SSR) markers. From the one-hundred-and-fifteen progeny isolates, 25 virulence phenotypes (VPs) and 60 multilocus genotypes were identified. The parental and all progeny isolates were avirulent to Yr5, Yr10, Yr15, Yr24, Yr32, Yr43, YrSp, YrTr1, YrExp2, Yr26, and YrTye and virulent to Yr1, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27, Yr28, YrA, Yr44, and Yr3. Based on the avirulence/virulence phenotypes, we found that VPs virulent to Yr1, Yr2, Yr9, Yr17, Yr47, and YrA were controlled by one dominant gene; those to YrSp, YrTr1, and Yr10 by two dominant genes; and those to YrExp2 by two complementary dominant genes. The results are useful in breeding stripe rust-resistant wheat varieties and understanding virulence diversity.
Collapse
Affiliation(s)
- Sajid Mehmood
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (S.M.); (Z.K.)
| | - Marina Sajid
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China;
| | - Syed Kamil Husnain
- Plant Pathology Section, Barani Agricultural Research Institute, Chakwal 48800, Punjab, Pakistan;
| | - Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (S.M.); (Z.K.)
- Correspondence: (J.Z.); (L.H.); Tel.: +86-29-870-18-1317 (J.Z.); +86-29-8709-1312 (L.H.)
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (S.M.); (Z.K.)
- Correspondence: (J.Z.); (L.H.); Tel.: +86-29-870-18-1317 (J.Z.); +86-29-8709-1312 (L.H.)
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (S.M.); (Z.K.)
| |
Collapse
|
17
|
Elbasyoni IS, El-Orabey WM, Morsy S, Baenziger PS, Al Ajlouni Z, Dowikat I. Evaluation of a global spring wheat panel for stripe rust: Resistance loci validation and novel resources identification. PLoS One 2019; 14:e0222755. [PMID: 31721783 PMCID: PMC6853611 DOI: 10.1371/journal.pone.0222755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/07/2019] [Indexed: 12/27/2022] Open
Abstract
Stripe rust (incited by Puccinia striiformis f. sp. tritici) is airborne wheat (Triticum aestivum L.) disease with dynamic virulence evolution. Thus, anticipatory and continued screening in hotspot regions is crucial to identify new pathotypes and integrate new resistance resources to prevent potential disease epidemics. A global wheat panel consisting of 882 landraces and 912 improved accessions was evaluated in two locations in Egypt during 2016 and 2017. Five prevalent and aggressive pathotypes of stripe rust were used to inoculate the accessions during the two growing seasons and two locations under field conditions. The objectives were to evaluate the panel for stripe rust resistance at the adult plant stage, identify potentially novel QTLs associated with stripe rust resistance, and validate previously reported stripe rust QTLs under the Egyptian conditions. The results indicated that 42 landraces and 140 improved accessions were resistant to stripe rust. Moreover, 24 SNPs were associated with stripe rust resistance and were within 18 wheat functional genes. Four of these genes were involved in several plant defense mechanisms. The number of favorable alleles, based upon the associated SNPs, was significant and negatively correlated with stripe rust resistance score, i.e., as the number of resistances alleles increased the observed resistance increased. In conclusion, generating new stripe rust phenotypic information on this panel while using the publicly available molecular marker data, contributed to identifying potentially novel QTLs associated with stripe rust and validated 17 of the previously reported QTLs in one of the global hotspots for stripe rust.
Collapse
Affiliation(s)
- Ibrahim S. Elbasyoni
- Crop Science Department, Damanhur University, Damanhur, Egypt
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States of America
| | - Walid M. El-Orabey
- Wheat Diseases Res. Department, Plant Pathology Res. Institute, ARC, Giza, Egypt
| | - Sabah Morsy
- Crop Science Department, Damanhur University, Damanhur, Egypt
| | - P. S. Baenziger
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States of America
| | - Zakaria Al Ajlouni
- Jordan University of Science and Technology, Department of Plant Pathology, Irbid, Jordan
| | - Ismail Dowikat
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States of America
| |
Collapse
|
18
|
Gessese M, Bariana H, Wong D, Hayden M, Bansal U. Molecular Mapping of Stripe Rust Resistance Gene Yr81 in a Common Wheat Landrace Aus27430. PLANT DISEASE 2019; 103:1166-1171. [PMID: 30998448 DOI: 10.1094/pdis-06-18-1055-re] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The deployment of diverse sources of resistance in new cultivars underpins durable control of rust diseases. Aus27430 exhibited a moderate level of stripe rust resistance against Puccinia striiformis f. sp. tritici (Pst) pathotypes currently prevalent in Australia. Aus27430 was crossed with the susceptible parent Avocet S (AvS) and subsequent filial generations were raised. Monogenic segregation observed among Aus27430/AvS F3 families was confirmed through stripe rust screening of an F6 recombinant inbred line (RIL) population, and the resistance locus was temporarily named YrAW5. Selective genotyping using an Illumina iSelect 90K wheat SNP bead chip array located YrAW5 in chromosome 6A. Genetic mapping of the RIL population with linked 90K SNPs that were converted into PCR-based marker assays, as well as SSR markers previously mapped to chromosome 6A, confirmed the chromosomal assignment for YrAW5. Comparative analysis of other stripe rust resistance genes located in chromosome 6A led to the formal designation of YrAW5 as Yr81. Tests with a marker linked with Yr18 also demonstrated the presence of this gene in Aus27430. Yr18 interacted with Yr81 to produce stripe rust responses lower than those produced by RILs carrying these genes individually. Although gwm459 showed higher recombination with Yr81 compared with the other flanking marker KASP_3077, it amplified the AvS allele in 80 cultivars, whereas KASP_3077 amplified AvS allele in 67 cultivars. Both markers can be used in marker-assisted selection after confirming parental polymorphism.
Collapse
Affiliation(s)
- Mesfin Gessese
- 1 The University of Sydney Plant Breeding Institute, School of Life and Environment Sciences, Faculty of Science, Cobbitty, NSW 2570, Australia
| | - Harbans Bariana
- 1 The University of Sydney Plant Breeding Institute, School of Life and Environment Sciences, Faculty of Science, Cobbitty, NSW 2570, Australia
| | - Debbie Wong
- 2 Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, Bundoora, VIC 3083, Australia; and
| | - Matthew Hayden
- 2 Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, Bundoora, VIC 3083, Australia; and
- 3 School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Urmil Bansal
- 1 The University of Sydney Plant Breeding Institute, School of Life and Environment Sciences, Faculty of Science, Cobbitty, NSW 2570, Australia
| |
Collapse
|
19
|
Dracatos PM, Haghdoust R, Singh RP, Huerta Espino J, Barnes CW, Forrest K, Hayden M, Niks RE, Park RF, Singh D. High-Density Mapping of Triple Rust Resistance in Barley Using DArT-Seq Markers. FRONTIERS IN PLANT SCIENCE 2019; 10:467. [PMID: 31105717 PMCID: PMC6498947 DOI: 10.3389/fpls.2019.00467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/28/2019] [Indexed: 05/31/2023]
Abstract
The recent availability of an assembled and annotated genome reference sequence for the diploid crop barley (Hordeum vulgare L.) provides new opportunities to study the genetic basis of agronomically important traits such as resistance to stripe [Puccinia striiformis f. sp. hordei (Psh)], leaf [P. hordei (Ph)], and stem [P. graminis f. sp. tritici (Pgt)] rust diseases. The European barley cultivar Pompadour is known to possess high levels of resistance to leaf rust, predominantly due to adult plant resistance (APR) gene Rph20. We developed a barley recombinant inbred line (RIL) population from a cross between Pompadour and the leaf rust and stripe rust susceptible selection Biosaline-19 (B-19), and genotyped this population using DArT-Seq genotyping by sequencing (GBS) markers. In the current study, we produced a high-density linkage map comprising 8,610 (SNP and in silico) markers spanning 5957.6 cM, with the aim of mapping loci for resistance to leaf rust, stem rust, and stripe rust. The RIL population was phenotyped in the field with Psh (Mexico and Ecuador) and Ph (Australia) and in the greenhouse at the seedling stage with Australian Ph and Pgt races, and at Wageningen University with a European variant of Psh race 24 (PshWUR). For Psh, we identified a consistent field QTL on chromosome 2H across all South American field sites and years. Two complementary resistance genes were mapped to chromosomes 1H and 4H at the seedling stage in response to PshWUR, likely to be the loci rpsEm1 and rpsEm2 previously reported from the cultivar Emir from which Pompadour was bred. For leaf rust, we determined that Rph20 in addition to two minor-effect QTL on 1H and 3H were effective at the seedling stage, whilst seedling resistance to stem rust was due to QTL on chromosomes 3H and 7H conferred by Pompadour and B-19, respectively.
Collapse
Affiliation(s)
- Peter M. Dracatos
- Plant Breeding Institute Cobbitty, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Rouja Haghdoust
- Plant Breeding Institute Cobbitty, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center, Texcoco, Mexico
- Campo Experimental Valle de México, INIFAP, Chapingo, Mexico
| | - Julio Huerta Espino
- International Maize and Wheat Improvement Center, Texcoco, Mexico
- Campo Experimental Valle de México, INIFAP, Chapingo, Mexico
| | - Charles W. Barnes
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), Quito, Ecuador
| | - Kerrie Forrest
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, Australia
| | - Matthew Hayden
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, Australia
| | - Rients E. Niks
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Robert F. Park
- Plant Breeding Institute Cobbitty, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Davinder Singh
- Plant Breeding Institute Cobbitty, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Wang Z, Ren J, Du Z, Che M, Zhang Y, Quan W, Jiang X, Ma Y, Zhao Y, Zhang Z. Identification of a major QTL on chromosome arm 2AL for reducing yellow rust severity from a Chinese wheat landrace with evidence for durable resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:457-471. [PMID: 30426175 DOI: 10.1007/s00122-018-3232-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
A QTL on 2AL for reducing yellow rust severity was identified from a Chinese wheat landrace, being more effective than Yr18, with evidence for durable resistance from field observations. Utilization of wheat resistance is an important strategy to control yellow rust. The Chinese wheat landrace Hong Qimai (HQM) and the advanced breeding line AQ24788-83 (AQ; a progeny of HQM) can significantly reduce disease severity at the adult-plant growth stage. HQM has maintained adult-plant resistance for a prolonged period of time. To study the inheritance of the resistance, 126 recombinant inbred lines (RILs) derived from the cross Thatcher (TC) × HQM and 138 RILs from Luke × AQ were assessed for disease severity in six field trials. A genetic map of TC × HQM was constructed by genotyping these RILs using the 90 K wheat single-nucleotide polymorphism chip. Luke × AQ map was previously constructed for another disease study and also utilized here. Based on these maps and disease data, a quantitative trait locus (QTL) was detected on the chromosome arm 2AL from both TC × HQM and Luke × AQ and designated as QYr.cau-2AL. The resistance allele at QYr.cau-2AL came from HQM and AQ. QYr.cau-2AL was significantly effective across all the test environments and different genetic backgrounds, with its effect magnitude being higher than that of Yr18. QYr.cau-2AL synergistically acted with Yr18 and a QTL for high-temperature adult-plant resistance on 2BS, resulting in an elevated resistance from the juvenile plant growth stage onward, although QYr.cau-2AL alone displayed no substantial resistance at juvenile stage. Evidence indicates that QYr.cau-2AL is novel and confers durable resistance, and thus, should have high potential value for practical breeding.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Junda Ren
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ziyi Du
- Open University of China, Beijing, 100039, People's Republic of China
| | - Mingzhe Che
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yibin Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Quan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Xu Jiang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuan Ma
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yin Zhao
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhongjun Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
21
|
Diéguez MJ, Petignat C, Ferella L, Fiorentino G, Silva M, Dabove MA, Rosero Yañez GI, López M, Pergolesi MF, Ingala L, Cuyeu AR, Sacco F. Mapping a gene on wheat chromosome 4BL involved in a complementary interaction with adult plant leaf rust resistance gene LrSV2. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2333-2344. [PMID: 30094456 DOI: 10.1007/s00122-018-3155-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
A complementary gene to LrSV2 for specific adult plant leaf rust resistance in wheat was mapped on chromosome 4BL, tightly linked to Lr12 / 31. LrSV2 is a race-specific adult plant leaf rust (Puccinia triticina) resistance gene on subdistal chromosome 3BS detected in the cross of the traditional Argentinean wheat (Triticum aestivum) variety Sinvalocho MA and the experimental line Gama6. The analysis of the cross of R46 [recombinant inbred line (RIL) derived from Sinvalocho MA carrying LrSV2 gene and the complementary gene Lrc-SV2 identified in the current paper] and the commercial variety Relmo Siriri (not carrying neither of these two genes) allowed the detection of the unlinked complementary gene Lrc-SV2 because the presence of one dominant allele of both is necessary to express the LrSV2-specific adult plant resistance. Lrc-SV2 was mapped within a 1-cM interval on chromosome 4BL using 100 RILs from the cross Sinvalocho MA × Purple Straw. This genetic system resembles the Lr27+31 seedling resistance reported in the Australian varieties Gatcher and Timgalen where interacting genes map at similar chromosomal positions. However, in high-resolution maps, Lr27 and LrSV2 were already mapped to adjacent intervals on 3BS and Lrc-SV2 map position on 4BL is distal to the reported Lr12/31-flanking microsatellites.
Collapse
Affiliation(s)
- María José Diéguez
- Instituto de Genética "Ewald A. Favret", CICVyA-INTA, CC25 (1712), Castelar, Buenos Aires, Argentina.
| | - Camila Petignat
- Instituto de Genética "Ewald A. Favret", CICVyA-INTA, CC25 (1712), Castelar, Buenos Aires, Argentina
| | - Luciana Ferella
- Instituto de Genética "Ewald A. Favret", CICVyA-INTA, CC25 (1712), Castelar, Buenos Aires, Argentina
| | - Gabriela Fiorentino
- Instituto de Genética "Ewald A. Favret", CICVyA-INTA, CC25 (1712), Castelar, Buenos Aires, Argentina
| | - Martha Silva
- Instituto de Genética "Ewald A. Favret", CICVyA-INTA, CC25 (1712), Castelar, Buenos Aires, Argentina
| | - Marisol Alicia Dabove
- Instituto de Genética "Ewald A. Favret", CICVyA-INTA, CC25 (1712), Castelar, Buenos Aires, Argentina
| | - Gustavo Iván Rosero Yañez
- Instituto de Genética "Ewald A. Favret", CICVyA-INTA, CC25 (1712), Castelar, Buenos Aires, Argentina
| | - Micaela López
- Instituto de Genética "Ewald A. Favret", CICVyA-INTA, CC25 (1712), Castelar, Buenos Aires, Argentina
| | - María Fernanda Pergolesi
- Instituto de Genética "Ewald A. Favret", CICVyA-INTA, CC25 (1712), Castelar, Buenos Aires, Argentina
| | - Lorena Ingala
- Instituto de Genética "Ewald A. Favret", CICVyA-INTA, CC25 (1712), Castelar, Buenos Aires, Argentina
| | - Alba Romina Cuyeu
- Instituto de Genética "Ewald A. Favret", CICVyA-INTA, CC25 (1712), Castelar, Buenos Aires, Argentina
| | - Francisco Sacco
- Instituto de Genética "Ewald A. Favret", CICVyA-INTA, CC25 (1712), Castelar, Buenos Aires, Argentina
| |
Collapse
|
22
|
Lin X, N’Diaye A, Walkowiak S, Nilsen KT, Cory AT, Haile J, Kutcher HR, Ammar K, Loladze A, Huerta-Espino J, Clarke JM, Ruan Y, Knox R, Fobert P, Sharpe AG, Pozniak CJ. Genetic analysis of resistance to stripe rust in durum wheat (Triticum turgidum L. var. durum). PLoS One 2018; 13:e0203283. [PMID: 30231049 PMCID: PMC6145575 DOI: 10.1371/journal.pone.0203283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/19/2018] [Indexed: 12/18/2022] Open
Abstract
Stripe rust, caused by the fungal pathogen Puccinia striiformis Westend. f. sp. tritici Eriks, is an important disease of bread wheat (Triticum aestivum L.) worldwide and there is an indication that it may also become a serious disease of durum wheat (T. turgidum L. var. durum). Therefore, we investigated the genetic architecture underlying resistance to stripe rust in adapted durum wheat germplasm. Wheat infection assays were conducted under controlled conditions in Canada and under field conditions in Mexico. Disease assessments were performed on a population of 155 doubled haploid (DH) lines derived from the cross of Kofa (susceptible) and W9262-260D3 (moderately resistant) and on a breeding panel that consisted of 92 diverse cultivars and breeding lines. Both populations were genotyped using the 90K single-nucleotide polymorphism (SNP) iSelect assay. In the DH population, QTL for stripe rust resistance were identified on chromosome 7B (LOD 6.87-11.47) and chromosome 5B (LOD 3.88-9.17). The QTL for stripe rust resistance on chromosome 7B was supported in the breeding panel. Both QTL were anchored to the genome sequence of wild emmer wheat, which identified gene candidates involved in disease resistance. Exome capture sequencing identified variation in the candidate genes between Kofa and W9262-260D3. These genetic insights will be useful in durum breeding to enhance resistance to stripe rust.
Collapse
Affiliation(s)
- Xue Lin
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amidou N’Diaye
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sean Walkowiak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kirby T. Nilsen
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aron T. Cory
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jemanesh Haile
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hadley R. Kutcher
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Mexico D.F., Mexico
| | - Alexander Loladze
- International Maize and Wheat Improvement Center (CIMMYT), Mexico D.F., Mexico
| | - Julio Huerta-Espino
- INIFAP, Campo Experimental Valle de México, Chapingo, Edo. de México, México
| | - John M. Clarke
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Ron Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | | | - Andrew G. Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Curtis J. Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
23
|
Li Q, Guo J, Chao K, Yang J, Yue W, Ma D, Wang B. High-Density Mapping of an Adult-Plant Stripe Rust Resistance Gene YrBai in Wheat Landrace Baidatou Using the Whole Genome DArTseq and SNP Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1120. [PMID: 30116253 PMCID: PMC6083057 DOI: 10.3389/fpls.2018.01120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 07/11/2018] [Indexed: 05/26/2023]
Abstract
Stripe rust, caused by the biotrophic fungus Puccinia striiformis f. sp. tritici (Pst), is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is an effective approach for controlling this disease. However, because host resistance genes were easily overcome by new virulent Pst races, there is a continuous demand for identifying new effective wheat stripe rust resistance genes and develop closely linked markers for marker-assisted selection (MAS). Baidatou, an old Chinese wheat landrace, has been grown for several decades in Longnan region, Gansu Province, where stripe rust epidemics are frequent and severe. In our previous study, a single dominant gene YrBai in Baidatou was identified to control the adult-plant resistance (APR) to Chinese prevalent Pst race CYR33. And the gene was located on wheat chromosome 6DS by four polymorphic simple sequence repeat (SSR) and two sequence-related amplified polymorphism (SRAP) markers, with the genetic distances of two closely linked markers 3.6 and 5.4 cM, respectively. To further confirm the APR gene in Baidatou and construct the high-density map for the resistance gene, adult plants of F1, F2, F3, and F5:6 populations derived from the cross Mingxian169/Baidatou and two parents were inoculated with CYR33 at Yangling field, Shaanxi Province during 2014-2015, 2015-2016, and 2016-2017 crop seasons, respectively. The field evaluation results indicated that a single dominant gene confers the APR to Pst race CYR33 in Baidatou. 92 F3 lines and parents were sequenced using DArTseq technology based on wheat GBS1.0 platform, and 31 genetic maps consisted of 2,131 polymorphic SilicoDArT and 952 SNP markers spanning 4,293.94 cM were constructed. Using polymorphic SilicoDArT, SNP markers and infection types (ITs) data of F3 lines, the gene YrBai was further located in 0.8 cM region on wheat chromosome 6D. These closely linked markers developed in this study should be useful for MAS for Baidatou in crop improvement and map-based clone this gene.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Juan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Kaixiang Chao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jinye Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Weiyun Yue
- Tianshui Institute of Agricultural Sciences, Tianshui, China
| | - Dongfang Ma
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
24
|
Wang L, Zheng D, Zuo S, Chen X, Zhuang H, Huang L, Kang Z, Zhao J. Inheritance and Linkage of Virulence Genes in Chinese Predominant Race CYR32 of the Wheat Stripe Rust Pathogen Puccinia striiformis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2018; 9:120. [PMID: 29472940 PMCID: PMC5809510 DOI: 10.3389/fpls.2018.00120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/23/2018] [Indexed: 05/31/2023]
Abstract
Puccinia striiformis f.sp. tritici (Pst) is the causal agent of stripe (yellow) rust on wheat. It seriously threatens wheat production worldwide. The obligate biotrophic fungus is highly capable of producing new virulent races that can overcome resistance. Studying the inheritance of Pst virulence using the classical genetic approach was not possible until the recent discovery of its sexual stage on barberry plants. In the present study, 127 progeny isolates were obtained by selfing a representative Chinese Yellow Rust (CYR) race, CYR32, on Berberis aggregate. The parental isolate and progeny isolates were characterized by testing them on 25 wheat lines with different Yr genes for resistance and 10 simple sequence repeat (SSR) markers. The 127 progeny isolates were classified into 27 virulence phenotypes (VPs), and 65 multi-locus genotypes (MLGs). All progeny isolates and the parental isolate were avirulent to Yr5, Yr8, Yr10, Yr15, Yr24, Yr26, Yr32, and YrTr1; but virulent to Yr1, Yr2, Yr3, Yr4, Yr25, Yr44, and Yr76. The VPs of the parental isolate to nine Yr genes (Yr6, Yr7, Yr9, Yr17, Yr27, Yr28, Yr43, YrA, and YrExp2) and the avirulence phenotype to YrSP were found to be heterozygous. Based on the segregation of the virulence/avirulence phenotypes, we found that the VPs to Yr7, Yr28, Yr43, and YrExp2 were controlled by a dominant gene; those to Yr6, Yr9, and YrA (Yr73, Yr74) by two dominant genes; those to Yr17 and Yr27 by one dominant and one recessive gene; and the avirulence phenotype to YrSP by two complementary dominant genes. Molecular mapping revealed the linkage of 10 virulence/avirulence genes. Comparison of the inheritance modes of the virulence/avirulence genes in this study with previous studies indicated complex interactions between virulence genes in the pathogen and resistance genes in wheat lines. The results are useful for understanding the plant-pathogen interactions and developing wheat cultivars with effective and durable resistance.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Dan Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shuxia Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xianming Chen
- Wheat Health, Genetics and Quality Research Unit, United States Department of Agriculture-Agricultural Research Service, Pullman, WA, United States
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Hua Zhuang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
- China–Australia Joint Research Centre for Abiotic and Biotic Stress Management, Northwest A&F University, Yangling, China
| | - Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
Yuan C, Wang M, Skinner DZ, See DR, Xia C, Guo X, Chen X. Inheritance of Virulence, Construction of a Linkage Map, and Mapping Dominant Virulence Genes in Puccinia striiformis f. sp. tritici Through Characterization of a Sexual Population with Genotyping-by-Sequencing. PHYTOPATHOLOGY 2018; 108:133-141. [PMID: 28876207 DOI: 10.1094/phyto-04-17-0139-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen, is a dikaryotic, biotrophic, and macrocyclic fungus. Genetic study of P. striiformis f. sp. tritici virulence was not possible until the recent discovery of Berberis spp. and Mahonia spp. as alternate hosts. To determine inheritance of virulence and map virulence genes, a segregating population of 119 isolates was developed by self-fertilizing P. striiformis f. sp. tritici isolate 08-220 (race PSTv-11) on barberry leaves under controlled greenhouse conditions. The progeny isolates were phenotyped on a set of 29 wheat lines with single genes for race-specific resistance and genotyped with simple sequence repeat (SSR) markers, single nucleotide polymorphism (SNP) markers derived from secreted protein genes, and SNP markers from genotyping-by-sequencing (GBS). Using the GBS technique, 10,163 polymorphic GBS-SNP markers were identified. Clustering and principal component analysis grouped these markers into six genetic groups, and a genetic map, consisting of six linkage groups, was constructed with 805 markers. The six clusters or linkage groups resulting from these analyses indicated a haploid chromosome number of six in P. striiformis f. sp. tritici. Through virulence testing of the progeny isolates, the parental isolate was found to be homozygous for the avirulence loci corresponding to resistance genes Yr5, Yr10, Yr15, Yr24, Yr32, YrSP, YrTr1, Yr45, and Yr53 and homozygous for the virulence locus corresponding to resistance gene Yr41. Segregation was observed for virulence phenotypes in response to the remaining 19 single-gene lines. A single dominant gene or two dominant genes with different nonallelic gene interactions were identified for each of the segregating virulence phenotypes. Of 27 dominant virulence genes identified, 17 were mapped to two chromosomes. Markers tightly linked to some of the virulence loci may facilitate further studies to clone these genes. The virulence genes and their inheritance information are useful for understanding the host-pathogen interactions and for selecting effective resistance genes or gene combinations for developing stripe rust resistant wheat cultivars.
Collapse
Affiliation(s)
- Congying Yuan
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Meinan Wang
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Danniel Z Skinner
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Deven R See
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Chongjing Xia
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Xinhong Guo
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| | - Xianming Chen
- First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| |
Collapse
|
26
|
Zhang HY, Wang Z, Ren JD, Du ZY, Quan W, Zhang YB, Zhang ZJ. A QTL with Major Effect on Reducing Stripe Rust Severity Detected From a Chinese Wheat Landrace. PLANT DISEASE 2017; 101:1533-1539. [PMID: 30678599 DOI: 10.1094/pdis-08-16-1131-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stripe rust, a devastating disease of wheat worldwide, can be controlled by use of diverse wheat resistance resources. To find new quantitative trait loci (QTL) for resistance to stripe rust, Qing Shumai (a Chinese winter wheat landrace possessing slow rusting resistance) was crossed with the susceptible line Mingxian 169. The parents and 276 recombinant inbred lines (RILs) from the cross were evaluated in five environments involving two locations (Gansu and Shandong provinces, China) and four autumn-sown wheat seasons (2008 to 2012). Disease severities on Qing Shumai were lower than 25%, contrasting with approximately 90% on Mingxian 169. The RILs varied in rust intensity in a continuous and monomodal distribution. A bulked segregant analysis approach using 2,344 simple sequence repeat (SSR) markers mapped a major QTL to the long arm of chromosome 6D (hereby designated as QYr.cau-6DL). An SSR marker (gpw5179, https://wheat.pw.usda.gov/GG2/index.shtml ) was identified as being tightly linked with QYr.cau-6DL. Combination between QYr.cau-6DL and the stripe rust-resistance gene Yr18 was examined using 160 F2:3 families of Qing Shumai × RL6058 (a near-isogenic line for Yr18 in the genetic background of the spring wheat Thatcher). The combination elevated the resistance consistently across both winter and spring wheat backgrounds, acting synergistically without undesired epistasis.
Collapse
Affiliation(s)
- H Y Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Z Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - J D Ren
- Department of Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Z Y Du
- The Open University of China, Beijing 100039, P. R. China
| | - W Quan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, P. R. China
| | - Y B Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| | - Z J Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
27
|
Yang L, Zhang X, Zhang X, Wang J, Luo M, Yang M, Wang H, Xiang L, Zeng F, Yu D, Fu D, Rosewarne GM. Identification and evaluation of resistance to powdery mildew and yellow rust in a wheat mapping population. PLoS One 2017; 12:e0177905. [PMID: 28542459 PMCID: PMC5441593 DOI: 10.1371/journal.pone.0177905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/04/2017] [Indexed: 11/19/2022] Open
Abstract
Deployment of cultivars with genetic resistance is an effective approach to control the diseases of powdery mildew (PM) and yellow rust (YR). Chinese wheat cultivar XK0106 exhibits high levels of resistance to both diseases, while cultivar E07901 has partial, adult plant resistance (APR). The aim of this study was to map resistance loci derived from the two cultivars and analyze their effects against PM and YR in a range of environments. A doubled haploid population (388 lines) was used to develop a framework map consisting of 117 SSR markers, while a much higher density map using the 90K Illumina iSelect SNP array was produced with a subset of 80 randomly selected lines. Seedling resistance was characterized against a range of PM and YR isolates, while field scores in multiple environments were used to characterize APR. Composite interval mapping (CIM) of seedling PM scores identified two QTLs (QPm.haas-6A and QPm.haas-2A), the former being located at the Pm21 locus. These QTLs were also significant in field scores, as were Qpm.haas-3A and QPm.haas-5A. QYr.haas-1B-1 and QYr.haas-2A were identified in field scores of YR and were located at the Yr24/26 and Yr17 chromosomal regions respectively. A second 1B QTL, QYr.haas-1B-2 was also identified. QPm.haas-2A and QYr.haas-1B-2 are likely to be new QTLs that have not been previously identified. Effects of the QTLs were further investigated in multiple environments through the testing of selected lines predicted to contain various QTL combinations. Significant additive interactions between the PM QTLs highlighted the ability to pyramid these loci to provide higher level of resistance. Interactions between the YR QTLs gave insights into the pathogen populations in the different locations as well as showing genetic interactions between these loci.
Collapse
Affiliation(s)
- Lijun Yang
- College of Life Sciences, Wuhan University, Wuhan, China
- Institute for Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences (HAAS), Key laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture, Wuhan, China
| | - Xuejiang Zhang
- Institute for Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences (HAAS), Key laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture, Wuhan, China
| | - Xu Zhang
- Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Mingcheng Luo
- Department of Plant Sciences, University of California Davis, Davis, CA, United States of America
| | - Mujun Yang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| | - Hua Wang
- Institute for Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences (HAAS), Key laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture, Wuhan, China
| | - Libo Xiang
- Institute for Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences (HAAS), Key laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture, Wuhan, China
| | - Fansong Zeng
- Institute for Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences (HAAS), Key laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture, Wuhan, China
| | - Dazhao Yu
- Institute for Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences (HAAS), Key laboratory of Integrated Pest Management on Crop in Central China, Ministry of Agriculture, Wuhan, China
| | - Daolin Fu
- State Key Laboratory of Crop Biology, Shandong, Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Garry M. Rosewarne
- International Maize and Wheat Improvement Centre (CIMMYT) c/o Crop Research Institute, Sichuan Academy of Agricultural Science, Jinjiang, Chengdu, China
| |
Collapse
|
28
|
Wan A, Muleta KT, Zegeye H, Hundie B, Pumphrey MO, Chen X. Virulence Characterization of Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici in Ethiopia and Evaluation of Ethiopian Wheat Germplasm for Resistance to Races of the Pathogen from Ethiopia and the United States. PLANT DISEASE 2017; 101:73-80. [PMID: 30682307 DOI: 10.1094/pdis-03-16-0371-re] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat in Ethiopia. In total, 97 isolates were recovered from stripe rust samples collected in Ethiopia in 2013 and 2014. These isolates were tested on a set of 18 Yr single-gene differentials for characterization of races and 7 supplementary differentials for additional information of virulence. Of 18 P. striiformis f. sp. tritici races identified, the 5 most predominant races were PSTv-105 (21.7%), PSTv-106 (17.5%), PSTv-107 (11.3%), PSTv-76 (10.3%), and PSTv-41 (6.2%). High frequencies (>40%) were detected for virulence to resistance genes Yr1, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27, Yr28, Yr31, Yr43, Yr44, YrExp2, and YrA. Low frequencies (<40%) were detected for virulence to Yr10, Yr24, Yr32, YrTr1, Hybrid 46, and Vilmorin 23. None of the isolates were virulent to Yr5, Yr15, YrSP, and YrTye. Among the six collection regions, Arsi Robe and Tiyo had the highest virulence diversities, followed by Bekoji, while Bale and Holeta had the lowest. Evaluation of 178 Ethiopian wheat cultivars and landraces with two of the Ethiopian races and three races from the United States indicated that the Ethiopian races were more virulent on the germplasm than the predominant races of the United States. Thirteen wheat cultivars or landraces that were resistant or moderately resistant to all five tested races should be useful for breeding wheat cultivars with resistance to stripe rust in both countries.
Collapse
Affiliation(s)
- Anmin Wan
- Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Kebede T Muleta
- Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420, and Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | | | - Bekele Hundie
- EIAR, Kulumsa Agricultural Research Center, Assela, Ethiopia
| | | | - Xianming Chen
- United States Department of Agriculture-Agricultural Research Service Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University
| |
Collapse
|
29
|
Wu XL, Wang JW, Cheng YK, Ye XL, Li W, Pu ZE, Jiang QT, Wei YM, Deng M, Zheng YL, Chen GY. Inheritance and Molecular Mapping of an All-Stage Stripe Rust Resistance Gene Derived from the Chinese Common Wheat Landrace "Yilongtuomai". J Hered 2016; 107:463-70. [PMID: 27208148 DOI: 10.1093/jhered/esw032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Yellow or stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating foliar disease that affects common wheat (Triticum aestivum L.) around the world. In China, common wheat landraces are potential sources of disease and abiotic stress resistance genes for wheat improvement. Yilongtuomai (YL), a wheat landrace from Yilong County, Sichuan Province, shows high levels of resistance against most Chinese Pst races. In this study, the resistance of YL to stripe rust disease was examined in detail. Parent strains, YL and Taichung 29, a variety susceptible to Pst race CYR32, and their F1, F2, and F2:3 offspring, were inoculated with CYR32 during the seedling stage in the field or adult-plant stage in the greenhouse. Results indicated that resistance to CYR32 in YL is conferred by a single dominant gene, designated YrYL The segregating F2 population (352 plants), was analyzed in terms of its resistance locus using simple sequence repeats (SSRs), resistance gene analog polymorphisms (RGAPs), and sequence-related amplified polymorphism (SRAP). A linkage group of 6 SSRs, 2 RGAPs, and 1 SRAP was constructed for the YrYL gene. Using the identified SSRs associated with physical mapping of RGAP using Chinese Spring nullisomic-tetrasomic stocks, the YrYL gene was localized to the short arm of chromosome 7D. The gene was flanked by 1 SSR marker, Xbarc92, and 1 RGAP marker, CLRRfor/Ptokin4, at genetic distances of 5.35 and 9.86 cM, respectively. The YrYL gene was compared to other stripe rust resistance genes reported on chromosome 7D by evaluating its reaction patterns to CYR32 and its pedigree relationship. Our results suggest that the YrYL gene is a new stripe rust resistance gene.
Collapse
Affiliation(s)
- Xue-Lian Wu
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Jian-Wei Wang
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Yu-Kun Cheng
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Xue-Ling Ye
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Wei Li
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Zhi-En Pu
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Qian-Tao Jiang
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Yu-Ming Wei
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Mei Deng
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - You-Liang Zheng
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu)
| | - Guo-Yue Chen
- From the Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Wu, Wang, Cheng, Ye, Jiang, Li, Deng, Zheng, and Chen); Key Laboratory of Crop Germplasm Resources Utilization in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China (Wei and Zheng); College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, People's Republic of China (Li and Pu).
| |
Collapse
|