1
|
Moreau ELP, Riddle JM, Nazareno ES, Kianian SF. Three Decades of Rust Surveys in the United States Reveal Drastic Virulence Changes in Oat Crown Rust. PLANT DISEASE 2024; 108:1298-1307. [PMID: 37953229 DOI: 10.1094/pdis-09-23-1956-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
To better understand how the pathogenicity of the oat crown rust pathogen Puccinia coronata f. sp. avenae (Pca) has changed in the United States, 30 years of United States Department of Agriculture (USDA) survey isolates (n = 5,456) tested on 30 to 40 differential lines were analyzed for overall and Pc-resistance-gene-specific virulence trends and correlations. Pca is incredibly pathologically diverse, with 88% of races represented by a single isolate. There are a slightly higher proportion of unique races from the Northern region of the United States, and for one fourth of the years, Northern region isolates were significantly more virulent than Southern isolates, which supports the idea that sexual recombination in this region is mediated by the alternate host as a major factor in creating new races. However, there is also support for regular isolate movement between North and South regions as isolates in the United States are steadily accumulating virulences at a rate of 0.35 virulences per year. Virulence significantly increased for 23 and decreased for four of the 40 differential lines. In the past few years, virulence has reached 90% or greater for 16 differential lines. There were also strong correlations in virulence for certain Pc genes that are likely identical, allelic, or target the same or closely linked pathogen effectors (e.g., Pc39, Pc55, and Pc71), and the results were largely in concordance with recent genome-wide association study (GWAS) effector studies using USDA isolate subsets. Understanding changes in Pca pathogenicity is essential for the responsible deployment and management of Pc resistance genes for sustainable and profitable oat production.
Collapse
Affiliation(s)
- Erin L P Moreau
- Cereal Disease Laboratory, USDA-Agricultural Research Service, St. Paul, MN 55108
| | - Jakob M Riddle
- Cereal Disease Laboratory, USDA-Agricultural Research Service, St. Paul, MN 55108
| | - Eric S Nazareno
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Shahryar F Kianian
- Cereal Disease Laboratory, USDA-Agricultural Research Service, St. Paul, MN 55108
| |
Collapse
|
2
|
Hewitt TC, Henningsen EC, Pereira D, McElroy K, Nazareno ES, Dugyala S, Nguyen-Phuc H, Li F, Miller ME, Visser B, Pretorius ZA, Boshoff WHP, Sperschneider J, Stukenbrock EH, Kianian SF, Dodds PN, Figueroa M. Genome-Enabled Analysis of Population Dynamics and Virulence-Associated Loci in the Oat Crown Rust Fungus Puccinia coronata f. sp. avenae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:290-303. [PMID: 37955552 DOI: 10.1094/mpmi-09-23-0126-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Puccinia coronata f. sp. avenae (Pca) is an important fungal pathogen causing crown rust that impacts oat production worldwide. Genetic resistance for crop protection against Pca is often overcome by the rapid virulence evolution of the pathogen. This study investigated the factors shaping adaptive evolution of Pca using pathogen populations from distinct geographic regions within the United States and South Africa. Phenotypic and genome-wide sequencing data of these diverse Pca collections, including 217 isolates, uncovered phylogenetic relationships and established distinct genetic composition between populations from northern and southern regions from the United States and South Africa. The population dynamics of Pca involve a bidirectional movement of inoculum between northern and southern regions of the United States and contributions from clonality and sexuality. The population from South Africa is solely clonal. A genome-wide association study (GWAS) employing a haplotype-resolved Pca reference genome was used to define 11 virulence-associated loci corresponding to 25 oat differential lines. These regions were screened to determine candidate Avr effector genes. Overall, the GWAS results allowed us to identify the underlying genetic factors controlling pathogen recognition in an oat differential set used in the United States to assign pathogen races (pathotypes). Key GWAS findings support complex genetic interactions in several oat lines, suggesting allelism among resistance genes or redundancy of genes included in the differential set, multiple resistance genes recognizing genetically linked Avr effector genes, or potentially epistatic relationships. A careful evaluation of the composition of the oat differential set accompanied by the development or implementation of molecular markers is recommended. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Tim C Hewitt
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2600, Australia
| | - Eva C Henningsen
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2600, Australia
| | - Danilo Pereira
- Christian Albrechts University of Kiel, 24118 Kiel, Germany
- Max Planck Institute of Evolutionary Biology, 24306 Plön, Germany
| | - Kerensa McElroy
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2600, Australia
| | - Eric S Nazareno
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Sheshanka Dugyala
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Hoa Nguyen-Phuc
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Feng Li
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Marisa E Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Botma Visser
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Zacharias A Pretorius
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Jana Sperschneider
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2600, Australia
| | - Eva H Stukenbrock
- Christian Albrechts University of Kiel, 24118 Kiel, Germany
- Max Planck Institute of Evolutionary Biology, 24306 Plön, Germany
| | - Shahryar F Kianian
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN 55108, U.S.A
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2600, Australia
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2600, Australia
| |
Collapse
|
3
|
Nazareno ES, Fiedler JD, Ardayfio NK, Miller ME, Figueroa M, Kianian SF. Genetic Analysis and Physical Mapping of Oat Adult Plant Resistance Loci Against Puccinia coronata f. sp. avenae. PHYTOPATHOLOGY 2023; 113:1307-1316. [PMID: 36721375 DOI: 10.1094/phyto-10-22-0395-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Six quantitative trait loci (QTLs) for adult plant resistance against oat crown rust (Puccinia coronata f. sp. avenae) were identified from mapping three recombinant inbred populations. Using genotyping-by-sequencing with markers called against the OT3098 v1 reference genome, the QTLs were mapped on six different chromosomes: Chr1D, Chr4D, Chr5A, Chr5D, Chr7A, and Chr7C. Composite interval mapping with marker cofactor selection showed that the phenotypic variance explained by all identified QTLs for coefficient of infection range from 12.2 to 46.9%, whereas heritability estimates ranged from 0.11 to 0.38. The significant regions were narrowed down to intervals of 3.9 to 25 cM, equivalent to physical distances of 11 to 133 Mb. At least two flanking single-nucleotide polymorphism markers were identified within 10 cM of each QTL that could be used in marker-assisted introgression, pyramiding, and selection. The additive effects of the QTLs in each population were determined using single-nucleotide polymorphism haplotype data, which showed a significantly lower coefficient of infection in lines homozygous for the resistant alleles. Analysis of pairwise linkage disequilibrium also revealed high correlation of markers and presence of linkage blocks in the significant regions. To further facilitate marker-assisted breeding, polymerase chain reaction allelic competitive extension (PACE) markers for the adult plant resistance loci were developed. Putative candidate genes were also identified in each of the significant regions, which include resistance gene analogs that encode for kinases, ligases, and predicted receptors of avirulence proteins from pathogens.
Collapse
Affiliation(s)
- Eric S Nazareno
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, U.S.A
| | - Jason D Fiedler
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND, U.S.A
| | - Naa Korkoi Ardayfio
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND, U.S.A
| | - Marisa E Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, U.S.A
- Pairwise Plants, LLC, 807 East Main Street, Suite 4-100, Durham, NC, U.S.A
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Shahryar F Kianian
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, U.S.A
| |
Collapse
|
4
|
Koroluk A, Sowa S, Boczkowska M, Paczos-Grzęda E. Utilizing Genomics to Characterize the Common Oat Gene Pool—The Story of More than a Century of Polish Breeding. Int J Mol Sci 2023; 24:ijms24076547. [PMID: 37047519 PMCID: PMC10094864 DOI: 10.3390/ijms24076547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
This study was undertaken to investigate the diversity and population structure of 487 oat accessions, including breeding lines from the ongoing programs of the three largest Polish breeding companies, along with modern and historical Polish and foreign cultivars. The analysis was based on 7411 DArTseq-derived SNPs distributed among three sub-genomes (A, C, and D). The heterogeneity of the studied material was very low, as only cultivars and advanced breeding lines were examined. Principal component analysis (PCA), principal coordinate analysis (PCoA), and cluster and STRUCTURE analyses found congruent results, which show that most of the examined cultivars and materials from Polish breeding programs formed major gene pools, that only some accessions derived from Strzelce Plant Breeding, and that foreign cultivars were outside of the main group. During the 120 year oat breeding process, only 67 alleles from the old gene pool were lost and replaced by 67 new alleles. The obtained results indicate that no erosion of genetic diversity was observed within the Polish native oat gene pool. Moreover, current oat breeding programs have introduced 673 new alleles into the gene pool relative to historical cultivars. The analysis also showed that most of the changes in relation to historical cultivars occurred within the A sub-genome with emphasis on chromosome 6A. The targeted changes were the rarest in the C sub-genome. This study showed that Polish oat breeding based mainly on traditional breeding methods—although focused on improving traits typical to this crop, i.e., enhancing the grain yield and quality and improving adaptability—did not significantly narrow the oat gene pool and in fact produced cultivars that are not only competitive in the European market but are also reservoirs of new alleles that were not found in the analyzed foreign materials.
Collapse
|
5
|
Brodführer S, Mohler V, Stadlmeier M, Okoń S, Beuch S, Mascher M, Tinker NA, Bekele WA, Hackauf B, Herrmann MH. Genetic mapping of the powdery mildew resistance gene Pm7 on oat chromosome 5D. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:53. [PMID: 36913008 PMCID: PMC10011287 DOI: 10.1007/s00122-023-04288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Three independent experiments with different genetic backgrounds mapped the resistance gene Pm7 in the oat genome to the distal part of the long arm of chromosome 5D. Resistance of oat to Blumeria graminis DC. f. sp. avenae is an important breeding goal in Central and Western Europe. In this study, the position of the effective and widely used resistance gene Pm7 in the oat genome was determined based on three independent experiments with different genetic backgrounds: genome-wide association mapping in a diverse set of inbred oat lines and binary phenotype mapping in two bi-parental populations. Powdery mildew resistance was assessed in the field as well as by detached leaf tests in the laboratory. Genotyping-by-sequencing was conducted to establish comprehensive genetic fingerprints for subsequent genetic mapping experiments. All three mapping approaches located the gene to the distal part of the long arm of chromosome 5D in the hexaploid oat genome sequences of OT3098 and 'Sang.' Markers from this region were homologous to a region of chromosome 2Ce of the C-genome species, Avena eriantha, the donor of Pm7, which appears to be the ancestral source of a translocated region on the hexaploid chromosome 5D.
Collapse
Affiliation(s)
- Sophie Brodführer
- Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Julius Kuehn Institute (JKI), Rudolf-Schick-Platz 3a, OT Gross Lüsewitz, 18190, Sanitz, Germany
- I.G. Saatzucht GmbH & Co KG, Am Park 3, 18276, Gülzow-Prüzen OT Boldebuck, Germany
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 6, 85354, Freising, Germany
| | - Melanie Stadlmeier
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 6, 85354, Freising, Germany
| | - Sylwia Okoń
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Steffen Beuch
- Nordsaat Saatzucht GmbH, Saatzucht Granskevitz, Granskevitz 3, 18569, Schaprode, Germany
| | - Martin Mascher
- Research Group Domestication Genomics, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, Stadt Seeland OT, 06466, Gatersleben, Germany
| | - Nicholas A Tinker
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | - Wubishet A Bekele
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | - Bernd Hackauf
- Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Julius Kuehn Institute (JKI), Rudolf-Schick-Platz 3a, OT Gross Lüsewitz, 18190, Sanitz, Germany
| | - Matthias Heinrich Herrmann
- Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Julius Kuehn Institute (JKI), Rudolf-Schick-Platz 3a, OT Gross Lüsewitz, 18190, Sanitz, Germany.
| |
Collapse
|
6
|
Park RF, Boshoff WHP, Cabral AL, Chong J, Martinelli JA, McMullen MS, Fetch JWM, Paczos-Grzęda E, Prats E, Roake J, Sowa S, Ziems L, Singh D. Breeding oat for resistance to the crown rust pathogen Puccinia coronata f. sp. avenae: achievements and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3709-3734. [PMID: 35665827 PMCID: PMC9729147 DOI: 10.1007/s00122-022-04121-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/01/2022] [Indexed: 05/05/2023]
Abstract
Crown rust, caused by Puccinia coronata f. sp. avenae (Pca), is a significant impediment to global oat production. Some 98 alleles at 92 loci conferring resistance to Pca in Avena have been designated; however, allelic relationships and chromosomal locations of many of these are unknown. Long-term monitoring of Pca in Australia, North America and elsewhere has shown that it is highly variable even in the absence of sexual recombination, likely due to large pathogen populations that cycle between wild oat communities and oat crops. Efforts to develop cultivars with genetic resistance to Pca began in the 1950s. Based almost solely on all all-stage resistance, this has had temporary benefits but very limited success. The inability to eradicate wild oats, and their common occurrence in many oat growing regions, means that future strategies to control Pca must be based on the assumption of a large and variable prevailing pathogen population with high evolutionary potential, even if cultivars with durable resistance are deployed and grown widely. The presence of minor gene, additive APR to Pca in hexaploid oat germplasm opens the possibility of pyramiding several such genes to give high levels of resistance. The recent availability of reference genomes for diploid and hexaploid oat will undoubtedly accelerate efforts to discover, characterise and develop high throughput diagnostic markers to introgress and pyramid resistance to Pca in high yielding adapted oat germplasm.
Collapse
Affiliation(s)
- R F Park
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia.
| | - W H P Boshoff
- Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - A L Cabral
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - J Chong
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada
| | - J A Martinelli
- Department of Crop Science, Agronomy School, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, 7712, Porto Alegre, RS, 91501-970, Brazil
| | - M S McMullen
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58105-5051, USA
| | - J W Mitchell Fetch
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, Canada
| | - E Paczos-Grzęda
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - E Prats
- CSIC-Institute for Sustainable Agriculture, Avda. Menéndez Pidal s/n. , 14004, Córdoba, Spain
| | - J Roake
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | - S Sowa
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - L Ziems
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | - D Singh
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Nazareno ES, Fiedler J, Miller ME, Figueroa M, Kianian SF. A reference-anchored oat linkage map reveals quantitative trait loci conferring adult plant resistance to crown rust (Puccinia coronata f. sp. avenae). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3307-3321. [PMID: 36029319 DOI: 10.1007/s00122-022-04128-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
We mapped three adult plant resistance (APR) loci on oat chromosomes 4D and 6C and developed flanking KASP/PACE markers for marker-assisted selection and gene pyramiding. Using sequence orthology search and the available oat genomic and transcriptomic data, we surveyed these genomic regions for genes that may control disease resistance. Sources of durable disease resistance are needed to minimize yield losses in cultivated oat caused by crown rust (Puccinia coronata f. sp. avenae). In this study, we developed five oat recombinant inbred line mapping populations to identify sources of adult plant resistance from crosses between five APR donors and Otana, a susceptible variety. The preliminary bulk segregant mapping based on allele frequencies showed two regions in linkage group Mrg21 (Chr4D) that are associated with the APR phenotype in all five populations. Six markers from these regions in Chr4D were converted to high-throughput allele specific PCR assays and were used to genotype all individuals in each population. Simple interval mapping showed two peaks in Chr4D, named QPc.APR-4D.1 and QPc.APR-4D.2, which were detected in the OtanaA/CI4706-2 and OtanaA/CI9416-2 and in the Otana/PI189733, OtanaD/PI260616, and OtanaA/CI8000-4 populations, respectively. These results were validated by mapping two entire populations, Otana/PI189733 and OtanaA/CI9416, genotyped using Illumina HiSeq, in which polymorphisms were called against the OT3098 oat reference genome. Composite interval mapping results confirmed the presence of the two quantitative trait loci (QTL) located on oat chromosome 4D and an additional QTL with a smaller effect located on chromosome 6C. This mapping approach also narrowed down the physical intervals to between 5 and 19 Mb, and indicated that QPc.APR-4D.1, QPc.APR-4D.2, and QPc.APR-6C explained 43.4%, 38.5%, and 21.5% of the phenotypic variation, respectively. In a survey of the gene content of each QTL, several clusters of disease resistance genes that may contribute to APR were found. The allele specific PCR markers developed for these QTL regions would be beneficial for marker-assisted breeding, gene pyramiding, and future cloning of resistance genes from oat.
Collapse
Affiliation(s)
- Eric S Nazareno
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Jason Fiedler
- US Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND, USA
| | - Marisa E Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Pairwise Plants, LLC. 807 East Main Street, Suite 4-100, Durham, NC, USA
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Shahryar F Kianian
- US Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, USA.
| |
Collapse
|
8
|
Discovery and Chromosomal Location a Highly Effective Oat Crown Rust Resistance Gene Pc50-5. Int J Mol Sci 2021; 22:ijms222011183. [PMID: 34681841 PMCID: PMC8540790 DOI: 10.3390/ijms222011183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/15/2023] Open
Abstract
Crown rust, caused by Puccinia coronata f. sp. avenae, is one of the most destructive fungal diseases of oat worldwide. Growing disease-resistant oat cultivars is the preferred method of preventing the spread of rust and potential epidemics. The object of the study was Pc50-5, a race-specific seedling crown rust resistant gene, highly effective at all growth stages, selected from the differential line Pc50 (Avena sterilis L. CW 486-1 × Pendek). A comparison of crown rust reaction as well as an allelism test showed the distinctiveness of Pc50-5, whereas the proportions of phenotypes in segregating populations derived from a cross with two crown rust-susceptible Polish oat cultivars, Kasztan × Pc50-5 and Bingo × Pc50-5, confirmed monogenic inheritance of the gene, indicating its usefulness in oat breeding programs. Effective gene introgression depends on reliable gene identification in the early stages of plant development; thus, the aim of the study was to develop molecular markers that are tightly linked to Pc50-5. Segregating populations of Kasztan × Pc50-5 were genotyped using DArTseq technology based on next-generation Illumina short-read sequencing. Markers associated with Pc50-5 were located on chromosome 6A of the current version of the oat reference genome (Avena sativa OT3098 v2, PepsiCo) in the region between 434,234,214 and 440,149,046 bp and subsequently converted to PCR-based SCAR (sequence-characterized amplified region) markers. Furthermore, 5426978_SCAR and 24031809_SCAR co-segregated with the Pc50-5 resistance allele and were mapped to the partial linkage group at 0.6 and 4.0 cM, respectively. The co-dominant 58163643_SCAR marker was the best diagnostic and it was located closest to Pc50-5 at 0.1 cM. The newly discovered, very strong monogenic crown rust resistance may be useful for oat improvement. DArTseq sequences converted into specific PCR markers will be a valuable tool for marker-assisted selection in breeding programs.
Collapse
|
9
|
Miller ME, Nazareno ES, Rottschaefer SM, Riddle J, Dos Santos Pereira D, Li F, Nguyen-Phuc H, Henningsen EC, Persoons A, Saunders DGO, Stukenbrock E, Dodds PN, Kianian SF, Figueroa M. Increased virulence of Puccinia coronata f. sp.avenae populations through allele frequency changes at multiple putative Avr loci. PLoS Genet 2020; 16:e1009291. [PMID: 33370783 PMCID: PMC7793281 DOI: 10.1371/journal.pgen.1009291] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/08/2021] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Pathogen populations are expected to evolve virulence traits in response to resistance deployed in agricultural settings. However, few temporal datasets have been available to characterize this process at the population level. Here, we examined two temporally separated populations of Puccinia coronata f. sp. avenae (Pca), which causes crown rust disease in oat (Avena sativa) sampled from 1990 to 2015. We show that a substantial increase in virulence occurred from 1990 to 2015 and this was associated with a genetic differentiation between populations detected by genome-wide sequencing. We found strong evidence for genetic recombination in these populations, showing the importance of the alternate host in generating genotypic variation through sexual reproduction. However, asexual expansion of some clonal lineages was also observed within years. Genome-wide association analysis identified seven Avr loci associated with virulence towards fifteen Pc resistance genes in oat and suggests that some groups of Pc genes recognize the same pathogen effectors. The temporal shift in virulence patterns in the Pca populations between 1990 and 2015 is associated with changes in allele frequency in these genomic regions. Nucleotide diversity patterns at a single Avr locus corresponding to Pc38, Pc39, Pc55, Pc63, Pc70, and Pc71 showed evidence of a selective sweep associated with the shift to virulence towards these resistance genes in all 2015 collected isolates.
Collapse
Affiliation(s)
- Marisa E. Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eric S. Nazareno
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Susan M. Rottschaefer
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jakob Riddle
- USDA-ARS Cereal Disease Laboratory, St. Paul, Minnesota, United States of America
| | - Danilo Dos Santos Pereira
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, Plon, Germany
- Christian-Albrechts University of Kiel, Kiel Germany
| | - Feng Li
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Hoa Nguyen-Phuc
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eva C. Henningsen
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Antoine Persoons
- INRA/Universite de Lorraine Interactions Abres/Microorganismes, Champenoux, France
| | | | - Eva Stukenbrock
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, Plon, Germany
- Christian-Albrechts University of Kiel, Kiel Germany
| | - Peter N. Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australia
| | - Shahryar F. Kianian
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
- USDA-ARS Cereal Disease Laboratory, St. Paul, Minnesota, United States of America
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australia
| |
Collapse
|