1
|
de Ronne M, Abed A, Légaré G, Laroche J, Boucher St-Amour VT, Fortier É, Beattie A, Badea A, Khanal R, O'Donoughue L, Rajcan I, Belzile F, Boyle B, Torkamaneh D. Integrating targeted genetic markers to genotyping-by-sequencing for an ultimate genotyping tool. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:247. [PMID: 39365439 DOI: 10.1007/s00122-024-04750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
New selection methods, using trait-specific markers (marker-assisted selection (MAS)) and/or genome-wide markers (genomic selection (GS)), are becoming increasingly widespread in breeding programs. This new era requires innovative and cost-efficient solutions for genotyping. Reduction in sequencing cost has enhanced the use of high-throughput low-cost genotyping methods such as genotyping-by-sequencing (GBS) for genome-wide single-nucleotide polymorphism (SNP) profiling in large breeding populations. However, the major weakness of GBS methodologies is their inability to genotype targeted markers. Conversely, targeted methods, such as amplicon sequencing (AmpSeq), often face cost constraints, hindering genome-wide genotyping across a large cohort. Although GBS and AmpSeq data can be generated from the same sample, an efficient method to achieve this is lacking. In this study, we present the Genome-wide & Targeted Amplicon (GTA) genotyping platform, an innovative way to integrate multiplex targeted amplicons into the GBS library preparation to provide an all-in-one cost-effective genotyping solution to breeders and research communities. Custom primers were designed to target 23 and 36 high-value markers associated with key agronomical traits in soybean and barley, respectively. The resulting multiplex amplicons were compatible with the GBS library preparation enabling both GBS and targeted genotyping data to be produced efficiently and cost-effectively. To facilitate data analysis, we have introduced Fast-GBS.v3, a user-friendly bioinformatic pipeline that generates comprehensive outputs from data obtained following sequencing of GTA libraries. This high-throughput low-cost approach will greatly facilitate the application of DNA markers as it provides required markers for both MAS and GS in a single assay.
Collapse
Affiliation(s)
- Maxime de Ronne
- Département de Phytologie, Université Laval, Québec, Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
- Centre de Recherche Et d'innovation Sur Les Végétaux (CRIV), Université Laval, Québec, Canada
| | - Amina Abed
- Consortium de Recherche Sur La Pomme de Terre du Québec (CRPTQ), Québec, Canada
| | - Gaétan Légaré
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Vincent-Thomas Boucher St-Amour
- Département de Phytologie, Université Laval, Québec, Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
- Centre de Recherche Et d'innovation Sur Les Végétaux (CRIV), Université Laval, Québec, Canada
| | - Éric Fortier
- Centre de Recherche Sur Les Grains (CÉROM), Saint-Mathieu-de-Beloeil, Québec, Canada
| | - Aaron Beattie
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Ana Badea
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, Canada
| | - Raja Khanal
- Agriculture and Agri-Food Canada, Ottawa Research and Development Center, Ottawa, Canada
| | - Louise O'Donoughue
- Centre de Recherche Sur Les Grains (CÉROM), Saint-Mathieu-de-Beloeil, Québec, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec, Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
- Centre de Recherche Et d'innovation Sur Les Végétaux (CRIV), Université Laval, Québec, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, Canada.
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, Canada.
- Centre de Recherche Et d'innovation Sur Les Végétaux (CRIV), Université Laval, Québec, Canada.
- Institut Intelligence Et Données (IID), Université Laval, Québec, Canada.
| |
Collapse
|
2
|
Montesinos-López OA, Crespo-Herrera L, Pierre CS, Cano-Paez B, Huerta-Prado GI, Mosqueda-González BA, Ramos-Pulido S, Gerard G, Alnowibet K, Fritsche-Neto R, Montesinos-López A, Crossa J. Feature engineering of environmental covariates improves plant genomic-enabled prediction. FRONTIERS IN PLANT SCIENCE 2024; 15:1349569. [PMID: 38812738 PMCID: PMC11135473 DOI: 10.3389/fpls.2024.1349569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/11/2024] [Indexed: 05/31/2024]
Abstract
Introduction Because Genomic selection (GS) is a predictive methodology, it needs to guarantee high-prediction accuracies for practical implementations. However, since many factors affect the prediction performance of this methodology, its practical implementation still needs to be improved in many breeding programs. For this reason, many strategies have been explored to improve the prediction performance of this methodology. Methods When environmental covariates are incorporated as inputs in the genomic prediction models, this information only sometimes helps increase prediction performance. For this reason, this investigation explores the use of feature engineering on the environmental covariates to enhance the prediction performance of genomic prediction models. Results and discussion We found that across data sets, feature engineering helps reduce prediction error regarding only the inclusion of the environmental covariates without feature engineering by 761.625% across predictors. These results are very promising regarding the potential of feature engineering to enhance prediction accuracy. However, since a significant gain in prediction accuracy was observed in only some data sets, further research is required to guarantee a robust feature engineering strategy to incorporate the environmental covariates.
Collapse
Affiliation(s)
| | | | - Carolina Saint Pierre
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Edo. de Mexico, Mexico
| | - Bernabe Cano-Paez
- Facultad de Ciencias, Universidad Nacioanl Autónoma de México (UNAM), México City, Mexico
| | | | | | - Sofia Ramos-Pulido
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Guillermo Gerard
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Edo. de Mexico, Mexico
| | - Khalid Alnowibet
- Department of Statistics and Operations Research, King Saud University, Riyah, Saudi Arabia
| | | | - Abelardo Montesinos-López
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Edo. de Mexico, Mexico
- Louisiana State University, Baton Rouge, LA, United States
- Distinguished Scientist Fellowship Program, King Saud University, Riyah, Saudi Arabia
- Instituto de Socieconomia, Estadistica e Informatica, Colegio de Postgraduados, Montecillos, Edo. de México, Texcoco, Mexico
| |
Collapse
|
3
|
Song J, Liu Y, Guo R, Pacheco A, Muñoz-Zavala C, Song W, Wang H, Cao S, Hu G, Zheng H, Dhliwayo T, San Vicente F, Prasanna BM, Wang C, Zhang X. Exploiting genomic tools for genetic dissection and improving the resistance to Fusarium stalk rot in tropical maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:109. [PMID: 38649662 DOI: 10.1007/s00122-024-04597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/07/2024] [Indexed: 04/25/2024]
Abstract
KEY MESSAGE A stable genomic region conferring FSR resistance at ~250 Mb on chromosome 1 was identified by GWAS. Genomic prediction has the potential to improve FSR resistance. Fusarium stalk rot (FSR) is a global destructive disease in maize; the efficiency of phenotypic selection for improving FSR resistance was low. Novel genomic tools of genome-wide association study (GWAS) and genomic prediction (GP) provide an opportunity for genetic dissection and improving FSR resistance. In this study, GWAS and GP analyses were performed on 562 tropical maize inbred lines consisting of two populations. In total, 15 SNPs significantly associated with FSR resistance were identified across two populations and the combinedPOP consisting of all 562 inbred lines, with the P-values ranging from 1.99 × 10-7 to 8.27 × 10-13, and the phenotypic variance explained (PVE) values ranging from 0.94 to 8.30%. The genetic effects of the 15 favorable alleles ranged from -4.29 to -14.21% of the FSR severity. One stable genomic region at ~ 250 Mb on chromosome 1 was detected across all populations, and the PVE values of the SNPs detected in this region ranged from 2.16 to 5.18%. Prediction accuracies of FSR severity estimated with the genome-wide SNPs were moderate and ranged from 0.29 to 0.51. By incorporating genotype-by-environment interaction, prediction accuracies were improved between 0.36 and 0.55 in different breeding scenarios. Considering both the genome coverage and the threshold of the P-value of SNPs to select a subset of molecular markers further improved the prediction accuracies. These findings extend the knowledge of exploiting genomic tools for genetic dissection and improving FSR resistance in tropical maize.
Collapse
Affiliation(s)
- Junqiao Song
- Henan University of Science and Technology, Luoyang, 471000, Henan, China
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
- Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yubo Liu
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 200063, China
| | - Rui Guo
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Angela Pacheco
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
| | - Carlos Muñoz-Zavala
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
| | - Wei Song
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Hui Wang
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 200063, China
| | - Shiliang Cao
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
- Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150070, Heilongjiang, China
| | - Guanghui Hu
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
- Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150070, Heilongjiang, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 200063, China
| | - Thanda Dhliwayo
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
| | - Felix San Vicente
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P. O. Box 1041, Nairobi, 00621, Kenya
| | - Chunping Wang
- Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico.
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China.
- Nanfan Research Institute, CAAS, Sanya, 572024, Hainan, China.
| |
Collapse
|
4
|
García-Barrios G, Crespo-Herrera L, Cruz-Izquierdo S, Vitale P, Sandoval-Islas JS, Gerard GS, Aguilar-Rincón VH, Corona-Torres T, Crossa J, Pacheco-Gil RA. Genomic Prediction from Multi-Environment Trials of Wheat Breeding. Genes (Basel) 2024; 15:417. [PMID: 38674352 PMCID: PMC11049976 DOI: 10.3390/genes15040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Genomic prediction relates a set of markers to variability in observed phenotypes of cultivars and allows for the prediction of phenotypes or breeding values of genotypes on unobserved individuals. Most genomic prediction approaches predict breeding values based solely on additive effects. However, the economic value of wheat lines is not only influenced by their additive component but also encompasses a non-additive part (e.g., additive × additive epistasis interaction). In this study, genomic prediction models were implemented in three target populations of environments (TPE) in South Asia. Four models that incorporate genotype × environment interaction (G × E) and genotype × genotype (GG) were tested: Factor Analytic (FA), FA with genomic relationship matrix (FA + G), FA with epistatic relationship matrix (FA + GG), and FA with both genomic and epistatic relationship matrices (FA + G + GG). Results show that the FA + G and FA + G + GG models displayed the best and a similar performance across all tests, leading us to infer that the FA + G model effectively captures certain epistatic effects. The wheat lines tested in sites in different TPE were predicted with different precisions depending on the cross-validation employed. In general, the best prediction accuracy was obtained when some lines were observed in some sites of particular TPEs and the worse genomic prediction was observed when wheat lines were never observed in any site of one TPE.
Collapse
Affiliation(s)
- Guillermo García-Barrios
- Postgrado en Recursos Genéticos y Productividad-Genética, Colegio de Postgraduados, Texcoco 56264, Estado de México, Mexico; (G.G.-B.); (S.C.-I.); (V.H.A.-R.); (T.C.-T.)
| | - Leonardo Crespo-Herrera
- International Maize and Wheat Improvement Center (CIMMYT), Km 35 Carretera México-Veracruz, Texcoco 56237, Estado de México, Mexico; (L.C.-H.); (P.V.); (G.S.G.)
| | - Serafín Cruz-Izquierdo
- Postgrado en Recursos Genéticos y Productividad-Genética, Colegio de Postgraduados, Texcoco 56264, Estado de México, Mexico; (G.G.-B.); (S.C.-I.); (V.H.A.-R.); (T.C.-T.)
| | - Paolo Vitale
- International Maize and Wheat Improvement Center (CIMMYT), Km 35 Carretera México-Veracruz, Texcoco 56237, Estado de México, Mexico; (L.C.-H.); (P.V.); (G.S.G.)
| | | | - Guillermo Sebastián Gerard
- International Maize and Wheat Improvement Center (CIMMYT), Km 35 Carretera México-Veracruz, Texcoco 56237, Estado de México, Mexico; (L.C.-H.); (P.V.); (G.S.G.)
| | - Víctor Heber Aguilar-Rincón
- Postgrado en Recursos Genéticos y Productividad-Genética, Colegio de Postgraduados, Texcoco 56264, Estado de México, Mexico; (G.G.-B.); (S.C.-I.); (V.H.A.-R.); (T.C.-T.)
| | - Tarsicio Corona-Torres
- Postgrado en Recursos Genéticos y Productividad-Genética, Colegio de Postgraduados, Texcoco 56264, Estado de México, Mexico; (G.G.-B.); (S.C.-I.); (V.H.A.-R.); (T.C.-T.)
| | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Km 35 Carretera México-Veracruz, Texcoco 56237, Estado de México, Mexico; (L.C.-H.); (P.V.); (G.S.G.)
- Posgrado en Socioeconomía Estadística e Informática, Colegio de Postgraduados, Texcoco 56264, Estado de México, Mexico
| | - Rosa Angela Pacheco-Gil
- International Maize and Wheat Improvement Center (CIMMYT), Km 35 Carretera México-Veracruz, Texcoco 56237, Estado de México, Mexico; (L.C.-H.); (P.V.); (G.S.G.)
| |
Collapse
|
5
|
Sinha D, Maurya AK, Abdi G, Majeed M, Agarwal R, Mukherjee R, Ganguly S, Aziz R, Bhatia M, Majgaonkar A, Seal S, Das M, Banerjee S, Chowdhury S, Adeyemi SB, Chen JT. Integrated Genomic Selection for Accelerating Breeding Programs of Climate-Smart Cereals. Genes (Basel) 2023; 14:1484. [PMID: 37510388 PMCID: PMC10380062 DOI: 10.3390/genes14071484] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Rapidly rising population and climate changes are two critical issues that require immediate action to achieve sustainable development goals. The rising population is posing increased demand for food, thereby pushing for an acceleration in agricultural production. Furthermore, increased anthropogenic activities have resulted in environmental pollution such as water pollution and soil degradation as well as alterations in the composition and concentration of environmental gases. These changes are affecting not only biodiversity loss but also affecting the physio-biochemical processes of crop plants, resulting in a stress-induced decline in crop yield. To overcome such problems and ensure the supply of food material, consistent efforts are being made to develop strategies and techniques to increase crop yield and to enhance tolerance toward climate-induced stress. Plant breeding evolved after domestication and initially remained dependent on phenotype-based selection for crop improvement. But it has grown through cytological and biochemical methods, and the newer contemporary methods are based on DNA-marker-based strategies that help in the selection of agronomically useful traits. These are now supported by high-end molecular biology tools like PCR, high-throughput genotyping and phenotyping, data from crop morpho-physiology, statistical tools, bioinformatics, and machine learning. After establishing its worth in animal breeding, genomic selection (GS), an improved variant of marker-assisted selection (MAS), has made its way into crop-breeding programs as a powerful selection tool. To develop novel breeding programs as well as innovative marker-based models for genetic evaluation, GS makes use of molecular genetic markers. GS can amend complex traits like yield as well as shorten the breeding period, making it advantageous over pedigree breeding and marker-assisted selection (MAS). It reduces the time and resources that are required for plant breeding while allowing for an increased genetic gain of complex attributes. It has been taken to new heights by integrating innovative and advanced technologies such as speed breeding, machine learning, and environmental/weather data to further harness the GS potential, an approach known as integrated genomic selection (IGS). This review highlights the IGS strategies, procedures, integrated approaches, and associated emerging issues, with a special emphasis on cereal crops. In this domain, efforts have been taken to highlight the potential of this cutting-edge innovation to develop climate-smart crops that can endure abiotic stresses with the motive of keeping production and quality at par with the global food demand.
Collapse
Affiliation(s)
- Dwaipayan Sinha
- Department of Botany, Government General Degree College, Mohanpur 721436, India
| | - Arun Kumar Maurya
- Department of Botany, Multanimal Modi College, Modinagar, Ghaziabad 201204, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | - Muhammad Majeed
- Department of Botany, University of Gujrat, Punjab 50700, Pakistan
| | - Rachna Agarwal
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Rashmi Mukherjee
- Research Center for Natural and Applied Sciences, Department of Botany (UG & PG), Raja Narendralal Khan Women's College, Gope Palace, Midnapur 721102, India
| | - Sharmistha Ganguly
- Department of Dravyaguna, Institute of Post Graduate Ayurvedic Education and Research, Kolkata 700009, India
| | - Robina Aziz
- Department of Botany, Government, College Women University, Sialkot 51310, Pakistan
| | - Manika Bhatia
- TERI School of Advanced Studies, New Delhi 110070, India
| | - Aqsa Majgaonkar
- Department of Botany, St. Xavier's College (Autonomous), Mumbai 400001, India
| | - Sanchita Seal
- Department of Botany, Polba Mahavidyalaya, Polba 712148, India
| | - Moumita Das
- V. Sivaram Research Foundation, Bangalore 560040, India
| | - Swastika Banerjee
- Department of Botany, Kairali College of +3 Science, Champua, Keonjhar 758041, India
| | - Shahana Chowdhury
- Department of Biotechnology, Faculty of Engineering Sciences, German University Bangladesh, TNT Road, Telipara, Chandona Chowrasta, Gazipur 1702, Bangladesh
| | - Sherif Babatunde Adeyemi
- Ethnobotany/Phytomedicine Laboratory, Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin P.M.B 1515, Nigeria
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| |
Collapse
|
6
|
Paliwal S, Tripathi MK, Tiwari S, Tripathi N, Payasi DK, Tiwari PN, Singh K, Yadav RK, Asati R, Chauhan S. Molecular Advances to Combat Different Biotic and Abiotic Stresses in Linseed ( Linum usitatissimum L.): A Comprehensive Review. Genes (Basel) 2023; 14:1461. [PMID: 37510365 PMCID: PMC10379177 DOI: 10.3390/genes14071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Flax, or linseed, is considered a "superfood", which means that it is a food with diverse health benefits and potentially useful bioactive ingredients. It is a multi-purpose crop that is prized for its seed oil, fibre, nutraceutical, and probiotic qualities. It is suited to various habitats and agro-ecological conditions. Numerous abiotic and biotic stressors that can either have a direct or indirect impact on plant health are experienced by flax plants as a result of changing environmental circumstances. Research on the impact of various stresses and their possible ameliorators is prompted by such expectations. By inducing the loss of specific alleles and using a limited number of selected varieties, modern breeding techniques have decreased the overall genetic variability required for climate-smart agriculture. However, gene banks have well-managed collectionns of landraces, wild linseed accessions, and auxiliary Linum species that serve as an important source of novel alleles. In the past, flax-breeding techniques were prioritised, preserving high yield with other essential traits. Applications of molecular markers in modern breeding have made it easy to identify quantitative trait loci (QTLs) for various agronomic characteristics. The genetic diversity of linseed species and the evaluation of their tolerance to abiotic stresses, including drought, salinity, heavy metal tolerance, and temperature, as well as resistance to biotic stress factors, viz., rust, wilt, powdery mildew, and alternaria blight, despite addressing various morphotypes and the value of linseed as a supplement, are the primary topics of this review.
Collapse
Affiliation(s)
- Shruti Paliwal
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Devendra K Payasi
- All India Coordinated Research Project on Linseed, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Regional Agricultural Research Station, Sagar 470001, India
| | - Prakash N Tiwari
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Kirti Singh
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Ruchi Asati
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Shailja Chauhan
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| |
Collapse
|
7
|
de Ronne M, Légaré G, Belzile F, Boyle B, Torkamaneh D. 3D-GBS: a universal genotyping-by-sequencing approach for genomic selection and other high-throughput low-cost applications in species with small to medium-sized genomes. PLANT METHODS 2023; 19:13. [PMID: 36740716 PMCID: PMC9899395 DOI: 10.1186/s13007-023-00990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Despite the increased efficiency of sequencing technologies and the development of reduced-representation sequencing (RRS) approaches allowing high-throughput sequencing (HTS) of multiplexed samples, the per-sample genotyping cost remains the most limiting factor in the context of large-scale studies. For example, in the context of genomic selection (GS), breeders need genome-wide markers to predict the breeding value of large cohorts of progenies, requiring the genotyping of thousands candidates. Here, we introduce 3D-GBS, an optimized GBS procedure, to provide an ultra-high-throughput and ultra-low-cost genotyping solution for species with small to medium-sized genome and illustrate its use in soybean. Using a combination of three restriction enzymes (PstI/NsiI/MspI), the portion of the genome that is captured was reduced fourfold (compared to a "standard" ApeKI-based protocol) while reducing the number of markers by only 40%. By better focusing the sequencing effort on limited set of restriction fragments, fourfold more samples can be genotyped at the same minimal depth of coverage. This GBS protocol also resulted in a lower proportion of missing data and provided a more uniform distribution of SNPs across the genome. Moreover, we investigated the optimal number of reads per sample needed to obtain an adequate number of markers for GS and QTL mapping (500-1000 markers per biparental cross). This optimization allows sequencing costs to be decreased by ~ 92% and ~ 86% for GS and QTL mapping studies, respectively, compared to previously published work. Overall, 3D-GBS represents a unique and affordable solution for applications requiring extremely high-throughput genotyping where cost remains the most limiting factor.
Collapse
Affiliation(s)
- Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
- Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec, Canada
| | - Gaétan Légaré
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
- Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada.
- Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec, Canada.
- Institut intelligence et données (IID), Université Laval, Quebec, Canada.
| |
Collapse
|
8
|
Yadav B, Kaur V, Narayan OP, Yadav SK, Kumar A, Wankhede DP. Integrated omics approaches for flax improvement under abiotic and biotic stress: Current status and future prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:931275. [PMID: 35958216 PMCID: PMC9358615 DOI: 10.3389/fpls.2022.931275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 05/03/2023]
Abstract
Flax (Linum usitatissimum L.) or linseed is one of the important industrial crops grown all over the world for seed oil and fiber. Besides oil and fiber, flax offers a wide range of nutritional and therapeutic applications as a feed and food source owing to high amount of α-linolenic acid (omega-3 fatty acid), lignans, protein, minerals, and vitamins. Periodic losses caused by unpredictable environmental stresses such as drought, heat, salinity-alkalinity, and diseases pose a threat to meet the rising market demand. Furthermore, these abiotic and biotic stressors have a negative impact on biological diversity and quality of oil/fiber. Therefore, understanding the interaction of genetic and environmental factors in stress tolerance mechanism and identification of underlying genes for economically important traits is critical for flax improvement and sustainability. In recent technological era, numerous omics techniques such as genomics, transcriptomics, metabolomics, proteomics, phenomics, and ionomics have evolved. The advancements in sequencing technologies accelerated development of genomic resources which facilitated finer genetic mapping, quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection in major cereal and oilseed crops including flax. Extensive studies in the area of genomics and transcriptomics have been conducted post flax genome sequencing. Interestingly, research has been focused more for abiotic stresses tolerance compared to disease resistance in flax through transcriptomics, while the other areas of omics such as metabolomics, proteomics, ionomics, and phenomics are in the initial stages in flax and several key questions remain unanswered. Little has been explored in the integration of omic-scale data to explain complex genetic, physiological and biochemical basis of stress tolerance in flax. In this review, the current status of various omics approaches for elucidation of molecular pathways underlying abiotic and biotic stress tolerance in flax have been presented and the importance of integrated omics technologies in future research and breeding have been emphasized to ensure sustainable yield in challenging environments.
Collapse
Affiliation(s)
- Bindu Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Vikender Kaur
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Om Prakash Narayan
- College of Arts and Sciences, University of Florida, Gainesville, FL, United States
| | - Shashank Kumar Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | |
Collapse
|
9
|
Shen F, Bianco L, Wu B, Tian Z, Wang Y, Wu T, Xu X, Han Z, Velasco R, Fontana P, Zhang X. A bulked segregant analysis tool for out-crossing species (BSATOS) and QTL-based genomics-assisted prediction of complex traits in apple. J Adv Res 2022; 42:149-162. [PMID: 36513410 PMCID: PMC9788957 DOI: 10.1016/j.jare.2022.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Genomic heterozygosity, self-incompatibility, and rich-in somatic mutations hinder the molecular breeding efficiency of outcrossing plants. OBJECTIVES We attempted to develop an efficient integrated strategy to identify quantitative trait loci (QTLs) and trait-associated genes, to develop gene markers, and to construct genomics-assisted prediction (GAP) modes. METHODS A novel protocol, bulked segregant analysis tool for out-crossing species (BSATOS), is presented here, which is characterized by taking full advantage of all segregation patterns (including AB × AB markers) and haplotype information. To verify the effectiveness of the protocol in dealing with the complex traits of outbreeding species, three apple cross populations with 9,654 individuals were adopted. RESULTS By using BSATOS, 90, 60, and 77 significant QTLs were identified successfully and candidate genes were predicted for apple fruit weight (FW), fruit ripening date (FRD), and fruit soluble solid content (SSC), respectively. The gene-based markers were developed and genotyped for 1,396 individuals in a training population, including 145 Malus accessions and 1,251 F1 plants of the three full-sib families. GAP models were trained using marker genotype effect estimates of the training population. The prediction accuracy was 0.7658, 0.6455, and 0.3758 for FW, FRD, and SSC, respectively. CONCLUSION The BSATOS and GAP models provided a convenient and efficient methodology for candidate gene mining and molecular breeding in out-crossing plant species. The BSATOS pipeline can be freely downloaded from: https://github.com/maypoleflyn/BSATOS.
Collapse
Affiliation(s)
- Fei Shen
- College of Horticulture, China Agricultural University, Beijing 100193, China,Research and Innovation Center, Edmund Mach Foundation, 38010 S. Michele all’Adige, Italy,Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Luca Bianco
- Research and Innovation Center, Edmund Mach Foundation, 38010 S. Michele all’Adige, Italy
| | - Bei Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhendong Tian
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, China,Corresponding authors.
| | - Riccardo Velasco
- Research Centre for Viticulture and Enology, CREA, Conegliano, Italy
| | - Paolo Fontana
- Research and Innovation Center, Edmund Mach Foundation, 38010 S. Michele all’Adige, Italy,Corresponding authors.
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China,Corresponding authors.
| |
Collapse
|
10
|
Budhlakoti N, Kushwaha AK, Rai A, Chaturvedi KK, Kumar A, Pradhan AK, Kumar U, Kumar RR, Juliana P, Mishra DC, Kumar S. Genomic Selection: A Tool for Accelerating the Efficiency of Molecular Breeding for Development of Climate-Resilient Crops. Front Genet 2022; 13:832153. [PMID: 35222548 PMCID: PMC8864149 DOI: 10.3389/fgene.2022.832153] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Since the inception of the theory and conceptual framework of genomic selection (GS), extensive research has been done on evaluating its efficiency for utilization in crop improvement. Though, the marker-assisted selection has proven its potential for improvement of qualitative traits controlled by one to few genes with large effects. Its role in improving quantitative traits controlled by several genes with small effects is limited. In this regard, GS that utilizes genomic-estimated breeding values of individuals obtained from genome-wide markers to choose candidates for the next breeding cycle is a powerful approach to improve quantitative traits. In the last two decades, GS has been widely adopted in animal breeding programs globally because of its potential to improve selection accuracy, minimize phenotyping, reduce cycle time, and increase genetic gains. In addition, given the promising initial evaluation outcomes of GS for the improvement of yield, biotic and abiotic stress tolerance, and quality in cereal crops like wheat, maize, and rice, prospects of integrating it in breeding crops are also being explored. Improved statistical models that leverage the genomic information to increase the prediction accuracies are critical for the effectiveness of GS-enabled breeding programs. Study on genetic architecture under drought and heat stress helps in developing production markers that can significantly accelerate the development of stress-resilient crop varieties through GS. This review focuses on the transition from traditional selection methods to GS, underlying statistical methods and tools used for this purpose, current status of GS studies in crop plants, and perspectives for its successful implementation in the development of climate-resilient crops.
Collapse
Affiliation(s)
- Neeraj Budhlakoti
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Anil Rai
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - K K Chaturvedi
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anuj Kumar
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, India
| | | | | | - D C Mishra
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sundeep Kumar
- ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
11
|
Jubair S, Tucker JR, Henderson N, Hiebert CW, Badea A, Domaratzki M, Fernando WGD. GPTransformer: A Transformer-Based Deep Learning Method for Predicting Fusarium Related Traits in Barley. FRONTIERS IN PLANT SCIENCE 2021; 12:761402. [PMID: 34975945 PMCID: PMC8716695 DOI: 10.3389/fpls.2021.761402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 05/27/2023]
Abstract
Fusarium head blight (FHB) incited by Fusarium graminearum Schwabe is a devastating disease of barley and other cereal crops worldwide. Fusarium head blight is associated with trichothecene mycotoxins such as deoxynivalenol (DON), which contaminates grains, making them unfit for malting or animal feed industries. While genetically resistant cultivars offer the best economic and environmentally responsible means to mitigate disease, parent lines with adequate resistance are limited in barley. Resistance breeding based upon quantitative genetic gains has been slow to date, due to intensive labor requirements of disease nurseries. The production of a high-throughput genome-wide molecular marker assembly for barley permits use in development of genomic prediction models for traits of economic importance to this crop. A diverse panel consisting of 400 two-row spring barley lines was assembled to focus on Canadian barley breeding programs. The panel was evaluated for FHB and DON content in three environments and over 2 years. Moreover, it was genotyped using an Illumina Infinium High-Throughput Screening (HTS) iSelect custom beadchip array of single nucleotide polymorphic molecular markers (50 K SNP), where over 23 K molecular markers were polymorphic. Genomic prediction has been demonstrated to successfully reduce FHB and DON content in cereals using various statistical models. Herein, we have studied an alternative method based on machine learning and compare it with a statistical approach. The bi-allelic SNPs represented pairs of alleles and were encoded in two ways: as categorical (-1, 0, 1) or using Hardy-Weinberg probability frequencies. This was followed by selecting essential genomic markers for phenotype prediction. Subsequently, a Transformer-based deep learning algorithm was applied to predict FHB and DON. Apart from the Transformer method, a Residual Fully Connected Neural Network (RFCNN) was also applied. Pearson correlation coefficients were calculated to compare true vs. predicted outputs. Models which included all markers generally showed marginal improvement in prediction. Hardy-Weinberg encoding generally improved correlation for FHB (6.9%) and DON (9.6%) for the Transformer network. This study suggests the potential of the Transformer based method as an alternative to the popular BLUP model for genomic prediction of complex traits such as FHB or DON, having performed equally or better than existing machine learning and statistical methods.
Collapse
Affiliation(s)
- Sheikh Jubair
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
| | - James R. Tucker
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Nathan Henderson
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Colin W. Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Ana Badea
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Michael Domaratzki
- Department of Computer Science, University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
12
|
Abed A, Badea A, Beattie A, Khanal R, Tucker J, Belzile F. A high-resolution consensus linkage map for barley based on GBS-derived genotypes. Genome 2021; 65:83-94. [PMID: 34870479 DOI: 10.1139/gen-2021-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As genotyping-by-sequencing (GBS) is widely used in barley genetic studies, the translation of the physical position of GBS-derived SNPs into accurate genetic positions has become relevant. The main aim of this study was to develop a high-resolution consensus linkage map based on GBS-derived SNPs. The construction of this integrated map involved 11 bi-parental populations composed of 3743 segregating progenies. We adopted a uniform set of SNP-calling and filtering conditions to identify 50 875 distinct SNPs segregating in at least one population. These SNPs were grouped into 18 580 non-redundant SNPs (bins). The resulting consensus linkage map spanned 1050.1 cM, providing an average density of 17.7 bins and 48.4 SNPs per cM. The consensus map is characterized by the absence of large intervals devoid of marker coverage (significant gaps), the largest interval between bins was only 3.7 cM and the mean distance between adjacent bins was 0.06 cM. This high-resolution linkage map will contribute to several applications in genomic research, such as providing useful information on the recombination landscape for QTLs/genes identified via GWAS or ensuring a uniform distribution of SNPs when developing low-cost genotyping tools offering a limited number of markers.
Collapse
Affiliation(s)
- Amina Abed
- Département de Phytologie, Université Laval, Pavillon Charles-Eugène Marchand 1030, Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada
| | - Aaron Beattie
- Barley and Oat Breeding Program Crop Development Centre, University of Saskatchewan, Agriculture Building, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Raja Khanal
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - James Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Pavillon Charles-Eugène Marchand 1030, Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
13
|
Tilhou NW, Casler MD. Subsampling and DNA pooling can increase gains through genomic selection in switchgrass. THE PLANT GENOME 2021; 14:e20149. [PMID: 34626166 DOI: 10.1002/tpg2.20149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Genomic selection (GS) can accelerate breeding cycles in perennial crops such as the bioenergy grass switchgrass (Panicum virgatum L.). The sequencing costs of GS can be reduced by pooling DNA samples in the training population (TP), only sequencing TP phenotypic outliers, or pooling candidate population (CP) samples. These strategies were simulated for two traits (spring vigor and anthesis date) in three breeding populations. Sequencing only the outlier 50% of the TP phenotype distribution resulted in a penalty of <5% of the predictive ability, measured using cross-validation. Predictive ability also decreased when sequencing progressively fewer TP DNA pools, but TPs constructed from only two phenotypically contrasting DNA samples retained a mean of >80% predictive ability relative to individual TP sequencing. Novel group testing methods allowed greater than one CP individual to be screened per sequenced DNA sample but resulted in a predictive ability penalty. To determine the impact of reduced sequencing, genetic gain was calculated for seven GS scenarios with variable sequencing budgets. Reduced TP sequencing and most CP pooling methods were superior to individual sequence-based GS when sequencing resources were restricted (2,000 DNA samples per 5-yr cycle). Only one scenario was superior to individual sequencing when sequencing budgets were large (8,000 DNA samples per 5-yr cycle). This study highlights multiple routes for reduced sequencing costs in GS.
Collapse
Affiliation(s)
- Neal Wepking Tilhou
- Department of Agronomy, University of Wisconsin, 1575 Linden Dr, Madison, WI, 53706, USA
| | - Michael D Casler
- U.S. Dairy Forage Research Center, USDA-ARS, 1925 Linden Dr, Madison, WI, 53706-1108, USA
| |
Collapse
|
14
|
Michel S, Löschenberger F, Ametz C, Bürstmayr H. Genotyping crossing parents and family bulks can facilitate cost-efficient genomic prediction strategies in small-scale line breeding programs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1575-1586. [PMID: 33638651 PMCID: PMC8081688 DOI: 10.1007/s00122-021-03794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Genomic relationship matrices based on mid-parent and family bulk genotypes represent cost-efficient alternatives to full genomic prediction approaches with individually genotyped early generation selection candidates. The routine usage of genomic selection for improving line varieties has gained an increasing popularity in recent years. Harnessing the benefits of this approach can, however, be too costly for many small-scale breeding programs, as in most genomic breeding strategies several hundred or even thousands of lines have to be genotyped each year. The aim of this study was thus to compare a full genomic prediction strategy using individually genotyped selection candidates with genomic predictions based on genotypes obtained from pooled DNA of progeny families as well as genotypes inferred from crossing parents. A population of 722 wheat lines representing 63 families tested in more than 100 multi-environment trials during 2010-2019 was for this purpose employed to conduct an empirical study, which was supplemented by a simulation with genotypic data from further 3855 lines. A similar or higher prediction ability was achieved for grain yield, protein yield, and the protein content when using mid-parent or family bulk genotypes in comparison with pedigree selection in the empirical across family prediction scenario. The difference of these methods with a full genomic prediction strategy became furthermore marginal if pre-existing phenotypic data of the selection candidates was already available. Similar observations were made in the simulation, where the usage of individually genotyped lines or family bulks was generally preferable with smaller family sizes. The proposed methods can thus be regarded as alternatives to full genomic or pedigree selection strategies, especially when pedigree information is limited like in the exchange of germplasm between breeding programs.
Collapse
Affiliation(s)
- Sebastian Michel
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria.
| | | | - Christian Ametz
- Saatzucht Donau GesmbH. & CoKG, Saatzuchtstrasse 11, 2301, Probstdorf, Austria
| | - Hermann Bürstmayr
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| |
Collapse
|
15
|
Wu B, Shen F, Wang X, Zheng WY, Xiao C, Deng Y, Wang T, Yu Huang Z, Zhou Q, Wang Y, Wu T, Feng Xu X, Hai Han Z, Zhong Zhang X. Role of MdERF3 and MdERF118 natural variations in apple flesh firmness/crispness retainability and development of QTL-based genomics-assisted prediction. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1022-1037. [PMID: 33319456 PMCID: PMC8131039 DOI: 10.1111/pbi.13527] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/29/2020] [Accepted: 12/06/2020] [Indexed: 05/24/2023]
Abstract
Retention of flesh texture attributes during cold storage is critical for the long-term maintenance of fruit quality. The genetic variations determining flesh firmness and crispness retainability are not well understood. The objectives of this study are to identify gene markers based on quantitative trait loci (QTLs) and to develop genomics-assisted prediction (GAP) models for apple flesh firmness and crispness retainability. Phenotype data of 2664 hybrids derived from three Malus domestica cultivars and a M. asiatica cultivar were collected in 2016 and 2017. The phenotype segregated considerably with high broad-sense heritability of 83.85% and 83.64% for flesh firmness and crispness retainability, respectively. Fifty-six candidate genes were predicted from the 62 QTLs identified using bulked segregant analysis and RNA-seq. The genotype effects of the markers designed on each candidate gene were estimated. The genomics-predicted values were obtained using pyramiding marker genotype effects and overall mean phenotype values. Fivefold cross-validation revealed that the prediction accuracy was 0.5541 and 0.6018 for retainability of flesh firmness and crispness, respectively. An 8-bp deletion in the MdERF3 promoter disrupted MdDOF5.3 binding, reduced MdERF3 expression, relieved the inhibition on MdPGLR3, MdPME2, and MdACO4 expression, and ultimately decreased flesh firmness and crispness retainability. A 3-bp deletion in the MdERF118 promoter decreased its expression by disrupting the binding of MdRAVL1, which increased MdPGLR3 and MdACO4 expression and reduced flesh firmness and crispness retainability. These results provide insights regarding the genetic variation network regulating flesh firmness and crispness retainability, and the GAP models can assist in apple breeding.
Collapse
Affiliation(s)
- Bei Wu
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Fei Shen
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Xuan Wang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Wen Yan Zheng
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Chen Xiao
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Yang Deng
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Ting Wang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Zhen Yu Huang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Qian Zhou
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Yi Wang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Ting Wu
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Xue Feng Xu
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Zhen Hai Han
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Xin Zhong Zhang
- College of HorticultureChina Agricultural UniversityBeijingChina
| |
Collapse
|
16
|
Zhao H, Li Y, Petkowski J, Kant S, Hayden MJ, Daetwyler HD. Genomic prediction and genomic heritability of grain yield and its related traits in a safflower genebank collection. THE PLANT GENOME 2021; 14:e20064. [PMID: 33140563 DOI: 10.1002/tpg2.20064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 05/28/2023]
Abstract
Safflower, a minor oilseed crop, is gaining increased attention for food and industrial uses. Safflower genebank collections are an important genetic resource for crop enhancement and future breeding programs. In this study, we investigated the population structure of a safflower collection sourced from the Australian Grain Genebank and assessed the potential of genomic prediction (GP) to evaluate grain yield and related traits using single and multi-site models. Prediction accuracies (PA) of genomic best linear unbiased prediction (GBLUP) from single site models ranged from 0.21 to 0.86 for all traits examined and were consistent with estimated genomic heritability (h2 ), which varied from low to moderate across traits. We generally observed a low level of genome × environment interactions (g × E). Multi-site g × E GBLUP models only improved PA for accessions with at least some phenotypes in the training set. We observed that relaxing quality filtering parameters for genotype-by-sequencing (GBS), such as missing genotype call rate, did not affect PA but upwardly biased h2 estimation. Our results indicate that GP is feasible in safflower evaluation and is potentially a cost-effective tool to facilitate fast introgression of desired safflower trait variation from genebank germplasm into breeding lines.
Collapse
Affiliation(s)
- Huanhuan Zhao
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, 3400, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Yongjun Li
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Joanna Petkowski
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, 3400, Australia
- Centre for Agricultural Innovation, The University of Melbourne, Melbourne, VIC, Australia
| | - Matthew J Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Hans D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|
17
|
de Bem Oliveira I, Amadeu RR, Ferrão LFV, Muñoz PR. Optimizing whole-genomic prediction for autotetraploid blueberry breeding. Heredity (Edinb) 2020; 125:437-448. [PMID: 33077896 PMCID: PMC7784927 DOI: 10.1038/s41437-020-00357-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022] Open
Abstract
Blueberry (Vaccinium spp.) is an important autopolyploid crop with significant benefits for human health. Apart from its genetic complexity, the feasibility of genomic prediction has been proven for blueberry, enabling a reduction in the breeding cycle time and increasing genetic gain. However, as for other polyploid crops, sequencing costs still hinder the implementation of genome-based breeding methods for blueberry. This motivated us to evaluate the effect of training population sizes and composition, as well as the impact of marker density and sequencing depth on phenotype prediction for the species. For this, data from a large real breeding population of 1804 individuals were used. Genotypic data from 86,930 markers and three traits with different genetic architecture (fruit firmness, fruit weight, and total yield) were evaluated. Herein, we suggested that marker density, sequencing depth, and training population size can be substantially reduced with no significant impact on model accuracy. Our results can help guide decisions toward resource allocation (e.g., genotyping and phenotyping) in order to maximize prediction accuracy. These findings have the potential to allow for a faster and more accurate release of varieties with a substantial reduction of resources for the application of genomic prediction in blueberry. We anticipate that the benefits and pipeline described in our study can be applied to optimize genomic prediction for other diploid and polyploid species.
Collapse
Affiliation(s)
- Ivone de Bem Oliveira
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Rodrigo Rampazo Amadeu
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Luis Felipe Ventorim Ferrão
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Patricio R Muñoz
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
18
|
Zheng W, Shen F, Wang W, Wu B, Wang X, Xiao C, Tian Z, Yang X, Yang J, Wang Y, Wu T, Xu X, Han Z, Zhang X. Quantitative trait loci-based genomics-assisted prediction for the degree of apple fruit cover color. THE PLANT GENOME 2020; 13:e20047. [PMID: 33217219 DOI: 10.1002/tpg2.20047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Apple fruit cover color is an important appearance trait determining fruit quality, high degree of fruit cover color or completely red fruit skin is also the ultimate breeding goal. MdMYB1 has repeatedly been reported as a major gene controlling apple fruit cover color. There are also multiple minor-effect genes affecting degree of fruit cover color (DFC). This study was to identify genome-wide quantitative trait loci (QTLs) and to develop genomics-assisted prediction for apple DFC. The DFC phenotype data of 9,422 hybrids from five full-sib families of Malus asiatica 'Zisai Pearl', M. domestica 'Red Fuji', 'Golden Delicious', and 'Jonathan' were collected in 2014-2017. The phenotype varied considerably among hybrids with the same MdMYB1 genotype. Ten QTLs for DFC were identified using MapQTL and bulked segregant analysis via sequencing. From these QTLs, ten candidate genes were predicted, including MdMYB1 from a year-stable QTL on chromosome 9 of 'Zisai Pearl' and 'Red Fuji'. Then, kompetitive allele-specific polymerase chain reaction (KASP) markers were designed on these candidate genes and 821 randomly selected hybrids were genotyped. The genotype effects of the markers were estimated. MdMYB1-1 (represented by marker H162) exhibited a partial dominant allelic effect on MdMYB1-2 and showed non-allelic epistasis on markers H1245 and G6. Finally, a non-additive QTL-based genomics assisted prediction model was established for DFC. The Pearson's correlation coefficient between the genomic predicted value and the observed phenotype value was 0.5690. These results can be beneficial for apple genomics-assisted breeding and may provide insights for understanding the mechanism of fruit coloration.
Collapse
Affiliation(s)
- Wenyan Zheng
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Fei Shen
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Wuqian Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Bei Wu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Xuan Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Chen Xiao
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Zhendong Tian
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Xianglong Yang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Jing Yang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Yi Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Ting Wu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| |
Collapse
|
19
|
Liu J, Shen F, Xiao Y, Fang H, Qiu C, Li W, Wu T, Xu X, Wang Y, Zhang X, Han Z. Genomics-assisted prediction of salt and alkali tolerances and functional marker development in apple rootstocks. BMC Genomics 2020; 21:550. [PMID: 32778069 PMCID: PMC7430842 DOI: 10.1186/s12864-020-06961-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Background Saline, alkaline, and saline-alkaline stress severely affect plant growth and development. The tolerance of plants to these stressors has long been important breeding objectives, especially for woody perennials like apple. The aims of this study were to identify quantitative trait loci (QTLs) and to develop genomics-assisted prediction models for salt, alkali, and salt-alkali tolerance in apple rootstock. Results A total of 3258 hybrids derived from the apple rootstock cultivars ‘Baleng Crab’ (Malus robusta Rehd., tolerant) × ‘M9’ (M. pumila Mill., sensitive) were used to identify 17, 13, and two QTLs for injury indices of salt, alkali, and salt–alkali stress via bulked segregant analysis. The genotype effects of single nucleotide polymorphism (SNP) markers designed on candidate genes in each QTL interval were estimated. The genomic predicted value of an individual hybrid was calculated by adding the sum of all marker genotype effects to the mean phenotype value of the population. The prediction accuracy was 0.6569, 0.6695, and 0.5834 for injury indices of salt, alkali, and salt–alkali stress, respectively. SNP182G on MdRGLG3, which changes a leucine to an arginine at the vWFA-domain, conferred tolerance to salt, alkali, and salt-alkali stress. SNP761A on MdKCAB, affecting the Kv_beta domain that cooperated with the linked allelic variation SNP11, contributed to salt, alkali, and salt–alkali tolerance in apple rootstock. Conclusions The genomics-assisted prediction models can potentially be used in breeding saline, alkaline, and saline-alkaline tolerant apple rootstocks. The QTLs and the functional markers may provide insight for future studies into the genetic variation of plant abiotic stress tolerance.
Collapse
Affiliation(s)
- Jing Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Fei Shen
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yao Xiao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Hongcheng Fang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Changpeng Qiu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Wei Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China.
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Borrenpohl D, Huang M, Olson E, Sneller C. The value of early-stage phenotyping for wheat breeding in the age of genomic selection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2499-2520. [PMID: 32488300 DOI: 10.1007/s00122-020-03613-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Genomic selection using data from an on-going breeding program can improve gain from selection, relative to phenotypic selection, by significantly increasing the number of lines that can be evaluated. The early stages of phenotyping involve few observations and can be quite inaccurate. Genomic selection (GS) could improve selection accuracy and alter resource allocation. Our objectives were (1) to compare the prediction accuracy of GS and phenotyping in stage-1 and stage-2 field evaluations and (2) to assess the value of stage-1 phenotyping for advancing lines to stage-2 testing. We built training populations from 1769 wheat breeding lines that were genotyped and phenotyped for yield, test weight, Fusarium head blight resistance, heading date, and height. The lines were in cohorts, and analyses were done by cohort. Phenotypes or GS estimated breeding values were used to determine the trait value of stage-1 lines, and these values were correlated with their phenotypes from stage-2 trials. This was repeated for stage-2 to stage-3 trials. The prediction accuracy of GS and phenotypes was similar to each other regardless of the amount (0, 50, 100%) of stage-1 data incorporated in the GS model. Ranking of stage-1 lines by GS predictions that used no stage-1 phenotypic data had marginally lower correspondence to stage-2 phenotypic rankings than rankings of stage-1 lines based on phenotypes. Stage-1 lines ranked high by GS had slightly inferior phenotypes in stage-2 trials than lines ranked high by phenotypes. Cost analysis indicated that replacing stage-1 phenotyping with GS would allow nearly three times more stage-1 candidates to be assessed and provide 0.84-2.23 times greater gain from selection. We conclude that GS can complement or replace phenotyping in early stages of phenotyping.
Collapse
Affiliation(s)
- Daniel Borrenpohl
- Department of Horticulture and Crop Science, Ohio Agriculture Research and Development Center, The Ohio State University, 1680 Madison Av, Wooster, OH, 44691, USA
| | - Mao Huang
- Department of Horticulture and Crop Science, Ohio Agriculture Research and Development Center, The Ohio State University, 1680 Madison Av, Wooster, OH, 44691, USA
| | - Eric Olson
- Department of Plant, Soil, and Microbial Science, Michigan State University, 1066 Bogue St, East Lansing, MI, 48824, USA
| | - Clay Sneller
- Department of Horticulture and Crop Science, Ohio Agriculture Research and Development Center, The Ohio State University, 1680 Madison Av, Wooster, OH, 44691, USA.
| |
Collapse
|
21
|
Mellers G, Mackay I, Cowan S, Griffiths I, Martinez‐Martin P, Poland JA, Bekele W, Tinker NA, Bentley AR, Howarth CJ. Implementing within-cross genomic prediction to reduce oat breeding costs. THE PLANT GENOME 2020; 13:e20004. [PMID: 33016630 PMCID: PMC8638661 DOI: 10.1002/tpg2.20004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/26/2019] [Indexed: 05/23/2023]
Abstract
A barrier to the adoption of genomic prediction in small breeding programs is the initial cost of genotyping material. Although decreasing, marker costs are usually higher than field trial costs. In this study we demonstrate the utility of stratifying a narrow-base biparental oat population genotyped with a modest number of markers to employ genomic prediction at early and later generations. We also show that early generation genotyping data can reduce the number of lines for later phenotyping based on selections of siblings to progress. Using sets of small families selected at an early generation could enable the use of genomic prediction for adaptation to multiple target environments at an early stage in the breeding program. In addition, we demonstrate that mixed marker data can be effectively integrated to combine cheap dominant marker data (including legacy data) with more expensive but higher density codominant marker data in order to make within generation and between lineage predictions based on genotypic information. Taken together, our results indicate that small programs can test and initiate genomic predictions using sets of stratified, narrow-base populations and incorporating low density legacy genotyping data. This can then be scaled to include higher density markers and a broadened population base.
Collapse
Affiliation(s)
- Greg Mellers
- The John Bingham LaboratoryNIABCambridgeUnited Kingdom
| | - Ian Mackay
- IMplant Consultancy Ltd.ChelmsfordUnited Kingdom
| | - Sandy Cowan
- Institute of Biological, Environmental and Rural Sciences, Plas GogerddanAberystwyth UniversityAberystwythUnited Kingdom
| | - Irene Griffiths
- Institute of Biological, Environmental and Rural Sciences, Plas GogerddanAberystwyth UniversityAberystwythUnited Kingdom
| | - Pilar Martinez‐Martin
- Institute of Biological, Environmental and Rural Sciences, Plas GogerddanAberystwyth UniversityAberystwythUnited Kingdom
| | - Jesse A. Poland
- Wheat Genetics Resource Center, Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Wubishet Bekele
- Ottawa Research and Development Centre, Agriculture and Agri‐Food CanadaOttawaCanada
| | - Nicholas A. Tinker
- Ottawa Research and Development Centre, Agriculture and Agri‐Food CanadaOttawaCanada
| | | | - Catherine J. Howarth
- Institute of Biological, Environmental and Rural Sciences, Plas GogerddanAberystwyth UniversityAberystwythUnited Kingdom
| |
Collapse
|
22
|
Torkamaneh D, Boyle B, St-Cyr J, Légaré G, Pomerleau S, Belzile F. NanoGBS: A Miniaturized Procedure for GBS Library Preparation. Front Genet 2020; 11:67. [PMID: 32133028 PMCID: PMC7040475 DOI: 10.3389/fgene.2020.00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/20/2020] [Indexed: 11/30/2022] Open
Abstract
High-throughput reduced-representation sequencing (RRS)-based genotyping methods, such as genotyping-by-sequencing (GBS), have provided attractive genotyping solutions in numerous species. Here, we present NanoGBS, a miniaturized and eco-friendly method for GBS library construction. Using acoustic droplet ejection (ADE) technology, NanoGBS libraries were constructed in tenfold smaller volumes compared to standard methods (StdGBS) and leading to a reduced use of plastics of up to 90%. A high-quality DNA library and SNP catalogue were obtained with extensive overlap (96%) in SNP loci and 100% agreement in genotype calls compared to the StdGBS dataset with a high level of accuracy (98.5%). A highly multiplexed pool of GBS libraries (768-plex) was sequenced on a single Ion Proton PI chip and yielded enough SNPs (~4K SNPs; 1.5 SNP per cM, on average) for many high-volume applications. Combining NanoGBS library preparation and increased multiplexing can dramatically reduce (72%) genotyping cost per sample. We believe that this approach will greatly facilitate the adoption of marker applications where extremely high throughputs are required and cost is still currently limiting.
Collapse
Affiliation(s)
- Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
| | - Jérôme St-Cyr
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
| | - Gaétan Légaré
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
| | - Sonia Pomerleau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
| |
Collapse
|
23
|
Jiang Y, Weise S, Graner A, Reif JC. Using Genome-Wide Predictions to Assess the Phenotypic Variation of a Barley ( Hordeum sp.) Gene Bank Collection for Important Agronomic Traits and Passport Information. FRONTIERS IN PLANT SCIENCE 2020; 11:604781. [PMID: 33505414 PMCID: PMC7829250 DOI: 10.3389/fpls.2020.604781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/14/2020] [Indexed: 05/10/2023]
Abstract
Genome-wide predictions are a powerful tool for predicting trait performance. Against this backdrop we aimed to evaluate the potential and limitations of genome-wide predictions to inform the barley collection of the Federal ex situ Genebank for Agricultural and Horticultural Crops with phenotypic data on complex traits including flowering time, plant height, thousand grain weight, as well as on growth habit and row type. We used previously published sequence data, providing information on 306,049 high-quality SNPs for 20,454 barley accessions. The prediction abilities of the two unordered categorical traits row type and growth type as well as the quantitative traits flowering time, plant height and thousand grain weight were investigated using different cross validation scenarios. Our results demonstrate that the unordered categorical traits can be predicted with high precision. In this way genome-wide prediction can be routinely deployed to extract information pertinent to the taxonomic status of gene bank accessions. In addition, the three quantitative traits were also predicted with high precision, thereby increasing the amount of information available for genotyped but not phenotyped accessions. Deeply phenotyped core collections, such as the barley 1,000 core set of the IPK Gatersleben, are a promising training population to calibrate genome-wide prediction models. Consequently, genome-wide predictions can substantially contribute to increase the attractiveness of gene bank collections and help evolve gene banks into bio-digital resource centers.
Collapse
|
24
|
Liu G, Dong L, Gu L, Han Z, Zhang W, Fang M, Wang Z. Evaluation of Genomic Selection for Seven Economic Traits in Yellow Drum (Nibea albiflora). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:806-812. [PMID: 31745748 PMCID: PMC6890617 DOI: 10.1007/s10126-019-09925-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/25/2019] [Indexed: 05/27/2023]
Abstract
Yellow drum (Nibea albiflora) is an important maricultural fish in China, and genetic improvement is necessary for this species. This research evaluated the application of genomic selection methods to predict the genetic values of seven economic traits for yellow drum. Using genome-wide single-nucleotide polymorphisms (SNPs), we estimated the genetic parameters for seven traits, including body length (BL), swimming bladder index (SBI), swimming bladder weight (SBW), body thickness (BT), body height (BH), body length/body height ratio (LHR), and gonad weight index (GWI). The heritability estimates ranged from 0.309 to 0.843. We evaluated the prediction performance of various statistical methods, and no one method provided the highest predictive ability for all traits. We then evaluated and compared the use of genome-wide association study (GWAS)-informative SNPs and random SNPs for prediction and found that GWAS-informative SNPs obviously increased. It only needed 5 and 100 informative SNPs for LHR and BT to achieve almost the same predictive abilities as using genome-wide SNPs, and for BL, SBI, SBW, BH, and GWI, about 1000 to 3000 informative SNPs were needed to achieve whole-genome level predictive abilities. It can be concluded from the test results that breeders can use fewer SNPs to save the breeding costs of genomic selection for some traits.
Collapse
Affiliation(s)
- Guijia Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Linsong Dong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Linlin Gu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Zhaofang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Wenjing Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Ming Fang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China.
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
25
|
Arbelaez JD, Dwiyanti MS, Tandayu E, Llantada K, Jarana A, Ignacio JC, Platten JD, Cobb J, Rutkoski JE, Thomson MJ, Kretzschmar T. 1k-RiCA (1K-Rice Custom Amplicon) a novel genotyping amplicon-based SNP assay for genetics and breeding applications in rice. RICE (NEW YORK, N.Y.) 2019; 12:55. [PMID: 31350673 PMCID: PMC6660535 DOI: 10.1186/s12284-019-0311-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/02/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND While a multitude of genotyping platforms have been developed for rice, the majority of them have not been optimized for breeding where cost, turnaround time, throughput and ease of use, relative to density and informativeness are critical parameters of their utility. With that in mind we report the development of the 1K-Rice Custom Amplicon, or 1k-RiCA, a robust custom sequencing-based amplicon panel of ~ 1000-SNPs that are uniformly distributed across the rice genome, designed to be highly informative within indica rice breeding pools, and tailored for genomic prediction in elite indica rice breeding programs. RESULTS Empirical validation tests performed on the 1k-RiCA showed average marker call rates of 95% with marker repeatability and concordance rates of 99%. These technical properties were not affected when two common DNA extraction protocols were used. The average distance between SNPs in the 1k-RiCA was 1.5 cM, similar to the theoretical distance which would be expected between 1,000 uniformly distributed markers across the rice genome. The average minor allele frequencies on a panel of indica lines was 0.36 and polymorphic SNPs estimated on pairwise comparisons between indica by indica accessions and indica by japonica accessions were on average 430 and 450 respectively. The specific design parameters of the 1k-RiCA allow for a detailed view of genetic relationships and unambiguous molecular IDs within indica accessions and good cost vs. marker-density balance for genomic prediction applications in elite indica germplasm. Predictive abilities of Genomic Selection models for flowering time, grain yield, and plant height were on average 0.71, 0.36, and 0.65 respectively based on cross-validation analysis. Furthermore the inclusion of important trait markers associated with 11 different genes and QTL adds value to parental selection in crossing schemes and marker-assisted selection in forward breeding applications. CONCLUSIONS This study validated the marker quality and robustness of the 1k-RiCA genotypic platform for genotyping populations derived from indica rice subpopulation for genetic and breeding purposes including MAS and genomic selection. The 1k-RiCA has proven to be an alternative cost-effective genotyping system for breeding applications.
Collapse
Affiliation(s)
- Juan David Arbelaez
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | | | - Erwin Tandayu
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Krizzel Llantada
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Annalhea Jarana
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - John Carlos Ignacio
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - John Damien Platten
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Joshua Cobb
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Jessica Elaine Rutkoski
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Houston, TX 77843 USA
| | - Tobias Kretzschmar
- Southern Cross Plant Sciences, Southern Cross University, PO Box 157, Lismore, NSW 2480 Australia
| |
Collapse
|
26
|
Voss-Fels KP, Cooper M, Hayes BJ. Accelerating crop genetic gains with genomic selection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:669-686. [PMID: 30569365 DOI: 10.1007/s00122-018-3270-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/12/2018] [Indexed: 05/05/2023]
Abstract
Genomic prediction based on additive genetic effects can accelerate genetic gain. There are opportunities for further improvement by including non-additive effects that access untapped sources of genetic diversity. Several studies have reported a worrying gap between the projected global future demand for plant-based products and the current annual rates of production increase, indicating that enhancing the rate of genetic gain might be critical for future food security. Therefore, new breeding technologies and strategies are required to significantly boost genetic improvement of future crop cultivars. Genomic selection (GS) has delivered considerable genetic gain in animal breeding and is becoming an essential component of many modern plant breeding programmes as well. In this paper, we review the lessons learned from implementing GS in livestock and the impact of GS on crop breeding, and discuss important features for the success of GS under different breeding scenarios. We highlight major challenges associated with GS including rapid genotyping, phenotyping, genotype-by-environment interaction and non-additivity and give examples for opportunities to overcome these issues. Finally, the potential of combining GS with other modern technologies in order to maximise the rate of crop genetic improvement is discussed, including the potential of increasing prediction accuracy by integration of crop growth models in GS frameworks.
Collapse
Affiliation(s)
- Kai Peter Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben John Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
27
|
Torkamaneh D, Laroche J, Rajcan I, Belzile F. SRG extractor: a skinny reference genome approach for reduced-representation sequencing. Bioinformatics 2019; 35:3160-3162. [DOI: 10.1093/bioinformatics/btz043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/17/2018] [Accepted: 01/15/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Motivation
Reduced-representation sequencing is a genome-wide scanning method for simultaneous discovery and genotyping of thousands to millions of single nucleotide polymorphisms that is used across a wide range of species. However, in this method a reproducible but very small fraction of the genome is captured for sequencing, while the resulting reads are typically aligned against the entire reference genome.
Results
Here we present a skinny reference genome approach in which a simplified reference genome is used to decrease computing time for data processing and to increase single nucleotide polymorphism counts and accuracy. A skinny reference genome can be integrated into any reduced-representation sequencing analytical pipeline.
Availability and implementation
https://bitbucket.org/jerlar73/SRG-Extractor.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| |
Collapse
|
28
|
Michel S, Löschenberger F, Hellinger J, Strasser V, Ametz C, Pachler B, Sparry E, Bürstmayr H. Improving and Maintaining Winter Hardiness and Frost Tolerance in Bread Wheat by Genomic Selection. FRONTIERS IN PLANT SCIENCE 2019; 10:1195. [PMID: 31632427 PMCID: PMC6781858 DOI: 10.3389/fpls.2019.01195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/30/2019] [Indexed: 05/18/2023]
Abstract
Winter hardiness is a major constraint for autumn sown crops in temperate regions, and thus an important breeding goal in the development of new winter wheat varieties. Winter hardiness is though influenced by many environmental factors rendering phenotypic selection under field conditions a difficult task due to irregular occurrence or absence of winter damage in field trials. Controlled frost tolerance tests in growth chamber experiments are, on the other hand, even with few genotypes, often costly and laborious, which makes a genomic breeding strategy for early generation selection an attractive alternative. The aims of this study were thus to compare the merit of marker-assisted selection using the major frost tolerance QTL Fr-A2 with genomic prediction for winter hardiness and frost tolerance, and to assess the potential of combining both measures with a genomic selection index using a high density marker map or a reduced set of pre-selected markers. Cross-validation within two training populations phenotyped for frost tolerance and winter hardiness underpinned the importance of Fr-A2 for frost tolerance especially when upweighting its effect in genomic prediction models, while a combined genomic selection index increased the prediction accuracy for an independent validation population in comparison to training with winter hardiness data alone. The prediction accuracy could moreover be maintained with pre-selected marker sets, which is highly relevant when employing cost reducing fingerprinting techniques such as targeted genotyping-by-sequencing. Genomic selection showed thus large potential to improve or maintain the performance of winter wheat for these difficult, costly, and laborious to phenotype traits.
Collapse
Affiliation(s)
- Sebastian Michel
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
- *Correspondence: Sebastian Michel,
| | | | - Jakob Hellinger
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Verena Strasser
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | | | | | | | - Hermann Bürstmayr
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| |
Collapse
|
29
|
Malmberg MM, Barbulescu DM, Drayton MC, Shinozuka M, Thakur P, Ogaji YO, Spangenberg GC, Daetwyler HD, Cogan NOI. Evaluation and Recommendations for Routine Genotyping Using Skim Whole Genome Re-sequencing in Canola. FRONTIERS IN PLANT SCIENCE 2018; 9:1809. [PMID: 30581450 PMCID: PMC6292936 DOI: 10.3389/fpls.2018.01809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/21/2018] [Indexed: 05/25/2023]
Abstract
Whole genome sequencing offers genome wide, unbiased markers, and inexpensive library preparation. With the cost of sequencing decreasing rapidly, many plant genomes of modest size are amenable to skim whole genome resequencing (skim WGR). The use of skim WGR in diverse sample sets without the use of imputation was evaluated in silico in 149 canola samples representative of global diversity. Fastq files with an average of 10x coverage of the reference genome were used to generate skim samples representing 0.25x, 0.5x, 1x, 2x, 3x, 4x, and 5x sequencing coverage. Applying a pre-defined list of SNPs versus de novo SNP discovery was evaluated. As skim WGR is expected to result in some degree of insufficient allele sampling, all skim coverage levels were filtered at a range of minimum read depths from a relaxed minimum read depth of 2 to a stringent read depth of 5, resulting in 28 list-based SNP sets. As a broad recommendation, genotyping pre-defined SNPs between 1x and 2x coverage with relatively stringent depth filtering is appropriate for a diverse sample set of canola due to a balance between marker number, sufficient accuracy, and sequencing cost, but depends on the intended application. This was experimentally examined in two sample sets with different genetic backgrounds: 1x coverage of 1,590 individuals from 84 Australian spring type four-parent crosses aimed at maximizing diversity as well as one commercial F1 hybrid, and 2x coverage of 379 doubled haploids (DHs) derived from a subset of the four-parent crosses. To determine optimal coverage in a simpler genetic background, the DH sample sequence coverage was further down sampled in silico. The flexible and cost-effective nature of the protocol makes it highly applicable across a range of species and purposes.
Collapse
Affiliation(s)
- M. Michelle Malmberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | | | - Michelle C. Drayton
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Maiko Shinozuka
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Preeti Thakur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Yvonne O. Ogaji
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Hans D. Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Noel O. I. Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|