1
|
Sharma V, Mahadevaiah SS, Latha P, Gowda SA, Manohar SS, Jadhav K, Bajaj P, Joshi P, Anitha T, Jadhav MP, Sharma S, Janila P, Bhat RS, Varshney RK, Pandey MK. Dissecting genomic regions and underlying candidate genes in groundnut MAGIC population for drought tolerance. BMC PLANT BIOLOGY 2024; 24:1044. [PMID: 39497063 PMCID: PMC11536578 DOI: 10.1186/s12870-024-05749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Groundnut is mainly grown in the semi-arid tropic (SAT) regions worldwide, where abiotic stress like drought is persistent. However, a major research gap exists regarding exploring the genetic and genomic underpinnings of tolerance to drought. In this study, a multi-parent advanced generation inter-cross (MAGIC) population was developed and evaluated for five seasons at two locations for three consecutive years (2018-19, 2019-20 and 2020-21) under drought stress and normal environments. RESULTS Phenotyping data of drought tolerance related traits, combined with the high-quality 10,556 polymorphic SNPs, were used to perform multi-locus model genome-wide association study (GWAS) analysis. We identified 37 significant marker-trait associations (MTAs) (Bonferroni-corrected) accounting, 0.91- 9.82% of the phenotypic variance. Intriguingly, 26 significant MTAs overlap on four chromosomes (Ah03, Ah07, Ah10 and Ah18) (harboring 70% of MTAs), indicating genomic hotspot regions governing drought tolerance traits. Furthermore, important candidate genes associated with leaf senescence (NAC transcription factor), flowering (B3 domain-containing transcription factor, Ulp1 protease family, and Ankyrin repeat-containing protein), involved in chlorophyll biosynthesis (FAR1 DNA-binding domain protein), stomatal regulation (Rop guanine nucleotide exchange factor; Galacturonosyltransferases), and associated with yield traits (Fasciclin-like arabinogalactan protein 11 and Fasciclin-like arabinogalactan protein 21) were found in the vicinity of significant MTAs genomic regions. CONCLUSION The findings of our investigation have the potential to provide a basis for significant MTAs validation, gene discovery and development of functional markers, which could be employed in genomics-assisted breeding to develop climate-resilient groundnut varieties.
Collapse
Affiliation(s)
- Vinay Sharma
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU) , Meerut, India
| | | | - Putta Latha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - S Anjan Gowda
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Surendra S Manohar
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Kanchan Jadhav
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Pushpesh Joshi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU) , Meerut, India
| | - T Anitha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Mangesh P Jadhav
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU) , Meerut, India
| | - Pasupuleti Janila
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Ramesh S Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| | - Manish K Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India.
| |
Collapse
|
2
|
Gelaye Y, Luo H. Optimizing Peanut ( Arachis hypogaea L.) Production: Genetic Insights, Climate Adaptation, and Efficient Management Practices: Systematic Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2988. [PMID: 39519907 PMCID: PMC11548213 DOI: 10.3390/plants13212988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Peanut production plays a crucial role in global food security, particularly in developing countries, where it provides essential nutrition and income. This paper examines the optimization of peanut production through genetic advancements, climate adaptation strategies, and sustainable practices. The primary objective is to increase yields by addressing challenges related to climate change, pests, and resource constraints. Globally, peanut production is hindered by rising temperatures, irregular rainfall, and declining soil quality, impacting both yield and quality. Developing countries, especially in Africa and Asia, face additional challenges, such as limited access to advanced agricultural technologies, inadequate infrastructure, and insufficient support for smallholder farmers. The vital issues include genetic vulnerabilities to pests, climate stress, and inefficient water use. Recent genetic research has provided insights into breeding more resilient, drought-resistant varieties, offering hope for improving yields, despite environmental challenges. The adoption of climate adaptation strategies, precision farming, and integrated pest management is essential for boosting productivity. These, along with optimized irrigation and nutrient management, have significantly impacted peanut production in resource-limited settings. Additionally, drought-resistant varieties have proven crucial, enabling farmers to increase resilience and yields in areas facing climate stress. In conclusion, optimizing peanut production requires continued investment in genetic advancements, infrastructure, and sustainable practices. Future efforts should focus on improving climate adaptation and sustainable farming techniques for long-term success.
Collapse
Affiliation(s)
- Yohannes Gelaye
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Department of Horticulture, College of Agriculture and Natural Resources, Debre Markos University, Debre Markos P.O. Box. 269, Amhara, Ethiopia
| | - Huaiyong Luo
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| |
Collapse
|
3
|
Mikwa EO, Wittkop B, Windpassinger SM, Weber SE, Ehrhardt D, Snowdon RJ. Early exposure to phosphorus starvation induces genetically determined responses in Sorghum bicolor roots. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:220. [PMID: 39259361 PMCID: PMC11390786 DOI: 10.1007/s00122-024-04728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/27/2024] [Indexed: 09/13/2024]
Abstract
KEY MESSAGE We identified novel physiological and genetic responses to phosphorus starvation in sorghum diversity lines that augment current knowledge of breeding for climate-smart crops in Europe. Phosphorus (P) deficiency and finite P reserves for fertilizer production pose a threat to future global crop production. Understanding root system architecture (RSA) plasticity is central to breeding for P-efficient crops. Sorghum is regarded as a P-efficient and climate-smart crop with strong adaptability to different climatic regions of the world. Here we investigated early genetic responses of sorghum RSA to P deficiency in order to identified genotypes with interesting root phenotypes and responses under low P. A diverse set of sorghum lines (n = 285) was genotyped using DarTSeq generating 12,472 quality genome wide single-nucleotide polymorphisms. Root phenotyping was conducted in a paper-based hydroponic rhizotron system under controlled greenhouse conditions with low and optimal P nutrition, using 16 RSA traits to describe genetic and phenotypic variability at two time points. Genotypic and phenotypic P-response variations were observed for multiple root traits at 21 and 42 days after germination with high broad sense heritability (0.38-0.76). The classification of traits revealed four distinct sorghum RSA types, with genotypes clustering separately under both low and optimal P conditions, suggesting genetic control of root responses to P availability. Association studies identified quantitative trait loci in chromosomes Sb02, Sb03, Sb04, Sb06 and Sb09 linked with genes potentially involved in P transport and stress responses. The genetic dissection of key factors underlying RSA responses to P deficiency could enable early identification of P-efficient sorghum genotypes. Genotypes with interesting RSA traits for low P environments will be incorporated into current sorghum breeding programs for later growth stages and field-based evaluations.
Collapse
Affiliation(s)
- Erick O Mikwa
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany.
| | - Benjamin Wittkop
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | | | - Sven E Weber
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Dorit Ehrhardt
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| |
Collapse
|
4
|
Conde S, Rami JF, Okello DK, Sambou A, Muitia A, Oteng-Frimpong R, Makweti L, Sako D, Faye I, Chintu J, Coulibaly AM, Miningou A, Asibuo JY, Konate M, Banla EM, Seye M, Djiboune YR, Tossim HA, Sylla SN, Hoisington D, Clevenger J, Chu Y, Tallury S, Ozias-Akins P, Fonceka D. The groundnut improvement network for Africa (GINA) germplasm collection: a unique genetic resource for breeding and gene discovery. G3 (BETHESDA, MD.) 2023; 14:jkad244. [PMID: 37875136 PMCID: PMC10755195 DOI: 10.1093/g3journal/jkad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/22/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Cultivated peanut or groundnut (Arachis hypogaea L.) is a grain legume grown in many developing countries by smallholder farmers for food, feed, and/or income. The speciation of the cultivated species, that involved polyploidization followed by domestication, greatly reduced its variability at the DNA level. Mobilizing peanut diversity is a prerequisite for any breeding program for overcoming the main constraints that plague production and for increasing yield in farmer fields. In this study, the Groundnut Improvement Network for Africa assembled a collection of 1,049 peanut breeding lines, varieties, and landraces from 9 countries in Africa. The collection was genotyped with the Axiom_Arachis2 48K SNP array and 8,229 polymorphic single nucleotide polymorphism (SNP) markers were used to analyze the genetic structure of this collection and quantify the level of genetic diversity in each breeding program. A supervised model was developed using dapc to unambiguously assign 542, 35, and 172 genotypes to the Spanish, Valencia, and Virginia market types, respectively. Distance-based clustering of the collection showed a clear grouping structure according to subspecies and market types, with 73% of the genotypes classified as fastigiata and 27% as hypogaea subspecies. Using STRUCTURE, the global structuration was confirmed and showed that, at a minimum membership of 0.8, 76% of the varieties that were not assigned by dapc were actually admixed. This was particularly the case of most of the genotype of the Valencia subgroup that exhibited admixed genetic heritage. The results also showed that the geographic origin (i.e. East, Southern, and West Africa) did not strongly explain the genetic structure. The gene diversity managed by each breeding program, measured by the expected heterozygosity, ranged from 0.25 to 0.39, with the Niger breeding program having the lowest diversity mainly because only lines that belong to the fastigiata subspecies are used in this program. Finally, we developed a core collection composed of 300 accessions based on breeding traits and genetic diversity. This collection, which is composed of 205 genotypes of fastigiata subspecies (158 Spanish and 47 Valencia) and 95 genotypes of hypogaea subspecies (all Virginia), improves the genetic diversity of each individual breeding program and is, therefore, a unique resource for allele mining and breeding.
Collapse
Affiliation(s)
- Soukeye Conde
- ISRA, Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, University Montpellier, Institut Agro, 34398 Montpellier, France
- F.S.T., Département de B.V., Université Cheikh Anta Diop, BP 5005 Dakar, Senegal
| | - Jean-François Rami
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, University Montpellier, Institut Agro, 34398 Montpellier, France
| | - David K Okello
- National Semi-Arid Resources Research Institute-Serere, PO Box 56, Kampala, Uganda
| | - Aissatou Sambou
- ISRA, Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
| | - Amade Muitia
- Mozambique Agricultural Research Institute (Instituto de Investigação Agrária de Moçambique), Northeast Zonal Centre, Nampula Research Station, PO Box 1922, Nampula, Mozambique
| | - Richard Oteng-Frimpong
- Groundnut Improvement Program, Council for Scientific and Industrial Research (CSIR)-Savanna Agricultural Research Institute, PO Box 52, Tamale, Ghana
| | - Lutangu Makweti
- Zambia Agriculture Research Institute (ZARI), PO Box 510089, Chipata, Zambia
| | - Dramane Sako
- Institut d’Economie Rurale (IER), Centre Régional de Recherche Agronomique (CRRA), BP 281 Kayes, Mali
| | - Issa Faye
- ISRA, Institut Sénégalais de Recherches Agricoles, Centre National de Recherche Agronomique, BP 53 Bambey, Sénégal
| | - Justus Chintu
- Chitedze Agricultural Research Service, PO Box 158, Lilongwe, Malawi
| | - Adama M Coulibaly
- Institut National de Recherche Agronomique du Niger (INRAN), BP 240 Maradi, Niger
| | - Amos Miningou
- INERA, CREAF, 01 BP 476 Ouagadougou 01, Burkina Faso
| | - James Y Asibuo
- Council for Scientific and Industrial Research-Crops Research Institute (CSIR-CRI), P.O. Box 3785, Kumasi, Ghana
| | - Moumouni Konate
- INERA, DRREA-Ouest, 01 BP 910 Bobo Dioulasso 01, Burkina Faso
| | - Essohouna M Banla
- Institut Togolais de Recherche Agronomique (ITRA), 13BP267 Lome, Togo
| | - Maguette Seye
- ISRA, Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
| | - Yvette R Djiboune
- ISRA, Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
| | - Hodo-Abalo Tossim
- ISRA, Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
| | - Samba N Sylla
- F.S.T., Département de B.V., Université Cheikh Anta Diop, BP 5005 Dakar, Senegal
| | - David Hoisington
- Feed the Future Innovation Lab for Peanut, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Josh Clevenger
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Ye Chu
- Institute of Plant Breeding Genetics and Genomics and Department of Horticulture, College of Agricultural and Environmental Sciences, University of Georgia, Tifton, GA 31793, USA
| | - Shyam Tallury
- Plant Genetic Resources Conservation Unit, Griffin, GA 30223, USA
| | - Peggy Ozias-Akins
- Institute of Plant Breeding Genetics and Genomics and Department of Horticulture, College of Agricultural and Environmental Sciences, University of Georgia, Tifton, GA 31793, USA
| | - Daniel Fonceka
- ISRA, Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, University Montpellier, Institut Agro, 34398 Montpellier, France
| |
Collapse
|
5
|
Sun Z, Zheng Z, Qi F, Wang J, Wang M, Zhao R, Liu H, Xu J, Qin L, Dong W, Huang B, Han S, Zhang X. Development and evaluation of the utility of GenoBaits Peanut 40K for a peanut MAGIC population. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:72. [PMID: 37786866 PMCID: PMC10542084 DOI: 10.1007/s11032-023-01417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Population and genotype data are essential for genetic mapping. The multi-parent advanced generation intercross (MAGIC) population is a permanent mapping population used for precisely mapping quantitative trait loci. Moreover, genotyping-by-target sequencing (GBTS) is a robust high-throughput genotyping technology characterized by its low cost, flexibility, and limited requirements for information management and support. In this study, an 8-way MAGIC population was constructed using eight elite founder lines. In addition, GenoBaits Peanut 40K was developed and utilized for the constructed MAGIC population. A subset (297 lines) of the MAGIC population at the S2 stage was genotyped using GenoBaits Peanut 40K. Furthermore, these lines and the eight parents were analyzed in terms of pod length, width, area, and perimeter. A total of 27 single nucleotide polymorphisms (SNPs) were revealed to be significantly associated with peanut pod size-related traits according to a genome-wide association study. The GenoBaits Peanut 40K provided herein and the constructed MAGIC population will be applicable for future research to identify the key genes responsible for important peanut traits. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01417-w.
Collapse
Affiliation(s)
- Ziqi Sun
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/State Industrial Innovation Center of Biological Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan China
| | - Zheng Zheng
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/State Industrial Innovation Center of Biological Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan China
| | - Feiyan Qi
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/State Industrial Innovation Center of Biological Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan China
| | - Juan Wang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/State Industrial Innovation Center of Biological Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan China
| | - Mengmeng Wang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/State Industrial Innovation Center of Biological Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan China
| | - Ruifang Zhao
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/State Industrial Innovation Center of Biological Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan China
| | - Hua Liu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/State Industrial Innovation Center of Biological Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan China
| | - Jing Xu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/State Industrial Innovation Center of Biological Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan China
| | - Li Qin
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/State Industrial Innovation Center of Biological Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan China
| | - Wenzhao Dong
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/State Industrial Innovation Center of Biological Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan China
| | - Bingyan Huang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/State Industrial Innovation Center of Biological Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan China
| | - Suoyi Han
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/State Industrial Innovation Center of Biological Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan China
| | - Xinyou Zhang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/The Shennong Laboratory/State Industrial Innovation Center of Biological Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, Henan China
| |
Collapse
|