1
|
Gelaye Y, Luo H. Optimizing Peanut ( Arachis hypogaea L.) Production: Genetic Insights, Climate Adaptation, and Efficient Management Practices: Systematic Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2988. [PMID: 39519907 PMCID: PMC11548213 DOI: 10.3390/plants13212988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Peanut production plays a crucial role in global food security, particularly in developing countries, where it provides essential nutrition and income. This paper examines the optimization of peanut production through genetic advancements, climate adaptation strategies, and sustainable practices. The primary objective is to increase yields by addressing challenges related to climate change, pests, and resource constraints. Globally, peanut production is hindered by rising temperatures, irregular rainfall, and declining soil quality, impacting both yield and quality. Developing countries, especially in Africa and Asia, face additional challenges, such as limited access to advanced agricultural technologies, inadequate infrastructure, and insufficient support for smallholder farmers. The vital issues include genetic vulnerabilities to pests, climate stress, and inefficient water use. Recent genetic research has provided insights into breeding more resilient, drought-resistant varieties, offering hope for improving yields, despite environmental challenges. The adoption of climate adaptation strategies, precision farming, and integrated pest management is essential for boosting productivity. These, along with optimized irrigation and nutrient management, have significantly impacted peanut production in resource-limited settings. Additionally, drought-resistant varieties have proven crucial, enabling farmers to increase resilience and yields in areas facing climate stress. In conclusion, optimizing peanut production requires continued investment in genetic advancements, infrastructure, and sustainable practices. Future efforts should focus on improving climate adaptation and sustainable farming techniques for long-term success.
Collapse
Affiliation(s)
- Yohannes Gelaye
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Department of Horticulture, College of Agriculture and Natural Resources, Debre Markos University, Debre Markos P.O. Box. 269, Amhara, Ethiopia
| | - Huaiyong Luo
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| |
Collapse
|
2
|
Changtor P, Rodriguez-Mateos P, Buddhachat K, Wattanachaiyingcharoen W, Iles A, Kerdphon S, Yimtragool N, Pamme N. Integration of IFAST-based nucleic acid extraction and LAMP for on-chip rapid detection of Agroathelia rolfsii in soil. Biosens Bioelectron 2024; 250:116051. [PMID: 38301544 DOI: 10.1016/j.bios.2024.116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Agroathelia rolfsii (A. rolfsii) is a fungal infection and poses a significant threat to over 500 plant species worldwide. It can reduce crop yields drastically resulting in substantial economic losses. While conventional detection methods like PCR offer high sensitivity and specificity, they require specialized and expensive equipment, limiting their applicability in resource-limited settings and in the field. Herein, we present an integrated workflow with nucleic acid extraction and isothermal amplification in a lab-on-a-chip cartridge based on immiscible filtration assisted by surface tension (IFAST) to detect A. rolfsii fungi in soil for point-of-need application. Our approach enabled both DNA extraction of A. rolfsii from soil and subsequent colorimetric loop-mediated isothermal amplification (LAMP) to be completed on a single chip, termed IFAST-LAMP. LAMP primers targeting ITS region of A. rolfsii were newly designed and tested. Two DNA extraction methods based on silica paramagnetic particles (PMPs) and three LAMP assays were compared. The best-performing assay was selected for on-chip extraction and detection of A. rolfsii from soil samples inoculated with concentrations of 3.75, 0.375 and 0.0375 mg fresh weight per 100-g soil (%FW). The full on-chip workflow was achieved within a 1-h turnaround time. The platform was capable of detecting as low as 3.75 %FW at 2 days after inoculation and down to 0.0375 %FW at 3 days after inoculation. The IFAST-LAMP could be suitable for field-applicability for A. rolfsii detection in low-resource settings.
Collapse
Affiliation(s)
- Phanupong Changtor
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden; Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Pablo Rodriguez-Mateos
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Wandee Wattanachaiyingcharoen
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand; Center of Excellence for Biodiversity, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Alexander Iles
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Sutthichat Kerdphon
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Nonglak Yimtragool
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand; Center of Excellence for Biodiversity, Faculty of Science, Naresuan University, Phitsanulok, Thailand.
| | - Nicole Pamme
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
3
|
Raza A, Chen H, Zhang C, Zhuang Y, Sharif Y, Cai T, Yang Q, Soni P, Pandey MK, Varshney RK, Zhuang W. Designing future peanut: the power of genomics-assisted breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:66. [PMID: 38438591 DOI: 10.1007/s00122-024-04575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
KEY MESSAGE Integrating GAB methods with high-throughput phenotyping, genome editing, and speed breeding hold great potential in designing future smart peanut cultivars to meet market and food supply demands. Cultivated peanut (Arachis hypogaea L.), a legume crop greatly valued for its nourishing food, cooking oil, and fodder, is extensively grown worldwide. Despite decades of classical breeding efforts, the actual on-farm yield of peanut remains below its potential productivity due to the complicated interplay of genotype, environment, and management factors, as well as their intricate interactions. Integrating modern genomics tools into crop breeding is necessary to fast-track breeding efficiency and rapid progress. When combined with speed breeding methods, this integration can substantially accelerate the breeding process, leading to faster access of improved varieties to farmers. Availability of high-quality reference genomes for wild diploid progenitors and cultivated peanuts has accelerated the process of gene/quantitative locus discovery, developing markers and genotyping assays as well as a few molecular breeding products with improved resistance and oil quality. The use of new breeding tools, e.g., genomic selection, haplotype-based breeding, speed breeding, high-throughput phenotyping, and genome editing, is probable to boost genetic gains in peanut. Moreover, renewed attention to efficient selection and exploitation of targeted genetic resources is also needed to design high-quality and high-yielding peanut cultivars with main adaptation attributes. In this context, the combination of genomics-assisted breeding (GAB), genome editing, and speed breeding hold great potential in designing future improved peanut cultivars to meet market and food supply demands.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yasir Sharif
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Pooja Soni
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Manish K Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.
| |
Collapse
|
4
|
Sanjel S, Colee J, Barocco RL, Dufault NS, Tillman BL, Punja ZK, Seepaul R, Small IM. Environmental Factors Influencing Stem Rot Development in Peanut: Predictors and Action Thresholds for Disease Management. PHYTOPATHOLOGY 2024; 114:393-404. [PMID: 37581435 DOI: 10.1094/phyto-05-23-0164-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Peanuts grown in tropical, subtropical, and temperate regions are susceptible to stem rot, which is a soilborne disease caused by Athelia rolfsii. Due to the lack of reliable environmental-based scheduling recommendations, stem rot control relies heavily on fungicides that are applied at predetermined intervals. We conducted inoculated field experiments for six site-years in North Florida to examine the relationship between germination of A. rolfsii sclerotia: the inoculum, stem rot symptom development in the peanut crop, and environmental factors such as soil temperature (ST), soil moisture, relative humidity (RH), precipitation, evapotranspiration, and solar radiation. Window-pane analysis with hourly and daily environmental data for 5- to 28-day periods before each disease assessment were evaluated to select model predictors using correlation analysis, regularized regression, and exhaustive feature selection. Our results indicated that within-canopy ST (at 0.05 m belowground) and RH (at 0.15 m aboveground) were the most important environmental variables that influenced the progress of mycelial activity in susceptible peanut crops. Decision tree analysis resulted in an easy-to-interpret one-variable model (adjusted R2 = 0.51, Akaike information criterion [AIC] = 324, root average square error [RASE] = 14.21) or two-variable model (adjusted R2 = 0.61, AIC = 306, RASE = 10.95) that provided an action threshold for various disease scenarios based on number of hours of canopy RH above 90% and ST between 25 and 35°C in a 14-day window. Coupling an existing preseason risk index for stem rot, such as Peanut Rx, with the environmentally based predictors identified in this study would be a logical next step to optimize stem rot management. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Santosh Sanjel
- North Florida Research and Education Center, University of Florida, Quincy, FL, U.S.A
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
| | - James Colee
- IFAS Statistical Consulting Unit, University of Florida, Gainesville, FL, U.S.A
| | - Rebecca L Barocco
- North Florida Research and Education Center, University of Florida, Quincy, FL, U.S.A
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
| | - Nicholas S Dufault
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
| | - Barry L Tillman
- North Florida Research and Education Center, University of Florida, Marianna, FL, U.S.A
- Agronomy Department, University of Florida, Gainesville, FL, U.S.A
| | - Zamir K Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Ramdeo Seepaul
- North Florida Research and Education Center, University of Florida, Quincy, FL, U.S.A
- Agronomy Department, University of Florida, Gainesville, FL, U.S.A
| | - Ian M Small
- North Florida Research and Education Center, University of Florida, Quincy, FL, U.S.A
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
5
|
Joshi P, Soni P, Sharma V, Manohar SS, Kumar S, Sharma S, Pasupuleti J, Vadez V, Varshney RK, Pandey MK, Puppala N. Genome-Wide Mapping of Quantitative Trait Loci for Yield-Attributing Traits of Peanut. Genes (Basel) 2024; 15:140. [PMID: 38397130 PMCID: PMC10888419 DOI: 10.3390/genes15020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Peanuts (Arachis hypogaea L.) are important high-protein and oil-containing legume crops adapted to arid to semi-arid regions. The yield and quality of peanuts are complex quantitative traits that show high environmental influence. In this study, a recombinant inbred line population (RIL) (Valencia-C × JUG-03) was developed and phenotyped for nine traits under two environments. A genetic map was constructed using 1323 SNP markers spanning a map distance of 2003.13 cM. Quantitative trait loci (QTL) analysis using this genetic map and phenotyping data identified seventeen QTLs for nine traits. Intriguingly, a total of four QTLs, two each for 100-seed weight (HSW) and shelling percentage (SP), showed major and consistent effects, explaining 10.98% to 14.65% phenotypic variation. The major QTLs for HSW and SP harbored genes associated with seed and pod development such as the seed maturation protein-encoding gene, serine-threonine phosphatase gene, TIR-NBS-LRR gene, protein kinase superfamily gene, bHLH transcription factor-encoding gene, isopentyl transferase gene, ethylene-responsive transcription factor-encoding gene and cytochrome P450 superfamily gene. Additionally, the identification of 76 major epistatic QTLs, with PVE ranging from 11.63% to 72.61%, highlighted their significant role in determining the yield- and quality-related traits. The significant G × E interaction revealed the existence of the major role of the environment in determining the phenotype of yield-attributing traits. Notably, the seed maturation protein-coding gene in the vicinity of major QTLs for HSW can be further investigated to develop a diagnostic marker for HSW in peanut breeding. This study provides understanding of the genetic factor governing peanut traits and valuable insights for future breeding efforts aimed at improving yield and quality.
Collapse
Affiliation(s)
- Pushpesh Joshi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.J.); (V.S.); (S.S.M.); (J.P.); (R.K.V.)
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India;
| | - Pooja Soni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.J.); (V.S.); (S.S.M.); (J.P.); (R.K.V.)
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.J.); (V.S.); (S.S.M.); (J.P.); (R.K.V.)
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India;
| | - Surendra S. Manohar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.J.); (V.S.); (S.S.M.); (J.P.); (R.K.V.)
| | - Sampath Kumar
- Agricultural Research Station, Andhra Pradesh Agricultural University, Anantapur 515591, India;
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India;
| | - Janila Pasupuleti
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.J.); (V.S.); (S.S.M.); (J.P.); (R.K.V.)
| | - Vincent Vadez
- Institut de Recherche pour le Development (IRD), Université de Montpellier, Unité Mixte de Recherche Diversité et Adaptation des Espèces (UMR DIADE), 34394 Montpellier, France;
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.J.); (V.S.); (S.S.M.); (J.P.); (R.K.V.)
- Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.J.); (V.S.); (S.S.M.); (J.P.); (R.K.V.)
| | - Naveen Puppala
- Agricultural Science Center at Clovis, New Mexico State University, Clovis, NM 88101, USA
| |
Collapse
|
6
|
Yan L, Song W, Wang Z, Yu D, Sudini H, Kang Y, Lei Y, Huai D, Chen Y, Wang X, Wang Q, Liao B. Dissection of the Genetic Basis of Resistance to Stem Rot in Cultivated Peanuts ( Arachis hypogaea L.) through Genome-Wide Association Study. Genes (Basel) 2023; 14:1447. [PMID: 37510351 PMCID: PMC10378806 DOI: 10.3390/genes14071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Peanut (Arachis hypogaea) is an important oilseed and cash crop worldwide, contributing an important source of edible oil and protein for human nutrition. However, the incidence of stem rot disease caused by Athelia rolfsii poses a major challenge to peanut cultivation, resulting in significant yield losses. In this study, a panel of 202 peanut accessions was evaluated for their resistance to stem rot by inoculating plants in the field with A. rolfsii-infested oat grains in three environments. The mean disease index value of each environment for accessions in subsp. fasitigiate and subsp. hypogaea showed no significant difference. Accessions from southern China displayed the lowest disease index value compared to those from other ecological regions. We used whole-genome resequencing to analyze the genotypes of the accessions and to identify significant SNPs associated with stem rot resistance through genome-wide association study (GWAS). A total of 121 significant SNPs associated with stem rot resistance in peanut were identified, with phenotypic variation explained (PVE) ranging from 12.23% to 15.51%. A total of 27 candidate genes within 100 kb upstream and downstream of 23 significant SNPs were annotated, which have functions related to recognition, signal transduction, and defense response. These significant SNPs and candidate genes provide valuable information for further validation and molecular breeding to improve stem rot resistance in peanut.
Collapse
Affiliation(s)
- Liying Yan
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wanduo Song
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhihui Wang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dongyang Yu
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hari Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Yanping Kang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yong Lei
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dongxin Huai
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yuning Chen
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xin Wang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianqian Wang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Boshou Liao
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
7
|
Gangurde SS, Pasupuleti J, Parmar S, Variath MT, Bomireddy D, Manohar SS, Varshney RK, Singam P, Guo B, Pandey MK. Genetic mapping identifies genomic regions and candidate genes for seed weight and shelling percentage in groundnut. Front Genet 2023; 14:1128182. [PMID: 37007937 PMCID: PMC10061104 DOI: 10.3389/fgene.2023.1128182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Seed size is not only a yield-related trait but also an important measure to determine the commercial value of groundnut in the international market. For instance, small size is preferred in oil production, whereas large-sized seeds are preferred in confectioneries. In order to identify the genomic regions associated with 100-seed weight (HSW) and shelling percentage (SHP), the recombinant inbred line (RIL) population (Chico × ICGV 02251) of 352 individuals was phenotyped for three seasons and genotyped with an Axiom_Arachis array containing 58K SNPs. A genetic map with 4199 SNP loci was constructed, spanning a map distance of 2708.36 cM. QTL analysis identified six QTLs for SHP, with three consistent QTLs on chromosomes A05, A08, and B10. Similarly, for HSW, seven QTLs located on chromosomes A01, A02, A04, A10, B05, B06, and B09 were identified. BIG SEED locus and spermidine synthase candidate genes associated with seed weight were identified in the QTL region on chromosome B09. Laccase, fibre protein, lipid transfer protein, senescence-associated protein, and disease-resistant NBS-LRR proteins were identified in the QTL regions associated with shelling percentage. The associated markers for major-effect QTLs for both traits successfully distinguished between the small- and large-seeded RILs. QTLs identified for HSW and SHP can be used for developing potential selectable markers to improve the cultivars with desired seed size and shelling percentage to meet the demands of confectionery industries.
Collapse
Affiliation(s)
- Sunil S. Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
- USDA-ARS, Crops Genetics and Breeding Research Unit, Tifton, GA, United States
| | - Janila Pasupuleti
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sejal Parmar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Murali T. Variath
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Deekshitha Bomireddy
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Surendra S. Manohar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Baozhu Guo
- USDA-ARS, Crops Genetics and Breeding Research Unit, Tifton, GA, United States
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
- *Correspondence: Manish K. Pandey,
| |
Collapse
|
8
|
Jia S, Song C, Dong H, Yang X, Li X, Ji M, Chu J. Evaluation of efficacy and mechanism of Bacillus velezensis CB13 for controlling peanut stem rot caused by Sclerotium rolfsii. Front Microbiol 2023; 14:1111965. [PMID: 36876084 PMCID: PMC9978184 DOI: 10.3389/fmicb.2023.1111965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Peanut stem rot, caused by Sclerotium rolfsii, considerably affects crop productivity. Application of chemical fungicides harms the environment and induces drug resistance. Biological agents are valid and eco-friendly alternatives to chemical fungicides. Bacillus spp. are important biocontrol agents that are now widely used against several plant diseases. This study aimed to evaluate the efficacy and mechanism of a potential biocontrol agent Bacillus sp. for controlling peanut stem rot caused by S. rolfsii. Here, we isolated a strain of Bacillus from pig biogas slurry that considerably inhibits the radial growth of S. rolfsii. The strain CB13 was identified as Bacillus velezensis on the basis of morphological, physiological, biochemical characteristics and phylogenetic trees based on the 16S rDNA and gyrA, gyrB, and rpoB gene sequences. The biocontrol efficacy of CB13 was evaluated on the basis of colonization ability, induction of defense enzyme activity, and soil microbial diversity. The control efficiencies of B. velezensis CB13-impregnated seeds in four pot experiments were 65.44, 73.33, 85.13, and 94.92%. Root colonization was confirmed through green fluorescent protein (GFP)-tagging experiments. The CB13-GFP strain was detected in peanut root and rhizosphere soil, at 104 and 108 CFU/g, respectively, after 50 days. Furthermore, B. velezensis CB13 enhanced the defense response against S. rolfsii infection by inducing defense enzyme activity. MiSeq sequencing revealed a shift in the rhizosphere bacterial and fungal communities in peanuts treated with B. velezensis CB13. Specifically, the treatment enhanced disease resistance by increasing the diversity of soil bacterial communities in peanut roots, increasing the abundance of beneficial communities, and promoting soil fertility. Additionally, real-time quantitative polymerase chain reaction results showed that B. velezensis CB13 stably colonized or increased the content of Bacillus spp. in the soil and effectively inhibited S. rolfsii proliferation in soil. These findings indicate that B. velezensis CB13 is a promising agent for the biocontrol of peanut stem rot.
Collapse
Affiliation(s)
- Shu Jia
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Sericultural Research Institute of Liaoning Province, Fengcheng, China
| | - Ce Song
- Sericultural Research Institute of Liaoning Province, Fengcheng, China
| | - Hai Dong
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xujie Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xinghai Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Mingshan Ji
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jin Chu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| |
Collapse
|
9
|
Zhang M, Lu N, Jiang L, Liu B, Fei Y, Ma W, Shi C, Wang J. Multiple dynamic models reveal the genetic architecture for growth in height of Catalpa bungei in the field. TREE PHYSIOLOGY 2022; 42:1239-1255. [PMID: 34940852 DOI: 10.1093/treephys/tpab171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Growth in height (GH) is a critical determinant for tree survival and development in forests and can be depicted using logistic growth curves. Our understanding of the genetic mechanism underlying dynamic GH, however, is limited, particularly under field conditions. We applied two mapping models (Funmap and FVTmap) to find quantitative trait loci responsible for dynamic GH and two epistatic models (2HiGWAS and 1HiGWAS) to detect epistasis in Catalpa bungei grown in the field. We identified 13 co-located quantitative trait loci influencing the growth curve by Funmap and three heterochronic parameters (the timing of the inflection point, maximum acceleration and maximum deceleration) by FVTmap. The combined use of FVTmap and Funmap reduced the number of candidate genes by >70%. We detected 76 significant epistatic interactions, amongst which a key gene, COMT14, co-located by three models (but not 1HiGWAS) interacted with three other genes, implying that a novel network of protein interaction centered on COMT14 may control the dynamic GH of C. bungei. These findings provide new insights into the genetic mechanisms underlying the dynamic growth in tree height in natural environments and emphasize the necessity of incorporating multiple dynamic models for screening more reliable candidate genes.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Bingyang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yue Fei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Chaozhong Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
10
|
Liu F, Yang S, Xu F, Zhang Z, Lu Y, Zhang J, Wang G. Characteristics of biological control and mechanisms of Pseudomonas chlororaphis zm-1 against peanut stem rot. BMC Microbiol 2022; 22:9. [PMID: 34986788 PMCID: PMC8729073 DOI: 10.1186/s12866-021-02420-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Background Peanut stem rot is a serious plant disease that causes great economic losses. At present, there are no effective measures to prevent or control the occurrence of this plant disease. Biological control is one of the most promising plant disease control measures. In this study, Pseudomonas chlororaphis subsp. aurantiaca strain zm-1, a bacterial strain with potential biocontrol properties isolated by our team from the rhizosphere soil of Anemarrhena asphodeloides, was studied to control this plant disease. Methods We prepared extracts of Pseudomonas chloroaphis zm-1 extracellular antibacterial compounds (PECEs), determined their antifungal activities by confrontation assay, and identified their components by UPLC-MS/MS. The gene knockout strains were constructed by homologous recombination, and the biocontrol efficacy of P. chlororaphis zm-1 and its mutant strains were evaluated by pot experiments under greenhouse conditions and plot experiments, respectively. Results P. chlororaphis zm-1 could produce extracellular antifungal substances and inhibit the growth of Sclerotium rolfsii, the main pathogenic fungus causing peanut stem rot. The components of PECEs identified by UPLC-MS/MS showed that three kinds of phenazine compounds, i.e., 1-hydroxyphenazine, phenazine-1-carboxylic acid (PCA), and the core phenazine, were the principal components. In particular, 1-hydroxyphenazine produced by P. chlororaphis zm-1 showed antifungal activities against S. rolfsii, but 2-hydroxyphenazine did not. This is quite different with the previously reported. The extracellular compounds of two mutant strains, ΔphzH and ΔphzE, was analysed and showed that ΔphzE did not produce any phenazine compounds, and ΔphzH no longer produced 1-hydroxyphenazine but could still produce PCA and phenazine. Furthermore, the antagonistic ability of ΔphzH declined, and that of ΔphzE was almost completely abolished. According to the results of pot experiments under greenhouse conditions, the biocontrol efficacy of ΔphzH dramatically declined to 47.21% compared with that of wild-type P. chlororaphis zm-1 (75.63%). Moreover, ΔphzE almost completely lost its ability to inhibit S. rolfsii (its biocontrol efficacy was reduced to 6.19%). The results of the larger plot experiments were also consistent with these results. Conclusions P. chlororaphis zm-1 has the potential to prevent and control peanut stem rot disease. Phenazines produced and secreted by P. chlororaphis zm-1 play a key role in the control of peanut stem rot caused by S. rolfsii. These findings provide a new idea for the effective prevention and treatment of peanut stem rot. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02420-x.
Collapse
Affiliation(s)
- Fengying Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, 475004, China.,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Shan Yang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Fenghua Xu
- School of Pharmaceutical, Henan Univeristy, Kaifeng, 475004, China
| | - Zhen Zhang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yifang Lu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Juanmei Zhang
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China. .,School of Pharmaceutical, Henan Univeristy, Kaifeng, 475004, China. .,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China.
| | - Gang Wang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, 475004, China. .,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China. .,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
11
|
Liu Z, She H, Xu Z, Zhang H, Li G, Zhang S, Qian W. Quantitative trait loci (QTL) analysis of leaf related traits in spinach (Spinacia oleracea L.). BMC PLANT BIOLOGY 2021; 21:290. [PMID: 34167476 PMCID: PMC8223354 DOI: 10.1186/s12870-021-03092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Spinach (Spinacia oleracea L.) is an important leafy vegetable crop, and leaf-related traits including leaf length, leaf width, and petiole length, are important commercial traits. However, the underlying genes remain unclear. The objective of the study was to conduct QTL mapping of leaf-related traits in spinach. RESULTS A BC1 population was used to construct the linkage map and for QTL mapping of leaf length, leaf width, petiole length, and the ratio of leaf length to width in 2015 and 2019. Two genetic linkage maps were constructed by specific locus amplified fragment sequencing (SLAF-seq), and kompetitive allele specific PCR (KASP) technology, respectively using BC1 population in 2015. Based on the results of 2015, the specific linkage groups (LG) detected QTLs were generated using BC1 population in 2019. A total of 13 QTLs were detected for leaf-related traits, only five QTLs being repeatedly detected in multiple years or linkage maps. Interestingly, the major QTLs of leaf length, petiole length, and the ratio of leaf length to width were highly associated with the same SNP markers (KM3102838, KM1360385 and KM2191098). A major QTL of leaf width was mapped on chromosome 1 from 41.470-42.045 Mb. And 44 genes were identified within the region. Based on the GO analysis, these genes were significantly enriched on ribonuclease, lyase activity, phosphodiester bond hydrolysis process, and cell wall component, thus it might change cell size to determine leaves shape. CONCLUSIONS Five QTLs for leaf-related traits were repeatedly detected at least two years or linkage maps. The major QTLs of leaf length, petiole length, and the ratio of leaf length to width were mapped on the same loci. And three genes (Spo10792, Spo21018, and Spo21019) were identified as important candidate genes for leaf width.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongbing She
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaosheng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Helong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoliang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shifan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Wei Qian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
12
|
Gangurde SS, Nayak SN, Joshi P, Purohit S, Sudini HK, Chitikineni A, Hong Y, Guo B, Chen X, Pandey MK, Varshney RK. Comparative Transcriptome Analysis Identified Candidate Genes for Late Leaf Spot Resistance and Cause of Defoliation in Groundnut. Int J Mol Sci 2021; 22:ijms22094491. [PMID: 33925801 PMCID: PMC8123497 DOI: 10.3390/ijms22094491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022] Open
Abstract
Late leaf spot (LLS) caused by fungus Nothopassalora personata in groundnut is responsible for up to 50% yield loss. To dissect the complex nature of LLS resistance, comparative transcriptome analysis was performed using resistant (GPBD 4), susceptible (TAG 24) and a resistant introgression line (ICGV 13208) and identified a total of 12,164 and 9954 DEGs (differentially expressed genes) respectively in A- and B-subgenomes of tetraploid groundnut. There were 135 and 136 unique pathways triggered in A- and B-subgenomes, respectively, upon N. personata infection. Highly upregulated putative disease resistance genes, an RPP-13 like (Aradu.P20JR) and a NBS-LRR (Aradu.Z87JB) were identified on chromosome A02 and A03, respectively, for LLS resistance. Mildew resistance Locus (MLOs)-like proteins, heavy metal transport proteins, and ubiquitin protein ligase showed trend of upregulation in susceptible genotypes, while tetratricopeptide repeats (TPR), pentatricopeptide repeat (PPR), chitinases, glutathione S-transferases, purple acid phosphatases showed upregulation in resistant genotypes. However, the highly expressed ethylene responsive factor (ERF) and ethylene responsive nuclear protein (ERF2), and early responsive dehydration gene (ERD) might be related to the possible causes of defoliation in susceptible genotypes. The identified disease resistance genes can be deployed in genomics-assisted breeding for development of LLS resistant cultivars to reduce the yield loss in groundnut.
Collapse
Affiliation(s)
- Sunil S. Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (S.S.G.); (P.J.); (S.P.); (H.K.S.); (A.C.)
- Department of Genetics, Osmania University, Hyderabad 500007, India
| | - Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad 580005, India;
| | - Pushpesh Joshi
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (S.S.G.); (P.J.); (S.P.); (H.K.S.); (A.C.)
| | - Shilp Purohit
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (S.S.G.); (P.J.); (S.P.); (H.K.S.); (A.C.)
| | - Hari K. Sudini
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (S.S.G.); (P.J.); (S.P.); (H.K.S.); (A.C.)
| | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (S.S.G.); (P.J.); (S.P.); (H.K.S.); (A.C.)
| | - Yanbin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.H.); (X.C.)
| | - Baozhu Guo
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA;
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.H.); (X.C.)
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (S.S.G.); (P.J.); (S.P.); (H.K.S.); (A.C.)
- Correspondence: (M.K.P.); (R.K.V.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (S.S.G.); (P.J.); (S.P.); (H.K.S.); (A.C.)
- Correspondence: (M.K.P.); (R.K.V.)
| |
Collapse
|