1
|
Li H, Che R, Zhu J, Yang X, Li J, Fernie AR, Yan J. Multi-omics-driven advances in the understanding of triacylglycerol biosynthesis in oil seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:999-1017. [PMID: 38009661 DOI: 10.1111/tpj.16545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Vegetable oils are rich sources of polyunsaturated fatty acids and energy as well as valuable sources of human food, animal feed, and bioenergy. Triacylglycerols, which are comprised of three fatty acids attached to a glycerol backbone, are the main component of vegetable oils. Here, we review the development and application of multiple-level omics in major oilseeds and emphasize the progress in the analysis of the biological roles of key genes underlying seed oil content and quality in major oilseeds. Finally, we discuss future research directions in functional genomics research based on current omics and oil metabolic engineering strategies that aim to enhance seed oil content and quality, and specific fatty acids components according to either human health needs or industrial requirements.
Collapse
Affiliation(s)
- Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Ronghui Che
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Liu G, Liu F, Pan L, Wang H, Lu Y, Liu C, Yu S, Hu X. Agronomic, physiological and transcriptional characteristics provide insights into fatty acid biosynthesis in yellowhorn ( Xanthoceras sorbifolium Bunge) during fruit ripening. Front Genet 2024; 15:1325484. [PMID: 38356698 PMCID: PMC10864670 DOI: 10.3389/fgene.2024.1325484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Yellowhorn (Xanthoceras sorbifolium Bunge) is an oil-bearing tree species in northern China. In this study, we used yellowhorn from Heilongjiang to analyze the morphological and physiological changes of fruit development and conducted transcriptome sequencing. The results showed that the fruit experienced relatively slow growth from fertilization to DAF20 (20 days after flowering). From DAF40 to DAF60, the fruit entered an accelerated development stage, with a rapid increase in both transverse and longitudinal diameters, and the kernel contour developed completely at DAF40. From DAF60 to DAF80, the transverse and vertical diameters of the fruit developed slowly, and the overall measures remained stable until maturity. The soluble sugar, starch, and anthocyanin content gradually accumulated until reaching a peak at DAF80 and then rapidly decreased. RNA-seq analysis revealed differentially expressed genes (DEGs) in the seed coat and kernel, implying that seed components have different metabolite accumulation mechanisms. During the stages of seed kernel development, k-means clustering separated the DEGs into eight sub-classes, indicating gene expression shifts during the fruit ripening process. In subclass 8, the fatty acid biosynthesis pathway was enriched, suggesting that this class was responsible for lipid accumulation in the kernel. WGCNA revealed ten tissue-specific modules for the 12 samples among 20 modules. We identified 54 fatty acid biosynthesis pathway genes across the genome, of which 14 was quantified and confirmed by RT-qPCR. Most genes in the plastid synthesis stage showed high expression during the DAF40-DAF60 period, while genes in the endoplasmic reticulum synthesis stage showed diverse expression patterns. EVM0012847 (KCS) and EVM0002968 (HCD) showed similar high expression in the early stages and low expression in the late stages. EVM0022385 (HCD) exhibited decreased expression from DAF40 to DAF60 and then increased from DAF60 to DAF100. EVM0000575 (KCS) was increasingly expressed from DAF40 to DAF60 and then decreased from DAF60 to DAF100. Finally, we identified transcription factors (TFs) (HB-other, bHLH and ARF) that were predicted to bind to fatty acid biosynthesis pathway genes with significant correlations. These results are conducive to promoting the transcriptional regulation of lipid metabolism and the genetic improvement in terms of high lipid content of yellowhorn.
Collapse
Affiliation(s)
- Guan Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Fengjiao Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Lin Pan
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Hanhui Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Yanan Lu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Changhua Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Song Yu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Xiaohang Hu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
3
|
Ding M, Zhou D, Ye Y, Wen S, Zhang X, Tian Q, Zhang X, Mou W, Dang C, Fang Y, Xue D. Genome-Wide Identification and Expression Analysis of the Stearoyl-Acyl Carrier Protein Δ9 Desaturase Gene Family under Abiotic Stress in Barley. Int J Mol Sci 2023; 25:113. [PMID: 38203283 PMCID: PMC10778905 DOI: 10.3390/ijms25010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Stearoyl-acyl carrier protein (ACP) Δ9 desaturase (SAD) is a critical fatty acid dehydrogenase in plants, playing a prominent role in regulating the synthesis of unsaturated fatty acids (UFAs) and having a significant impact on plant growth and development. In this study, we conducted a comprehensive genomic analysis of the SAD family in barley (Hordeum vulgare L.), identifying 14 HvSADs with the FA_desaturase_2 domain, which were divided into four subgroups based on sequence composition and phylogenetic analysis, with members of the same subgroup possessing similar genes and motif structures. Gene replication analysis suggested that tandem and segmental duplication may be the major reasons for the expansion of the SAD family in barley. The promoters of HvSADs contained various cis-regulatory elements (CREs) related to light, abscisic acid (ABA), and methyl jasmonate (MeJA). In addition, expression analysis indicated that HvSADs exhibit multiple tissue expression patterns in barley as well as different response characteristics under three abiotic stresses: salt, drought, and cold. Briefly, this evolutionary and expression analysis of HvSADs provides insight into the biological functions of barley, supporting a comprehensive analysis of the regulatory mechanisms of oil biosynthesis and metabolism in plants under abiotic stress.
Collapse
Affiliation(s)
- Mingyu Ding
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
| | - Danni Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
| | - Yichen Ye
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
| | - Shuting Wen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
| | - Xian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Quanxiang Tian
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Wangshu Mou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Cong Dang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Si X, Lyu S, Hussain Q, Ye H, Huang C, Li Y, Huang J, Chen J, Wang K. Analysis of Delta(9) fatty acid desaturase gene family and their role in oleic acid accumulation in Carya cathayensis kernel. FRONTIERS IN PLANT SCIENCE 2023; 14:1193063. [PMID: 37771493 PMCID: PMC10523321 DOI: 10.3389/fpls.2023.1193063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/14/2023] [Indexed: 09/30/2023]
Abstract
Carya cathayensis, commonly referred to as Chinese hickory, produces nuts that contain high-quality edible oils, particularly oleic acid (18:1). It is known that stearoyl-ACP desaturase (SAD) is the first key step converting stearic acid (C18:0, SA) to oleic acid (C18:1, OA) in the aminolevulinic acid (ALA) biosynthetic pathway and play an important role in OA accumulation. Thus far, there is little information about SAD gene family in C. cathayensis and the role of individual members in OA accumulation. This study searched the Chinese Hickory Genome Database and identified five members of SAD genes, designated as CcSADs, at the whole genome level through the comparison with the homologous genes from Arabidopsis. RNA-Seq analysis showed that CcSSI2-1, CcSSI2-2, and CcSAD6 were highly expressed in kernels. The expression pattern of CcSADs was significantly correlated with fatty acid accumulation during the kernel development. In addition, five full-length cDNAs encoding SADs were isolated from the developing kernel of C. cathayensis. CcSADs-green fluorescent protein (GFP) fusion construct was infiltrated into tobacco epidermal cells, and results indicated their chloroplast localization. The catalytic function of these CcSADs was further analyzed by heterologous expression in Saccharomyces cerevisiae, Nicotiana benthamiana, and walnut. Functional analysis demonstrated that all CcSADs had fatty acid desaturase activity to catalyze oleic acid biosynthesis. Some members of CcSADs also have strong substrate specificity for 16:0-ACP to synthesize palmitoleic acid (C16:1, PA). Our study documented SAD gene family in C. cathayensis and the role of CcSSI2-1, CcSSI2-2, and CcSAD6 in OA accumulation, which could be important for future improvement of OA content in this species via genetic manipulation.
Collapse
Affiliation(s)
- Xiaolin Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Shiheng Lyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Quaid Hussain
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hongyu Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Chunying Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| |
Collapse
|
5
|
Luo M, Lu B, Shi Y, Zhao Y, Liu J, Zhang C, Wang Y, Liu H, Shi Y, Fan Y, Xu L, Wang R, Zhao J. Genetic basis of the oil biosynthesis in ultra-high-oil maize grains with an oil content exceeding 20. FRONTIERS IN PLANT SCIENCE 2023; 14:1168216. [PMID: 37251765 PMCID: PMC10213527 DOI: 10.3389/fpls.2023.1168216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
Vegetable oil is an important part of the human diet and has multiple industrial uses. The rapid increase in vegetable oil consumption has necessitated the development of viable methods for optimizing the oil content of plants. The key genes regulating the biosynthesis of maize grain oil remain mostly uncharacterized. In this study, by analyzing oil contents and performing bulked segregant RNA sequencing and mapping analyses, we determined that su1 and sh2-R mediate the shrinkage of ultra-high-oil maize grains and contribute to the increase in the grain oil content. Functional kompetitive allele-specific PCR (KASP) markers developed for su1 and sh2-R detected su1su1Sh2Sh2, Su1Su1sh2sh2, and su1su1sh2sh2 mutants among 183 sweet maize inbred lines. An RNA sequencing (RNA-seq) analysis indicated that genes differentially expressed between two conventional sweet maize lines and two ultra-high-oil maize lines were significantly associated with linoleic acid metabolism, cyanoamino acid metabolism, glutathione metabolism, alanine, aspartate, and glutamate metabolism, and nitrogen metabolism. A bulk segregant analysis and sequencing (BSA-seq) analysis identified another 88 genomic intervals related to grain oil content, 16 of which overlapped previously reported maize grain oil-related QTLs. The combined analysis of BSA-seq and RNA-seq data enabled the identification of candidate genes. The KASP markers for GRMZM2G176998 (putative WD40-like beta propeller repeat family protein), GRMZM2G021339 (homeobox-transcription factor 115), and GRMZM2G167438 (3-ketoacyl-CoA synthase) were significantly related to maize grain oil content. Another candidate gene, GRMZM2G099802 (GDSL-like lipase/acylhydrolase), catalyzes the final step of the triacylglycerol synthesis pathway and was expressed at significantly higher levels in the two ultra-high-oil maize lines than in the two conventional sweet maize lines. These novel findings will help clarify the genetic basis of the increased oil production in ultra-high-oil maize lines with grain oil contents exceeding 20%. The KASP markers developed in this study may be useful for breeding new high-oil sweet maize varieties.
Collapse
Affiliation(s)
- Meijie Luo
- *Correspondence: Meijie Luo, ; Jiuran Zhao, ; Ronghuan Wang,
| | | | | | | | | | | | | | | | | | | | | | - Ronghuan Wang
- *Correspondence: Meijie Luo, ; Jiuran Zhao, ; Ronghuan Wang,
| | - Jiuran Zhao
- *Correspondence: Meijie Luo, ; Jiuran Zhao, ; Ronghuan Wang,
| |
Collapse
|
6
|
Transcriptomic and Metabolomic Analysis Unravels the Molecular Regulatory Mechanism of Fatty Acid Biosynthesis in Styrax tonkinensis Seeds under Methyl Jasmonate Treatment. Int J Mol Sci 2022; 23:ijms23116190. [PMID: 35682867 PMCID: PMC9181076 DOI: 10.3390/ijms23116190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
As the germ of a highly productive oil tree species, Styrax tonkinensis seeds have great potential to produce biodiesel and they have marvelous fatty acid (FA) composition. In order to explore the molecular regulatory mechanism of FA biosynthesis in S. tonkinensis seeds after methyl jasmonate (MJ) application, transcriptomic and metabolomic techniques were adopted so as to dissect the genes that are related to FA biosynthesis and their expression levels, as well as to discover the major FA concentration and composition. The results revealed that 200 μmol/L of MJ (MJ200) increased the crude fat (CF) mass fraction and generated the greatest impact on CF accumulation at 70 days after flowering. Twenty FAs were identified, among which palmitic acid, oleic acid, linoleic acid and linolenic acid were the major FAs, and the presence of MJ200 affected their concentrations variously. MJ200 could enhance FA accumulation through elevating the activity of enzymes that are related to FA synthesis. The number of differentially expressed genes increased with the seeds’ development in general. Fatty acid biosynthesis, the biosynthesis of unsaturated fatty acid, fatty acid elongation and glycerolipid metabolism were the main lipid metabolism pathways that were found to be involved. The changes in the expression levels of EAR, KAR, accA, accB and SAD2 were consistent with the changes in the CF mass fraction, indicating that they are important genes in the FA biosynthesis of S. tonkinensis seeds and that MJ200 promoted their expression levels. In addition, bZIP (which was screened by weighted correlation network analysis) also created significant impacts on FA biosynthesis. Our research has provided a basis for further studies on FA biosynthesis that is regulated by MJ200 at the molecular level and has helped to clarify the functions of key genes in the FA metabolic pathway in S. tonkinensis seeds.
Collapse
|
7
|
Fang H, Fu X, Ge H, Zhang A, Shan T, Wang Y, Li P, Wang B. Genetic basis of maize kernel oil-related traits revealed by high-density SNP markers in a recombinant inbred line population. BMC PLANT BIOLOGY 2021; 21:344. [PMID: 34289812 PMCID: PMC8293480 DOI: 10.1186/s12870-021-03089-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/04/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Maize (Zea mays ssp. mays) is the most abundantly cultivated and highly valued food commodity in the world. Oil from maize kernels is highly nutritious and important for the diet and health of humans, and it can be used as a source of bioenergy. A better understanding of genetic basis for maize kernel oil can help improve the oil content and quality when applied in breeding. RESULTS In this study, a KUI3/SC55 recombinant inbred line (RIL) population, consisting of 180 individuals was constructed from a cross between inbred lines KUI3 and SC55. We phenotyped 19 oil-related traits and subsequently dissected the genetic architecture of oil-related traits in maize kernels based on a high-density genetic map. In total, 62 quantitative trait loci (QTLs), with 2 to 5 QTLs per trait, were detected in the KUI3/SC55 RIL population. Each QTL accounted for 6.7% (qSTOL1) to 31.02% (qBELI6) of phenotypic variation and the total phenotypic variation explained (PVE) of all detected QTLs for each trait ranged from 12.5% (OIL) to 52.5% (C16:0/C16:1). Of all these identified QTLs, only 5 were major QTLs located in three genomic regions on chromosome 6 and 9. In addition, two pairs of epistatic QTLs with additive effects were detected and they explained 3.3 and 2.4% of the phenotypic variation, respectively. Colocalization with a previous GWAS on oil-related traits, identified 19 genes. Of these genes, two important candidate genes, GRMZM2G101515 and GRMZM2G022558, were further verified to be associated with C20:0/C22:0 and C18:0/C20:0, respectively, according to a gene-based association analysis. The first gene encodes a kinase-related protein with unknown function, while the second gene encodes fatty acid elongase 2 (fae2) and directly participates in the biosynthesis of very long chain fatty acids in Arabidopsis. CONCLUSIONS Our results provide insights on the genetic basis of oil-related traits and a theoretical basis for improving maize quality by marker-assisted selection.
Collapse
Affiliation(s)
- Hui Fang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, People's Republic of China
| | - Xiuyi Fu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Shuguang Garden Middle Road No. 9, Beijing, 100097, China
| | - Hanqiu Ge
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, People's Republic of China
| | - Aixia Zhang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, People's Republic of China
| | - Tingyu Shan
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, People's Republic of China
| | - Yuandong Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Shuguang Garden Middle Road No. 9, Beijing, 100097, China.
| | - Ping Li
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, People's Republic of China.
- Nantong Bear Seeds Company, Nantong, 226009, People's Republic of China.
| | - Baohua Wang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, People's Republic of China.
| |
Collapse
|
8
|
Yang J, Peng S, Zhang B, Houten S, Schadt E, Zhu J, Suh Y, Tu Z. Human geroprotector discovery by targeting the converging subnetworks of aging and age-related diseases. GeroScience 2020; 42:353-372. [PMID: 31637571 PMCID: PMC7031474 DOI: 10.1007/s11357-019-00106-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
A key goal of geroscience research is to identify effective interventions to extend human healthspan, the years of healthy life. Currently, majority of the geroprotectors are found by screening compounds in model organisms; whether they will be effective in humans is largely unknown. Here we present a new strategy called ANDRU (aging network based drug discovery) to help the discovery of human geroprotectors. It first identifies human aging subnetworks that putatively function at the interface between aging and age-related diseases; it then screens for pharmacological interventions that may "reverse" the age-associated transcriptional changes occurred in these subnetworks. We applied ANDRU to human adipose gene expression data from the Genotype Tissue Expression (GTEx) project. For the top 31 identified compounds, 19 of them showed at least some evidence supporting their function in improving metabolic traits or lifespan, which include type 2 diabetes drugs such as pioglitazone. As the query aging genes were refined to the ones with more intimate links to diseases, ANDRU identified more meaningful drug hits than the general approach without considering the underlying network structures. In summary, ANDRU represents a promising human data-driven strategy that may speed up the discovery of interventions to extend human healthspan.
Collapse
Affiliation(s)
- Jialiang Yang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Shouneng Peng
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Bin Zhang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Sander Houten
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Eric Schadt
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Jun Zhu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, New York, New York City, USA
- Department of Medicine Endocrinology, Albert Einstein College of Medicine, New York, New York City, USA
| | - Zhidong Tu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA.
| |
Collapse
|
9
|
Dennison T, Qin W, Loneman DM, Condon SGF, Lauter N, Nikolau BJ, Yandeau-Nelson MD. Genetic and environmental variation impact the cuticular hydrocarbon metabolome on the stigmatic surfaces of maize. BMC PLANT BIOLOGY 2019; 19:430. [PMID: 31623561 PMCID: PMC6796380 DOI: 10.1186/s12870-019-2040-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 09/16/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Simple non-isoprenoid hydrocarbons accumulate in discrete regions of the biosphere, including within bacteria and algae as a carbon and/or energy store, and the cuticles of plants and insects, where they may protect against environmental stresses. The extracellular cuticular surfaces of the stigmatic silks of maize are rich in linear hydrocarbons and therefore provide a convenient system to study the biological origins and functions of these unique metabolites. RESULTS To test the hypotheses that genetics and environment influence the accumulation of surface hydrocarbons on silks and to examine the breadth of metabolome compositions across diverse germplasm, cuticular hydrocarbons were analyzed on husk-encased silks and silks that emerged from the husk leaves from 32 genetically diverse maize inbred lines, most of which are commonly utilized in genetics experiments. Total hydrocarbon accumulation varied ~ 10-fold among inbred lines, and up to 5-fold between emerged and husk-encased silks. Alkenes accounted for 5-60% of the total hydrocarbon metabolome, and the majority of alkenes were monoenes with a double bond at either the 7th or 9th carbon atom of the alkyl chain. Total hydrocarbon accumulation was impacted to similar degrees by genotype and husk encasement status, whereas genotype predominantly impacted alkene composition. Only minor differences in the metabolome were observed on silks that were emerged into the external environment for 3- versus 6-days. The environmental influence on the metabolome was further investigated by growing inbred lines in 2 years, one of which was warmer and wetter. Inbred lines grown in the drier year accumulated up to 2-fold more hydrocarbons and up to a 22% higher relative abundance of alkenes. In summary, the surface hydrocarbon metabolome of silks is primarily governed by genotype and husk encasement status, with smaller impacts of environment and genotype-by-environment interactions. CONCLUSIONS This study reveals that the composition of the cuticular hydrocarbon metabolome on silks is affected significantly by genetic factors, and is therefore amenable to dissection using quantitative genetic approaches. Such studies will clarify the genetic mechanisms responsible for the accumulation of these metabolites, enabling detailed functional investigations of the diverse and complex protective roles of silk surface lipids against environmental stresses.
Collapse
Affiliation(s)
- Tesia Dennison
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, USA
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, USA
| | - Wenmin Qin
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, USA
- Present Address: GenScript, Nanjing, China
| | - Derek M. Loneman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, USA
- Present Address: School of Medicine, Case Western Reserve University, Cleveland, OH USA
| | - Samson G. F. Condon
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, USA
- Present Address: Department of Biochemistry, University of Wisconsin, Madison, USA
| | - Nick Lauter
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, USA
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, USA
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, USA
| | - Basil J. Nikolau
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, USA
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, USA
- NSF-Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, USA
- Center for Metabolic Biology, Iowa State University, Ames, USA
| | - Marna D. Yandeau-Nelson
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, USA
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, USA
- NSF-Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, USA
- Center for Metabolic Biology, Iowa State University, Ames, USA
| |
Collapse
|
10
|
Zhao X, Wei J, He L, Zhang Y, Zhao Y, Xu X, Wei Y, Ge S, Ding D, Liu M, Gao S, Xu J. Identification of Fatty Acid Desaturases in Maize and Their Differential Responses to Low and High Temperature. Genes (Basel) 2019; 10:genes10060445. [PMID: 31210171 PMCID: PMC6627218 DOI: 10.3390/genes10060445] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
Plant fatty acid desaturases (FADs) catalyze the desaturation of fatty acids in various forms and play important roles in regulating fatty acid composition and maintaining membrane fluidity under temperature stress. A total of 30 FADs were identified from a maize genome, including 13 soluble and 17 membrane-bound FADs, which were further classified into two and five sub-groups, respectively, via phylogenetic analysis. Although there is no evolutionary relationship between the soluble and the membrane-bound FADs, they all harbor a highly conserved FA_desaturase domain, and the types and the distributions of conserved motifs are similar within each sub-group. The transcriptome analysis revealed that genes encoding FADs exhibited different expression profiles under cold and heat stresses. The expression of ZmFAD2.1&2.2, ZmFAD7, and ZmSLD1&3 were significantly up-regulated under cold stress; moreover, the expression of ZmFAD2.1&2.3 and ZmSLD1&3 were obviously down-regulated under heat stress. The co-expression analysis demonstrated close correlation among the transcription factors and the significant responsive FAD genes under cold or heat stress. This study helps to understand the roles of plant FADs in temperature stress responses.
Collapse
Affiliation(s)
- Xunchao Zhao
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Jinpeng Wei
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Lin He
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Yifei Zhang
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Ying Zhao
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Xiaoxuan Xu
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Yulei Wei
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Shengnan Ge
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Dong Ding
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Meng Liu
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Shuren Gao
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Jingyu Xu
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
11
|
Li H, Thrash A, Tang JD, He L, Yan J, Warburton ML. Leveraging GWAS data to identify metabolic pathways and networks involved in maize lipid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:853-863. [PMID: 30742331 PMCID: PMC6850169 DOI: 10.1111/tpj.14282] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 05/21/2023]
Abstract
Maize (Zea mays mays) oil is a rich source of polyunsaturated fatty acids (FAs) and energy, making it a valuable resource for human food, animal feed, and bio-energy. Although this trait has been studied via conventional genome-wide association study (GWAS), the single nucleotide polymorphism (SNP)-trait associations generated by GWAS may miss the underlying associations when traits are based on many genes, each with small effects that can be overshadowed by genetic background and environmental variation. Detecting these SNPs statistically is also limited by the levels set for false discovery rate. A complementary pathways analysis that emphasizes the cumulative aspects of SNP-trait associations, rather than just the significance of single SNPs, was performed to understand the balance of lipid metabolism, conversion, and catabolism in this study. This pathway analysis indicated that acyl-lipid pathways, including biosynthesis of wax esters, sphingolipids, phospholipids and flavonoids, along with FA and triacylglycerol (TAG) biosynthesis, were important for increasing oil and FA content. The allelic variation found among the genes involved in many degradation pathways, and many biosynthesis pathways leading from FAs and carbon partitioning pathways, was critical for determining final FA content, changing FA ratios and, ultimately, to final oil content. The pathways and pathway networks identified in this study, and especially the acyl-lipid associated pathways identified beyond what had been found with GWAS alone, provide a real opportunity to precisely and efficiently manipulate high-oil maize genetic improvement.
Collapse
Affiliation(s)
- Hui Li
- School of Biological Science and TechnologyUniversity of JinanJinan250022China
| | - Adam Thrash
- Institute for Genomics, Biocomputing & BiotechnologyMississippi State UniversityMS39762USA
| | - Juliet D. Tang
- USDA FS Forest Products LaboratoryDurability and Wood ProtectionStarkvilleMS39759USA
| | - Linlin He
- School of Biological Science and TechnologyUniversity of JinanJinan250022China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Marilyn L. Warburton
- USDA ARS Corn Host Plant Resistance Research Unit (CHPRRU)Mississippi StateMS39762USA
| |
Collapse
|
12
|
Celik Altunoglu Y, Unel NM, Baloglu MC, Ulu F, Can TH, Cetinkaya R. Comparative identification and evolutionary relationship of fatty acid desaturase (FAD) genes in some oil crops: the sunflower model for evaluation of gene expression pattern under drought stress. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1480421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Necdet Mehmet Unel
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Ferhat Ulu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Tevfik Hasan Can
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Rahmi Cetinkaya
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
13
|
Rosli R, Amiruddin N, Ab Halim MA, Chan PL, Chan KL, Azizi N, Morris PE, Leslie Low ET, Ong-Abdullah M, Sambanthamurthi R, Singh R, Murphy DJ. Comparative genomic and transcriptomic analysis of selected fatty acid biosynthesis genes and CNL disease resistance genes in oil palm. PLoS One 2018; 13:e0194792. [PMID: 29672525 PMCID: PMC5908059 DOI: 10.1371/journal.pone.0194792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/10/2018] [Indexed: 01/10/2023] Open
Abstract
Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops.
Collapse
Affiliation(s)
- Rozana Rosli
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Nadzirah Amiruddin
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Mohd Amin Ab Halim
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Pek-Lan Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Kuang-Lim Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Norazah Azizi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Priscilla E. Morris
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Eng-Ti Leslie Low
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Meilina Ong-Abdullah
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | | | - Rajinder Singh
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Denis J. Murphy
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
|
15
|
Mirza N, Appleton R, Burn S, du Plessis D, Duncan R, Farah JO, Feenstra B, Hviid A, Josan V, Mohanraj R, Shukralla A, Sills GJ, Marson AG, Pirmohamed M. Genetic regulation of gene expression in the epileptic human hippocampus. Hum Mol Genet 2017; 26:1759-1769. [PMID: 28334860 PMCID: PMC5411756 DOI: 10.1093/hmg/ddx061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/12/2016] [Accepted: 02/16/2017] [Indexed: 01/21/2023] Open
Abstract
Epilepsy is a serious and common neurological disorder. Expression quantitative loci (eQTL) analysis is a vital aid for the identification and interpretation of disease-risk loci. Many eQTLs operate in a tissue- and condition-specific manner. We have performed the first genome-wide cis-eQTL analysis of human hippocampal tissue to include not only normal (n = 22) but also epileptic (n = 22) samples. We demonstrate that disease-associated variants from an epilepsy GWAS meta-analysis and a febrile seizures (FS) GWAS are significantly more enriched with epilepsy-eQTLs than with normal hippocampal eQTLs from two larger independent published studies. In contrast, GWAS meta-analyses of two other brain diseases associated with hippocampal pathology (Alzheimer's disease and schizophrenia) are more enriched with normal hippocampal eQTLs than with epilepsy-eQTLs. These observations suggest that an eQTL analysis that includes disease-affected brain tissue is advantageous for detecting additional risk SNPs for the afflicting and closely related disorders, but not for distinct diseases affecting the same brain regions. We also show that epilepsy eQTLs are enriched within epilepsy-causing genes: an epilepsy cis-gene is significantly more likely to be a causal gene for a Mendelian epilepsy syndrome than to be a causal gene for another Mendelian disorder. Epilepsy cis-genes, compared to normal hippocampal cis-genes, are more enriched within epilepsy-causing genes. Hence, we utilize the epilepsy eQTL data for the functional interpretation of epilepsy disease-risk variants and, thereby, highlight novel potential causal genes for sporadic epilepsy. In conclusion, an epilepsy-eQTL analysis is superior to normal hippocampal tissue eQTL analyses for identifying the variants and genes underlying epilepsy.
Collapse
Affiliation(s)
- Nasir Mirza
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GL, UK
| | - Richard Appleton
- The Roald Dahl EEG Unit, Paediatric Neurosciences Foundation, Alder Hey Children's NHS Foundation Trust, Liverpool L12 2AP, UK
| | - Sasha Burn
- Department of Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool L12 2AP, UK
| | - Daniel du Plessis
- Department of Cellular Pathology, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Roderick Duncan
- Department of Neurology, Christchurch Hospital, Christchurch 8140, New Zealand
| | - Jibril Osman Farah
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Hviid
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Vivek Josan
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Rajiv Mohanraj
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Arif Shukralla
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Graeme J. Sills
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GL, UK
| | - Anthony G. Marson
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GL, UK
| | - Munir Pirmohamed
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|