1
|
Wang Z, Yung WS, Gao Y, Huang C, Zhao X, Chen Y, Li MW, Lam HM. From phenotyping to genetic mapping: identifying water-stress adaptations in legume root traits. BMC PLANT BIOLOGY 2024; 24:749. [PMID: 39103780 DOI: 10.1186/s12870-024-05477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Climate change induces perturbation in the global water cycle, profoundly impacting water availability for agriculture and therefore global food security. Water stress encompasses both drought (i.e. water scarcity) that causes the drying of soil and subsequent plant desiccation, and flooding, which results in excess soil water and hypoxia for plant roots. Terrestrial plants have evolved diverse mechanisms to cope with soil water stress, with the root system serving as the first line of defense. The responses of roots to water stress can involve both structural and physiological changes, and their plasticity is a vital feature of these adaptations. Genetic methodologies have been extensively employed to identify numerous genetic loci linked to water stress-responsive root traits. This knowledge is immensely important for developing crops with optimal root systems that enhance yield and guarantee food security under water stress conditions. RESULTS This review focused on the latest insights into modifications in the root system architecture and anatomical features of legume roots in response to drought and flooding stresses. Special attention was given to recent breakthroughs in understanding the genetic underpinnings of legume root development under water stress. The review also described various root phenotyping techniques and examples of their applications in different legume species. Finally, the prevailing challenges and prospective research avenues in this dynamic field as well as the potential for using root system architecture as a breeding target are discussed. CONCLUSIONS This review integrated the latest knowledge of the genetic components governing the adaptability of legume roots to water stress, providing a reference for using root traits as the new crop breeding targets.
Collapse
Affiliation(s)
- Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Yamin Gao
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cheng Huang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Key Laboratory of the Ministry of Education for Crop Physiology and Molecular Biology, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xusheng Zhao
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, & School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
2
|
Islam MS, Ghimire A, Lay L, Khan W, Lee JD, Song Q, Jo H, Kim Y. Identification of Quantitative Trait Loci Controlling Root Morphological Traits in an Interspecific Soybean Population Using 2D Imagery Data. Int J Mol Sci 2024; 25:4687. [PMID: 38731906 PMCID: PMC11083680 DOI: 10.3390/ijms25094687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Roots are the hidden and most important part of plants. They serve as stabilizers and channels for uptaking water and nutrients and play a crucial role in the growth and development of plants. Here, two-dimensional image data were used to identify quantitative trait loci (QTL) controlling root traits in an interspecific mapping population derived from a cross between wild soybean 'PI366121' and cultivar 'Williams 82'. A total of 2830 single-nucleotide polymorphisms were used for genotyping, constructing genetic linkage maps, and analyzing QTLs. Forty-two QTLs were identified on twelve chromosomes, twelve of which were identified as major QTLs, with a phenotypic variation range of 36.12% to 39.11% and a logarithm of odds value range of 12.01 to 17.35. Two significant QTL regions for the average diameter, root volume, and link average diameter root traits were detected on chromosomes 3 and 13, and both wild and cultivated soybeans contributed positive alleles. Six candidate genes, Glyma.03G027500 (transketolase/glycoaldehyde transferase), Glyma.03G014500 (dehydrogenases), Glyma.13G341500 (leucine-rich repeat receptor-like protein kinase), Glyma.13G341400 (AGC kinase family protein), Glyma.13G331900 (60S ribosomal protein), and Glyma.13G333100 (aquaporin transporter) showed higher expression in root tissues based on publicly available transcriptome data. These results will help breeders improve soybean genetic components and enhance soybean root morphological traits using desirable alleles from wild soybeans.
Collapse
Affiliation(s)
- Mohammad Shafiqul Islam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.I.); (A.G.); (L.L.); (W.K.); (J.-D.L.); (H.J.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Agriculture, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Amit Ghimire
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.I.); (A.G.); (L.L.); (W.K.); (J.-D.L.); (H.J.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Liny Lay
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.I.); (A.G.); (L.L.); (W.K.); (J.-D.L.); (H.J.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Waleed Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.I.); (A.G.); (L.L.); (W.K.); (J.-D.L.); (H.J.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeong-Dong Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.I.); (A.G.); (L.L.); (W.K.); (J.-D.L.); (H.J.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA;
| | - Hyun Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.I.); (A.G.); (L.L.); (W.K.); (J.-D.L.); (H.J.)
| | - Yoonha Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.I.); (A.G.); (L.L.); (W.K.); (J.-D.L.); (H.J.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
- Upland Field Machinery Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Kumawat G, Cao D, Park C, Xu D. C-terminally encoded peptide-like genes are associated with the development of primary root at qRL16.1 in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1387954. [PMID: 38685962 PMCID: PMC11056954 DOI: 10.3389/fpls.2024.1387954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Root architecture traits are belowground traits that harness moisture and nutrients from the soil and are equally important to above-ground traits in crop improvement. In soybean, the root length locus qRL16.1 was previously mapped on chromosome 16. The qRL16.1 has been characterized by transcriptome analysis of roots in near-isogenic lines (NILs), gene expression analysis in a pair of lines contrasting with alleles of qRL16.1, and differential gene expression analysis in germplasm accessions contrasting with root length. Two candidate genes, Glyma.16g108500 and Glyma.16g108700, have shown relatively higher expression in longer root accessions than in shorter rooting accessions. The C-terminal domain of Glyma.16g108500 and Glyma.16g108700 is similar to the conserved domain of C-terminally encoded peptides (CEPs) that regulate root length and nutrient response in Arabidopsis. Two polymorphisms upstream of Glyma.16g108500 showed a significant association with primary root length and total root length traits in a germplasm set. Synthetic peptide assay with predicted CEP variants of Glyma.16g108500 and Glyma.16g108700 demonstrated their positive effect on primary root length. The two genes are root-specific in the early stage of soybean growth and showed differential expression only in the primary root. These genes will be useful for improving soybean to develop a deep and robust root system to withstand low moisture and nutrient regimes.
Collapse
Affiliation(s)
- Giriraj Kumawat
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
- Crop Improvement Section, ICAR-Indian Institute of Soybean Research, Indore, Madhya Pradesh, India
| | - Dong Cao
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Cheolwoo Park
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Donghe Xu
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Castro-Valdecantos P, Puértolas J, Dodd IC. Similar soil drying-induced stomatal closure in soybean genotypes varying in abscisic acid accumulation and stomatal sensitivity to abscisic acid. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 37072870 DOI: 10.1071/fp23012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Different soybean cultivars (Williams 82 , Union , Jindou 21 , Long Huang 1 , Long Huang 2 ) were exposed to drying soil, to investigate whether endogenous abscisic acid (ABA) concentrations and leaf water relations regulated stomatal behaviour. We measured ABA concentrations in xylem and tissue of the first and second trifoliate leaves respectively; stomatal conductance (gs ) and leaf water potential (Ψleaf ) in both leaves; and water content in soil. Cultivar variation in leaf area and g s caused different rates of soil drying, but g s and Ψ leaf declined similarly with soil drying in all cultivars. Variation in leaf xylem ABA concentration better explained stomatal responses than foliar ABA concentration in some cultivars, and was highly correlated with stomatal conductance. Xylem ABA concentration in well-watered soil was highest in Union , and in drying soil was lowest in Jindou 21 and Long Huang 2 , although the latter had the highest foliar ABA concentrations. Jindou 21 accumulated lower xylem ABA concentrations than other cultivars as soil moisture or Ψ leaf decreased, but its stomatal sensitivity to xylem ABA was greater. Because cultivars varied in both ABA accumulation and stomatal sensitivity to ABA, but had similar stomatal sensitivity to Ψ leaf , leaf water relations seem more important in regulating stomatal closure of soybean.
Collapse
Affiliation(s)
- Pedro Castro-Valdecantos
- Lancaster Environment Centre, Lancaster LA1 4YQ, UK; and School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China; and The Joint Institute for the Environmental Research and Education, Guangzhou, China; and Present address: Department of Agronomy, Escuela Técnica Superior de Ingeniería Agronómica, University of Seville, Ctra. Utrera km. 1, Seville 41013, Spain
| | - Jaime Puértolas
- Lancaster Environment Centre, Lancaster LA1 4YQ, UK; and Present address: Department of Botany and Plant Ecology and Physiology, University of La Laguna, Facultad de Farmacia, Avd Astrofísico Francisco Sánchez s/n, San Cristóbal de La Laguna, Canary Islands 38200, Spain
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster LA1 4YQ, UK; and The Joint Institute for the Environmental Research and Education, Guangzhou, China
| |
Collapse
|
5
|
Wang X, Zhou S, Wang J, Lin W, Yao X, Su J, Li H, Fang C, Kong F, Guan Y. Genome-wide association study for biomass accumulation traits in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:33. [PMID: 37312748 PMCID: PMC10248709 DOI: 10.1007/s11032-023-01380-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 06/15/2023]
Abstract
Soybean is one of the most versatile crops for oil production, human diets, and feedstocks. The vegetative biomass of soybean is an important determinant of seed yield and is crucial for the forage usages. However, the genetic control of soybean biomass is not well explained. In this work, we used a soybean germplasm population, including 231 improved cultivars, 207 landraces, and 121 wild soybeans, to investigate the genetic basis of biomass accumulation of soybean plants at the V6 stage. We found that biomass-related traits, including NDW (nodule dry weight), RDW (root dry weight), SDW (shoot dry weight), and TDW (total dry weight), were domesticated during soybean evolution. In total, 10 loci, encompassing 47 putative candidate genes, were detected for all biomass-related traits by a genome-wide association study. Among these loci, seven domestication sweeps and six improvement sweeps were identified. Glyma.05G047900, a purple acid phosphatase, was a strong candidate gene to improve biomass for future soybean breeding. This study provided new insights into the genetic basis of biomass accumulation during soybean evolution. Supplementary information The online version contains supplementary material available at 10.1007/s11032-023-01380-6.
Collapse
Affiliation(s)
- Xin Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Shaodong Zhou
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Jie Wang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Wenxin Lin
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xiaolei Yao
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Jiaqing Su
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Haiyang Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Chao Fang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|