1
|
Gudi S, M P, Alagappan P, Raigar OP, Halladakeri P, Gowda RSR, Kumar P, Singh G, Tamta M, Susmitha P, Amandeep, Saini DK. Fashion meets science: how advanced breeding approaches could revolutionize the textile industry. Crit Rev Biotechnol 2024; 44:1653-1679. [PMID: 38453184 DOI: 10.1080/07388551.2024.2314309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 03/09/2024]
Abstract
Natural fibers have garnered considerable attention owing to their desirable textile properties and advantageous effects on human health. Nevertheless, natural fibers lag behind synthetic fibers in terms of both quality and yield, as these attributes are largely genetically determined. In this article, a comprehensive overview of the natural and synthetic fiber production landscape over the last 10 years is presented, with a particular focus on the role of scientific breeding techniques in improving fiber quality traits in key crops like cotton, hemp, ramie, and flax. Additionally, the article delves into cutting-edge genomics-assisted breeding techniques, including QTL mapping, genome-wide association studies, transgenesis, and genome editing, and their potential role in enhancing fiber quality traits in these crops. A user-friendly compendium of 11226 available QTLs and significant marker-trait associations derived from 136 studies, associated with diverse fiber quality traits in these crops is furnished. Furthermore, the potential applications of transcriptomics in these pivotal crops, elucidating the distinct genes implicated in augmenting fiber quality attributes are investigated. Additionally, information on 11257 candidate/characterized or cloned genes sourced from various studies, emphasizing their key role in the development of high-quality fiber crops is collated. Additionally, the review sheds light on the current progress of marker-assisted selection for fiber quality traits in each crop, providing detailed insights into improved cultivars released for different fiber crops. In conclusion, it is asserted that the application of modern breeding tools holds tremendous potential in catalyzing a transformative shift in the textile industry.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Plant Pathology, ND State University, Fargo, ND, USA
| | - Pavan M
- Department of Apparel and Textile Science, Punjab Agricultural University, Ludhiana, India
| | - Praveenkumar Alagappan
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Om Prakash Raigar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Anand, India
- VNR Seeds, Pvt. Ltd, Raipur, India
| | - Rakshith S R Gowda
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Centre for Crop and Food Innovation, Murdoch University, Perth, Australia
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Agronomy, Horticulture, and Plant Science, SD State University, Brookings, SD, USA
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- AgriLife Research Center at Beaumont, TX A&M University, College Station, TX, USA
| | - Meenakshi Tamta
- Department of Apparel and Textile Science, Punjab Agricultural University, Ludhiana, India
| | - Pusarla Susmitha
- Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Anakapalle, India
| | - Amandeep
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Plant and Soil Science, TX Tech University, Lubbock, TX, USA
| |
Collapse
|
2
|
Kumar P, Gill HS, Singh M, Kaur K, Koupal D, Talukder S, Bernardo A, Amand PS, Bai G, Sehgal SK. Characterization of flag leaf morphology identifies a major genomic region controlling flag leaf angle in the US winter wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:205. [PMID: 39141073 PMCID: PMC11324803 DOI: 10.1007/s00122-024-04701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
KEY MESSAGE Multi-environmental characterization of flag leaf morphology traits in the US winter wheat revealed nine stable genomic regions for different flag leaf-related traits including a major region governing flag leaf angle. Flag leaf in wheat is the primary contributor to accumulating photosynthetic assimilates. Flag leaf morphology (FLM) traits determine the overall canopy structure and capacity to intercept the light, thus influencing photosynthetic efficiency. Hence, understanding the genetic control of these traits could be useful for breeding desirable ideotypes in wheat. We used a panel of 272 accessions from the hard winter wheat (HWW) region of the USA to investigate the genetic architecture of five FLM traits including flag leaf length (FLL), width (FLW), angle (FLANG), length-width ratio, and area using multilocation field experiments. Multi-environment GWAS using 14,537 single-nucleotide polymorphisms identified 36 marker-trait associations for different traits, with nine being stable across environments. A novel and major stable region for FLANG (qFLANG.1A) was identified on chromosome 1A accounting for 9-13% variation. Analysis of spatial distribution for qFLANG.1A in a set of 2354 breeding lines from the HWW region showed a higher frequency of allele associated with narrow leaf angle. A KASP assay was developed for allelic discrimination of qFLANG.1A and was used for its independent validation in a diverse set of spring wheat accessions. Furthermore, candidate gene analysis for two regions associated with FLANG identified seven putative genes of interest for each of the two regions. The present study enhances our understanding of the genetic control of FLM in wheat, particularly FLANG, and these results will be useful for dissecting the genes underlying canopy architecture in wheat facilitating the development of climate-resilient wheat varieties.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Mandeep Singh
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Karanjot Kaur
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Dante Koupal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Shyamal Talukder
- Department of Soil and Crop Sciences, Texas A&M University, Texas A&M AgriLife Research Center, Beaumont, TX, USA
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
3
|
Mazumder AK, Yadav R, Kumar M, Babu P, Kumar N, Singh SK, Solanke AU, Wani SH, Alalawy AI, Alasmari A, Gaikwad KB. Discovering novel genomic regions explaining adaptation of bread wheat to conservation agriculture through GWAS. Sci Rep 2024; 14:16351. [PMID: 39013994 PMCID: PMC11252282 DOI: 10.1038/s41598-024-66903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
To sustainably increase wheat yield to meet the growing world population's food demand in the face of climate change, Conservation Agriculture (CA) is a promising approach. Still, there is a lack of genomic studies investigating the genetic basis of crop adaptation to CA. To dissect the genetic architecture of 19 morpho-physiological traits that could be involved in the enhanced adaptation and performance of genotypes under CA, we performed GWAS to identify MTAs under four contrasting production regimes viz., conventional tillage timely sown (CTTS), conservation agriculture timely sown (CATS), conventional tillage late sown (CTLS) and conservation agriculture late sown (CALS) using an association panel of 183 advanced wheat breeding lines along with 5 checks. Traits like Phi2 (Quantum yield of photosystem II; CATS:0.37, CALS: 0.31), RC (Relative chlorophyll content; CATS:55.51, CALS: 54.47) and PS1 (Active photosystem I centers; CATS:2.45, CALS: 2.23) have higher mean values in CA compared to CT under both sowing times. GWAS identified 80 MTAs for the studied traits across four production environments. The phenotypic variation explained (PVE) by these QTNs ranged from 2.15 to 40.22%. Gene annotation provided highly informative SNPs associated with Phi2, NPQ (Quantum yield of non-photochemical quenching), PS1, and RC which were linked with genes that play crucial roles in the physiological adaptation under both CA and CT. A highly significant SNP AX94651261 (9.43% PVE) was identified to be associated with Phi2, while two SNP markers AX94730536 (30.90% PVE) and AX94683305 (16.99% PVE) were associated with NPQ. Identified QTNs upon validation can be used in marker-assisted breeding programs to develop CA adaptive genotypes.
Collapse
Affiliation(s)
- Amit Kumar Mazumder
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajbir Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manjeet Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prashanth Babu
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Naresh Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sanjay Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Shabir H Wani
- Mountain Research Centre for Field Crops, Khudwani, 192101, India
- Sher-E-Kashmir University of Agricultural Sciences and Technology-Kashmir (SKUAST-K), Srinagar, Jammu-Kashmir, India
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdulrahman Alasmari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Kiran B Gaikwad
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
4
|
Gudi S, Halladakeri P, Singh G, Kumar P, Singh S, Alwutayd KM, Abd El-Moneim D, Sharma A. Deciphering the genetic landscape of seedling drought stress tolerance in wheat ( Triticum aestivum L.) through genome-wide association studies. FRONTIERS IN PLANT SCIENCE 2024; 15:1351075. [PMID: 38510445 PMCID: PMC10952099 DOI: 10.3389/fpls.2024.1351075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Wheat is an important cereal crop constrained by several biotic and abiotic stresses including drought stress. Understating the effect of drought stress and the genetic basis of stress tolerance is important to develop drought resilient, high-yielding wheat cultivars. In this study, we investigated the effects of drought stress on seedling characteristics in an association panel consisting of 198 germplasm lines. Our findings revealed that drought stress had a detrimental effect on all the seedling characteristics under investigation with a maximum effect on shoot length (50.94% reduction) and the minimum effect on germination percentage (7.9% reduction). To gain a deeper understanding, we conducted a genome-wide association analysis using 12,511 single nucleotide polymorphisms (SNPs), which led to the identification of 39 marker-trait associations (MTAs). Of these 39 MTAs, 13 were particularly noteworthy as they accounted for >10% of the phenotypic variance with a LOD score >5. These high-confidence MTAs were further utilized to extract 216 candidate gene (CGs) models within 1 Mb regions. Gene annotation and functional characterization identified 83 CGs with functional relevance to drought stress. These genes encoded the WD40 repeat domain, Myb/SANT-like domain, WSD1-like domain, BTB/POZ domain, Protein kinase domain, Cytochrome P450, Leucine-rich repeat domain superfamily, BURP domain, Calmodulin-binding protein60, Ubiquitin-like domain, etc. Findings from this study hold significant promise for wheat breeders as they provide direct assistance in selecting lines harboring favorable alleles for improved drought stress tolerance. Additionally, the identified SNPs and CGs will enable marker-assisted selection of potential genomic regions associated with enhanced drought stress tolerance in wheat.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Anand, India
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Texas A&M University, AgriLife Research Center, Beaumont, TX, United States
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Satinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
5
|
Zhou J, Liu Q, Tian R, Chen H, Wang J, Yang Y, Zhao C, Liu Y, Tang H, Deng M, Xu Q, Jiang Q, Chen G, Qi P, Jiang Y, Chen G, Tang L, Ren Y, Zheng Z, Liu C, Zheng Y, He Y, Wei Y, Ma J. A co-located QTL for seven spike architecture-related traits shows promising breeding use potential in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:31. [PMID: 38267732 DOI: 10.1007/s00122-023-04536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
KEY MESSAGE A co-located novel QTL for TFS, FPs, FMs, FFS, FFPs, KWS, and KWPs with potential of improving wheat yield was identified and validated. Spike-related traits, including fertile florets per spike (FFS), kernel weight per spike (KWS), total florets per spike (TFS), florets per spikelet (FPs), florets in the middle spikelet (FMs), fertile florets per spikelet (FFPs), and kernel weight per spikelet (KWPs), are key traits in improving wheat yield. In the present study, quantitative trait loci (QTL) for these traits evaluated under various environments were detected in a recombinant inbred line population (msf/Chuannong 16) mainly genotyped using the 16 K SNP array. Ultimately, we identified 60 QTL, but only QFFS.sau-MC-1A for FFS was a major and stably expressed QTL. It was located on chromosome arm 1AS, where loci for TFS, FPs, FMs, FFS, FFPs, KWS, and KWPs were also simultaneously co-mapped. The effect of QFFS.sau-MC-1A was further validated in three independent segregating populations using a Kompetitive Allele-Specific PCR marker. For the co-located QTL, QFFS.sau-MC-1A, the presence of a positive allele from msf was associate with increases for all traits: + 12.29% TFS, + 10.15% FPs, + 13.97% FMs, + 17.12% FFS, + 14.75% FFPs, + 22.17% KWS, and + 19.42% KWPs. Furthermore, pleiotropy analysis showed that the positive allele at QFFS.sau-MC-1A simultaneously increased the spike length, spikelet number per spike, and thousand-kernel weight. QFFS.sau-MC-1A represents a novel QTL for marker-assisted selection with the potential for improving wheat yield. Four genes, TraesCS1A03G0012700, TraesCS1A03G0015700, TraesCS1A03G0016000, and TraesCS1A03G0016300, which may affect spike development, were predicted in the physical interval harboring QFFS.sau-MC-1A. Our results will help in further fine mapping QFFS.sau-MC-1A and be useful for improving wheat yield.
Collapse
Affiliation(s)
- Jieguang Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Rong Tian
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huangxin Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaoyao Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Conghao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanlin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Liwei Tang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Yong Ren
- Mianyang Academy of Agricultural Science/Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Providence, Mianyang, China
| | - Zhi Zheng
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuanjiang He
- Mianyang Academy of Agricultural Science/Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Providence, Mianyang, China.
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
6
|
Gudi S, Saini DK, Halladakeri P, Singh G, Singh S, Kaur S, Goyal P, Srivastava P, Mavi GS, Sharma A. Genome-wide association study unravels genomic regions associated with chlorophyll fluorescence parameters in wheat (Triticum aestivum L.) under different sowing conditions. PLANT CELL REPORTS 2023; 42:1453-1472. [PMID: 37338572 DOI: 10.1007/s00299-023-03041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
KEY MESSAGE Genome-wide association study identified 205 significant marker-trait associations for chlorophyll fluorescence parameters in wheat. Candidate gene mining, in silico expression, and promoter analyses revealed the potential candidate genes associated with the studied parameters. The present study investigated the effect of varied sowing conditions (viz., early, timely, and late) on different chlorophyll fluorescence parameters in diverse wheat germplasm set comprising of 198 lines over two cropping seasons (2020-2021 and 2021-2022). Further, a genome-wide association study was conducted to identify potential genomic regions associated with these parameters. The results revealed significant impacts of sowing conditions on all fluorescence parameters, with the maximum and minimum effects on FI (26.64%) and FV/FM (2.12%), respectively. Among the 205 marker-trait associations (MTAs) identified, 11 high-confidence MTAs were chosen, exhibiting substantial effects on multiple fluorescence parameters, and each explaining more than 10% of the phenotypic variation. Through gene mining of genomic regions encompassing high-confidence MTAs, we identified a total of 626 unique gene models. In silico expression analysis revealed 42 genes with an expression value exceeding 2 TPM. Among them, 10 genes were identified as potential candidate genes with functional relevance to enhanced photosynthetic efficiency. These genes mainly encoded for the following important proteins/products-ankyrin repeat protein, 2Fe-2S ferredoxin-type iron-sulfur-binding domain, NADH-ubiquinone reductase complex-1 MLRQ subunit, oxidoreductase FAD/NAD(P)-binding, photosystem-I PsaF, and protein kinases. Promoter analysis revealed the presence of light-responsive (viz., GT1-motif, TCCC-motif, I-box, GT1-motif, TCT-motif, and SP-1) and stress-responsive (viz., ABRE, AuxRR-core, GARE-motif, and ARE) cis-regulatory elements, which may be involved in the regulation of identified putative candidate genes. Findings from this study could directly help wheat breeders in selecting lines with favorable alleles for chlorophyll fluorescence, while the identified markers will facilitate marker-assisted selection of potential genomic regions for improved photosynthesis.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409-2122, USA
| | - Priyanka Halladakeri
- Department of Plant Breeding and Genetics, Anand Agricultural University, Anand, India
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Texas A&M University, AgriLife Research at Beaumont, College Station, TX, 77713, USA
| | - Satinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Prinka Goyal
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - G S Mavi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| |
Collapse
|
7
|
Tanin MJ, Sharma A, Ram H, Singh S, Srivastava P, Mavi GS, Saini DK, Gudi S, Kumar P, Goyal P, Sohu VS. Application of potassium nitrate and salicylic acid improves grain yield and related traits by delaying leaf senescence in Gpc-B1 carrying advanced wheat genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1107705. [PMID: 37528976 PMCID: PMC10389087 DOI: 10.3389/fpls.2023.1107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/29/2023] [Indexed: 08/03/2023]
Abstract
Grain protein content (GPC) is an important quality trait that effectively modulates end-use quality and nutritional characteristics of wheat flour-based food products. The Gpc-B1 gene is responsible for the higher protein content in wheat grain. In addition to higher GPC, the Gpc-B1 is also generally associated with reduced grain filling period which eventually causes the yield penalty in wheat. The main aim of the present study was to evaluate the effect of foliar application of potassium nitrate (PN) and salicylic acid (SA) on the physiological characteristics of a set of twelve genotypes, including nine isogenic wheat lines carrying the Gpc-B1 gene and three elite wheat varieties with no Gpc-B1 gene, grown at wheat experimental area of the Department of Plant Breeding and Genetics, PAU, Punjab, India. The PN application significantly increased the number of grains per spike (GPS) by 6.42 grains, number of days to maturity (DTM) by 1.03 days, 1000-grain weight (TGW) by 1.97 g and yield per plot (YPP) by 0.2 kg/plot. As a result of PN spray, the flag leaf chlorophyll content was significantly enhanced by 2.35 CCI at anthesis stage and by 1.96 CCI at 10 days after anthesis in all the tested genotypes. Furthermore, the PN application also significantly increased the flag leaf nitrogen content by an average of 0.52% at booting stage and by 0.35% at both anthesis and 10 days after anthesis in all the evaluated genotypes. In addition, the yellow peduncle colour at 30 days after anthesis was also increased by 19.08% while the straw nitrogen content was improved by 0.17% in all the genotypes. The preliminary experiment conducted using SA demonstrated a significant increase in DTM and other yield component traits. The DTM increased by an average of 2.31 days, GPS enhanced by approximately 3.17 grains, TGW improved by 1.13g, and YPP increased by 0.21 kg/plot. The foliar application of PN and SA had no significant effect on GPC itself. The findings of the present study suggests that applications of PN and SA can effectively mitigate the yield penalty associated with Gpc-B1 gene by extending grain filling period in the wheat.
Collapse
Affiliation(s)
| | - Achla Sharma
- *Correspondence: Mohammad Jafar Tanin, ; Achla Sharma,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Reddy SS, Saini DK, Singh GM, Sharma S, Mishra VK, Joshi AK. Genome-wide association mapping of genomic regions associated with drought stress tolerance at seedling and reproductive stages in bread wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1166439. [PMID: 37251775 PMCID: PMC10213333 DOI: 10.3389/fpls.2023.1166439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023]
Abstract
Understanding the genetic architecture of drought stress tolerance in bread wheat at seedling and reproductive stages is crucial for developing drought-tolerant varieties. In the present study, 192 diverse wheat genotypes, a subset from the Wheat Associated Mapping Initiative (WAMI) panel, were evaluated at the seedling stage in a hydroponics system for chlorophyll content (CL), shoot length (SLT), shoot weight (SWT), root length (RLT), and root weight (RWT) under both drought and optimum conditions. Following that, a genome-wide association study (GWAS) was carried out using the phenotypic data recorded during the hydroponics experiment as well as data available from previously conducted multi-location field trials under optimal and drought stress conditions. The panel had previously been genotyped using the Infinium iSelect 90K SNP array with 26,814 polymorphic markers. Using single as well as multi-locus models, GWAS identified 94 significant marker-trait associations (MTAs) or SNPs associated with traits recorded at the seedling stage and 451 for traits recorded at the reproductive stage. The significant SNPs included several novel, significant, and promising MTAs for different traits. The average LD decay distance for the whole genome was approximately 0.48 Mbp, ranging from 0.07 Mbp (chromosome 6D) to 4.14 Mbp (chromosome 2A). Furthermore, several promising SNPs revealed significant differences among haplotypes for traits such as RLT, RWT, SLT, SWT, and GY under drought stress. Functional annotation and in silico expression analysis revealed important putative candidate genes underlying the identified stable genomic regions such as protein kinases, O-methyltransferases, GroES-like superfamily proteins, NAD-dependent dehydratases, etc. The findings of the present study may be useful for improving yield potential, and stability under drought stress conditions.
Collapse
Affiliation(s)
- S Srinatha Reddy
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - G Mahendra Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Sandeep Sharma
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Mishra
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Joshi
- Borlaug Institute of South Asia (BISA), NASC Complex, DPS Marg, New Delhi, India
- CIMMYT, NASC Complex, DPS Marg, New Delhi, India
| |
Collapse
|
9
|
Zhao J, Sun L, Gao H, Hu M, Mu L, Cheng X, Wang J, Zhao Y, Li Q, Wang P, Li H, Zhang Y. Genome-wide association study of yield-related traits in common wheat ( Triticum aestivum L.) under normal and drought treatment conditions. FRONTIERS IN PLANT SCIENCE 2023; 13:1098560. [PMID: 36684753 PMCID: PMC9846334 DOI: 10.3389/fpls.2022.1098560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The primary goal of modern wheat breeding is to develop new high-yielding and widely adaptable varieties. We analyzed four yield-related agronomic traits in 502 wheat accessions under normal conditions (NC) and drought treatment (DT) conditions over three years. The genome-wide association analysis identified 51 yield-related and nine drought-resistance-related QTL, including 13 for the thousand-grain weight (TGW), 30 for grain length (GL), three for grain width (GW), five for spike length (SL) and nine for stress tolerance index (STI) QTL in wheat. These QTL, containing 72 single nucleotide polymorphisms (SNPs), explained 2.23 - 7.35% of the phenotypic variation across multiple environments. Eight stable SNPs on chromosomes 2A, 2D, 3B, 4A, 5B, 5D, and 7D were associated with phenotypic stability under NC and DT conditions. Two of these stable SNPs had association with TGW and STI. Several novel QTL for TGW, GL and SL were identified on different chromosomes. Three linked SNPs were transformed into kompetitive allele-specific PCR (KASP) markers. These results will facilitate the discovery of promising SNPs for yield-related traits and/or drought stress tolerance and will accelerate the development of new wheat varieties with desirable alleles.
Collapse
Affiliation(s)
- Jie Zhao
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Lijing Sun
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Huimin Gao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Mengyun Hu
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Liming Mu
- Institute of Cereal Crops, Dingxi Academy of Agricultural Sciences, Dingxi, China
| | - Xiaohu Cheng
- Institute of Cereal Crops, Dingxi Academy of Agricultural Sciences, Dingxi, China
| | - Jianbing Wang
- Institute of Cereal Crops, Dingxi Academy of Agricultural Sciences, Dingxi, China
| | - Yun Zhao
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Qianying Li
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Peinan Wang
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Hui Li
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yingjun Zhang
- Institute of Cereal and Oil Crops, Laboratory of Crop Genetics and Breeding of Hebei, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|