1
|
Gaál E, Farkas A, Türkösi E, Kruppa K, Szakács É, Szőke-Pázsi K, Kovács P, Kalapos B, Darkó É, Said M, Lampar A, Ivanizs L, Valárik M, Doležel J, Molnár I. DArTseq genotyping facilitates identification of Aegilops biuncialis chromatin introgressed into bread wheat Mv9kr1. PLANT MOLECULAR BIOLOGY 2024; 114:122. [PMID: 39508930 PMCID: PMC11543725 DOI: 10.1007/s11103-024-01520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Abstract
Wild wheat relative Aegilops biuncialis offers valuable traits for crop improvement through interspecific hybridization. However, gene transfer from Aegilops has been hampered by difficulties in detecting introgressed Ub- and Mb-genome chromatin in the wheat background at high resolution. The present study applied DArTseq technology to genotype two backcrossed populations (BC382, BC642) derived from crosses of wheat line Mv9kr1 with Ae. biuncialis accession, MvGB382 (early flowering and drought-tolerant) and MvGB642 (leaf rust-resistant). A total of 11,952 Aegilops-specific Silico-DArT markers and 8,998 wheat-specific markers were identified. Of these, 7,686 markers were assigned to Ub-genome chromosomes and 4,266 to Mb-genome chromosomes and were ordered using chromosome scale reference assemblies of hexaploid wheat and Ae. umbellulata. Ub-genome chromatin was detected in 5.7% of BC382 and 22.7% of BC642 lines, while 88.5% of BC382 and 84% of BC642 lines contained Mb-genome chromatin, predominantly the chromosomes 4Mb and 5Mb. The presence of alien chromatin was confirmed by microscopic analysis of mitotic metaphase cells using GISH and FISH, which allowed precise determination of the size and position of the introgression events. New Mv9kr1-Ae. biuncialis MvGB382 4Mb and 5Mb disomic addition lines together with a 5DS.5DL-5MbL recombination were identified. A possible effect of the 5MbL distal region on seed length has also been observed. Moreover, previously developed Mv9kr1-MvGB642 introgression lines were more precisely characterized. The newly developed cytogenetic stocks represent valuable genetic resources for wheat improvement, highlighting the importance of utilizing diverse genetic materials to enhance wheat breeding strategies.
Collapse
Affiliation(s)
- Eszter Gaál
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - András Farkas
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Edina Türkösi
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Éva Szakács
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Kitti Szőke-Pázsi
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Péter Kovács
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Balázs Kalapos
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Éva Darkó
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
- Agricultural Research Centre, Field Crops Research Institute, 9 Gamma Street, Giza, 12619, Egypt
| | - Adam Lampar
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| | - László Ivanizs
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary.
| | - Miroslav Valárik
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| | - István Molnár
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| |
Collapse
|
2
|
Kaur B, Bai BK, Dhillon GS, Kaur J, Sharma A, Srivastava P, Chhuneja P, Kaur S. Mapping of Aegilops speltoides derived leaf rust and stripe rust resistance genes using 35K SNP array. BMC Genom Data 2024; 25:69. [PMID: 39009972 PMCID: PMC11247808 DOI: 10.1186/s12863-024-01247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Wheat is an essential food commodity cultivated throughout the world. However, this crop faces continuous threats from fungal pathogens, leaf rust (LR) and stripe rust (YR). To continue feeding the growing population, these major destructors of wheat must be effectively countered by enhancing the genetic diversity of cultivated germplasm. In this study, an introgression line with hexaploid background (ILsp3603) carrying resistance against Pt pathotypes 77-5 (121R63-1), 77-9 (121R60-1) and Pst pathotypes 46S119 (46E159), 110S119 (110E159), 238S119 (238E159) was developed from donor wheat wild progenitor, Aegilops speltoides acc pau 3603. To understand the genetic basis of resistance and map these genes (named Lrsp3603 and Yrsp3603), inheritance studies were carried out in F6 and F7 mapping population, developed by crossing ILsp3603 with LR and YR susceptible cultivar WL711, which revealed a monogenic (single gene) inheritance pattern for each of these traits. Bulk segregant analysis combined with 35 K Axiom SNP array genotyping mapped both genes as separate entities on the short arm of chromosome 6B. A genetic linkage map, comprising five markers, 1 SNP, 1 PLUG and three gene based SSRs, covered a genetic distance of 12.65 cM. Lrsp3603 was flanked by markers Tag-SSR14 (located proximally at 2.42 cM) and SNP AX-94542331 (at 3.28 cM) while Yrsp3603 was mapped at one end closest to AX-94542331 at 6.62 cM distance. Functional annotation of Lrsp3603 target region (∼ 1 Mbp) revealed 10 gene IDs associated with disease resistance mechanisms including three encoding typical R gene domains.
Collapse
Affiliation(s)
- Balihar Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Bukke Kutti Bai
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | | | - Jaspal Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India.
| |
Collapse
|
3
|
Kumar K, Jan I, Saripalli G, Sharma PK, Mir RR, Balyan HS, Gupta PK. An Update on Resistance Genes and Their Use in the Development of Leaf Rust Resistant Cultivars in Wheat. Front Genet 2022; 13:816057. [PMID: 35432483 PMCID: PMC9008719 DOI: 10.3389/fgene.2022.816057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Wheat is one of the most important cereal crops in the world. The production and productivity of wheat is adversely affected by several diseases including leaf rust, which can cause yield losses, sometimes approaching >50%. In the present mini-review, we provide updated information on (i) all Lr genes including those derived from alien sources and 14 other novel resistance genes; (ii) a list of QTLs identified using interval mapping and MTAs identified using GWAS (particular those reported recently i.e., after 2018) and their association with known Lr genes; (iii) introgression/pyramiding of individual Lr genes in commercial/prominent cultivars from 18 different countries including India. Challenges and future perspectives of breeding for leaf rust resistance are also provided at the end of this mini-review. We believe that the information in this review will prove useful for wheat geneticists/breeders, not only in the development of leaf rust-resistant wheat cultivars, but also in the study of molecular mechanism of leaf rust resistance in wheat.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Wadura, India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - P. K. Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Wadura, India
| | - H. S. Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - P. K. Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- *Correspondence: P. K. Gupta, ,
| |
Collapse
|
4
|
Bansal M, Adamski NM, Toor PI, Kaur S, Sharma A, Srivastava P, Bansal U, Uauy C, Chhuneja P. A robust KASP marker for selection of four pairs of linked leaf rust and stripe rust resistance genes introgressed on chromosome arm 5DS from different wheat genomes. Mol Biol Rep 2021; 48:5209-5216. [PMID: 34213711 DOI: 10.1007/s11033-021-06525-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
Stripe rust and leaf rust are among the most devastating diseases of wheat, limiting its production globally. Wheat wild relatives harbour genetic diversity for new genes and alleles for all major wheat diseases. However, the use of this genetic variation from wild progenitor and non-progenitor species has been limited in the breeding programs. Reasons include limited recombination of donor and recipient genomes and the lack of tertiary gene pool markers. Here, we describe the development of a SNP based marker from the flow-sorted and sequenced Aegilops umbellulata chromosome 5U which can be used for marker assisted selection of four pair of alien leaf rust and stripe rust resistance genes. Lr57-Yr40_CAPS16 marker was reported earlier to be linked with alien leaf and stripe rust resistance genes introgressed on wheat chromosome 5DS. Due to its dominant nature and laborious to work with, a new SNP-based KASP marker, XTa5DS-2754099_kasp23, was developed from the same CAPS marker contig. XTa5DS-2754099_kasp23 was tested in Aegilops umbellulata, Ae. geniculata, Ae. peregrina and Ae. caudata derived alien introgression lines, which harbour four pairs of linked leaf and stripe rust genes; Lr76-Yr70, Lr57-Yr40, LrP- YrP, LrAc-YrAc, respectively. This KASP marker was found to be effective for the selection of the aforesaid four pairs of leaf rust and stripe rust resistance genes. Further, we tested and validated XTa5DS-2754099_kasp23 on commercial varieties and advanced breeding lines from four countries (India, Egypt, Australia and UK) including hexaploid and durum wheat. Our results provide evidence that KASP marker, XTa5DS-2754099_kasp23 can be used in marker-assisted selection of the four pairs of rust resistance alien genes in wheat breeding programmes.
Collapse
Affiliation(s)
- Mitaly Bansal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | | | - Puneet Inder Toor
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Urmil Bansal
- University of Sydney Plant Breeding Institute-Cobbitty, PMB 4011, Narellan, NSW, 2567, Australia
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India.
| |
Collapse
|
5
|
Zhang Q, Wei W, Zuansun X, Zhang S, Wang C, Liu N, Qiu L, Wang W, Guo W, Ma J, Peng H, Hu Z, Sun Q, Xie C. Fine Mapping of the Leaf Rust Resistance Gene Lr65 in Spelt Wheat 'Altgold'. FRONTIERS IN PLANT SCIENCE 2021; 12:666921. [PMID: 34262578 PMCID: PMC8274547 DOI: 10.3389/fpls.2021.666921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Wheat leaf rust (also known as brown rust), caused by the fungal pathogen Puccinia triticina Erikss. (Pt), is one by far the most troublesome wheat disease worldwide. The exploitation of resistance genes has long been considered as the most effective and sustainable method to control leaf rust in wheat production. Previously the leaf rust resistance gene Lr65 has been mapped to the distal end of chromosome arm 2AS linked to molecular marker Xbarc212. In this study, Lr65 was delimited to a 0.8 cM interval between flanking markers Alt-64 and AltID-11, by employing two larger segregating populations obtained from crosses of the resistant parent Altgold Rotkorn (ARK) with the susceptible parents Xuezao and Chinese Spring (CS), respectively. 24 individuals from 622 F2 plants of crosses between ARK and CS were obtained that showed the recombination between Lr65 gene and the flanking markers Alt-64 and AltID-11. With the aid of the CS reference genome sequence (IWGSC RefSeq v1.0), one SSR marker was developed between the interval matched to the Lr65-flanking marker and a high-resolution genetic linkage map was constructed. The Lr65 was finally located to a region corresponding to 60.11 Kb of the CS reference genome. The high-resolution genetic linkage map founded a solid foundation for the map-based cloning of Lr65 and the co-segregating marker will facilitate the marker-assisted selection (MAS) of the target gene.
Collapse
|
6
|
Introgression and genetic mapping of leaf rust and stripe rust resistance in Aegilops triuncialis. J Genet 2021. [DOI: 10.1007/s12041-020-01253-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Qiu L, Wang H, Li Y, Wang W, Liu Y, Mu J, Geng M, Guo W, Hu Z, Ma J, Sun Q, Xie C. Fine Mapping of the Wheat Leaf Rust Resistance Gene LrLC10 ( Lr13) and Validation of Its Co-segregation Markers. FRONTIERS IN PLANT SCIENCE 2020; 11:470. [PMID: 32477377 PMCID: PMC7232556 DOI: 10.3389/fpls.2020.00470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Wheat leaf rust, caused by the fungus Puccinia triticina Eriks. (Pt), is a destructive disease found throughout common wheat production areas worldwide. At its adult stage, wheat cultivar Liaochun10 is resistant to leaf rust and the gene for that resistance has been mapped on chromosome 2BS. It was designated LrLC10 and is the same gene as cataloged gene Lr13 by pedigree analysis and allelism test. We fine-mapped it using recessive class analysis (RCA) of the homozygous susceptible F2 plants derived from crosses using Liaochun10 as the resistant, male parent. Taking advantage of the re-sequencing data of Liaochun10 and its counterpart susceptible parent, we converted nucleotide polymorphisms in the LrLC10 interval between the resistant and susceptible parents into molecular markers to saturate the LrLC10 genetic linkage map. Four indel markers were added in the 1.65 cM map of LrLC10 flanked by markers CAUT163 and Lseq22. Thirty-two recombinants were identified by those two markers from the 984 F2 homozygous susceptible plants and were further genotyped with additional ten markers. LrLC10 was finally placed in a 314.3 kb region on the Chinese Spring reference sequence (RefSeq v1.0) that contains three high confidence genes: TraesCS2B01G182800, TraesCS2B01G182900, and TraesCS2B01G183000. Sequence analysis showed several variations in TraesCS2B01G182800 and TraesCS2B01G183000 between resistant and susceptible parents. One KASP marker and an indel marker were designed based on the differences in those two genes, respectively, and were validated to be diagnostic co-segregating markers for LrLC10. Our results both improve marker-assisted selection and help with the map-based cloning of LrLC10.
Collapse
Affiliation(s)
- Lina Qiu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Huifang Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yinghui Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Weidong Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yujia Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Junyi Mu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Miaomiao Geng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- College of Agronomy Hebei Agricultural University, Hebei Agricultural University, Baoding, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jun Ma
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chaojie Xie
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Discovery and characterisation of a new leaf rust resistance gene introgressed in wheat from wild wheat Aegilops peregrina. Sci Rep 2020; 10:7573. [PMID: 32371881 PMCID: PMC7200655 DOI: 10.1038/s41598-020-64166-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 04/08/2020] [Indexed: 12/03/2022] Open
Abstract
Wild wheat species Aegilops peregrina (UpUpSpSp), harbours resistance to various diseases including leaf rust and stripe rust. Inheritance studies in a recombinant inbred line population of wheat-Ae. peregrina introgression line IL pau16061 revealed the transfer of a single major dominant gene conditioning all stage resistance, herein temporarily designated as LrAp. Genomic in situ hybridisation of IL pau16061, resistant and susceptible RILs with U- and S-genome DNA probes confirmed that the introgression with leaf rust resistance is from the Up genome of Ae. peregrina. Fluorescence in situ hybridisation using chromosome specific probes identified Up genome introgression to be on the long arm of wheat chromosome 6B. To genetically map LrAp, bulked segregant analysis was combined with resistance gene enrichment sequencing (MapRenSeq). Five nucleotide binding leucine-rich repeat contigs distinguished resistant and susceptible bulks and single nucleotide polymorphism (SNP) markers from these contigs co-segregated with LrAp. All five RenSeq NB_ARC contigs showed identity with the long arm of wheat chromosome 6B confirming the introgression on 6BL which we propose is a compensating translocation from Ae. peregrina chromosome 6UpL due to homoeology between the alien and wheat chromosomes. The SNP markers developed in this study will aid in cloning and marker assisted gene pyramiding of LrAp.
Collapse
|
9
|
Bansal M, Adamski NM, Toor PI, Kaur S, Molnár I, Holušová K, Vrána J, Doležel J, Valárik M, Uauy C, Chhuneja P. Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:903-915. [PMID: 31894365 DOI: 10.1007/s00122-019-03514-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 12/17/2019] [Indexed: 05/13/2023]
Abstract
Lr76 and Yr70 have been fine mapped using the sequence of flow-sorted recombinant 5D chromosome from wheat-Ae. umbellulata introgression line. The alien introgression has been delineated to 9.47-Mb region on short arm of wheat chromosome 5D. Leaf rust and stripe rust are among the most damaging diseases of wheat worldwide. Wheat cultivation based on limited number of rust resistance genes deployed over vast areas expedites the emergence of new pathotypes warranting a continuous deployment of new resistance genes. In this paper, fine mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance genes Lr76 and Yr70 is being reported. We flow sorted and paired-end sequenced 5U chromosome of Ae. umbellulata, recombinant chromosome 5D (5DIL) from wheat-Ae. umbellulata introgression line pau16057 and 5DRP of recurrent parent WL711. Chromosome 5U reads were mapped against the reference Chinese Spring chromosome 5D sequence, and alien-specific SNPs were identified. Chromosome 5DIL and 5DRP sequences were de novo assembled, and alien introgression-specific markers were designed by selecting 5U- and 5D-specific SNPs. Overall, 27 KASP markers were mapped in high-resolution population consisting of 1404 F5 RILs. The mapping population segregated for single gene each for leaf rust and stripe rust resistance. The physical order of the SNPs in pau16057 was defined by projecting the 27 SNPs against the IWGSC RefSeq v1.0 sequence. Based on this physical map, the size of Ae. umbellulata introgression was determined to be 9.47 Mb on the distal most end of the short arm of chromosome 5D. This non-recombining alien segment carries six NB-LRR encoding genes based on NLR annotation of assembled chromosome 5DIL sequence and IWGSC RefSeq v1.1 gene models. The presence of SNPs and other sequence variations in these genes between pau16057 and WL711 suggested that they are candidates for Lr76 and Yr70.
Collapse
Affiliation(s)
- Mitaly Bansal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | | | - Puneet Inder Toor
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - István Molnár
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 783 71, Olomouc, Czech Republic
- Centre for Agricultural Research, Agricultural Institute, Hungarian Academy of Sciences, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Kateřina Holušová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 783 71, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 783 71, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 783 71, Olomouc, Czech Republic
| | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 783 71, Olomouc, Czech Republic
| | | | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India.
| |
Collapse
|