1
|
Egedigwe U, Udengwu O, Ekeleme-Egedigwe C, Maduakor C, Urama C, Odo C, Ojua E. Integrated stress responses in okra plants (cv. ''Meya']: unravelling the mechanisms underlying drought and nematode co-occurrence. BMC PLANT BIOLOGY 2024; 24:986. [PMID: 39427110 PMCID: PMC11490165 DOI: 10.1186/s12870-024-05686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Climate change threatens sub-Saharan Africa's agricultural production, causing abiotic and biotic stressors. The study of plant responses to joint stressors is crucial for understanding molecular processes and identifying resilient crops for global food security. This study aimed to explore the shared and tailored responses of okra plants (cv. ''Meya'), at the biochemical and molecular levels, subjected to combined stresses of drought and Meloidogyne incognita infection. DESIGN The study involved 240 okra plants in a completely randomized design, with six treatments replicated 20 times. Okra plants were adequately irrigated at the end of every 10-days water deficit that lasted for 66 days (D). Also, the plants were infected with M. incognita for 66 days and irrigated at 2-days intervals (R). The stresses were done independently, in sequential combination (D before R and R before D) and concurrently (R and D). All biochemical and antioxidant enzyme assays were carried out following standard procedures. RESULTS Significant reductions in leaf relative water content were recorded in all stressed plants, especially in leaves of plants under individual drought stress (D) (41.6%) and plants stressed with root-knot nematode infection before drought stress (RBD) (41.4%). Malondialdehyde contents in leaf tissues from plants in D, nematode-only stress (RKN), drought stress before root-knot nematode infection (DBR), RBD, and concurrent drought-nematode stress (RAD) significantly increased by 320.2%, 152.9%, 186.5%, 283.7%, and 109.6%, respectively. Plants in D exhibited the highest superoxide dismutase activities in leaf (147.1% increase) and root (105.8% increase) tissues. Catalase (CAT) activities were significantly increased only in leaves of plants in D (90.8%) and RBD (88.9%), while only roots of plants in D exhibited a substantially higher CAT activity (139.3% increase) in comparison to controlled plants. Okra plants over-expressed NCED3 and under-expressed Me3 genes in leaf tissues. The NCED3 gene was overexpressed in roots from all treatments, while CYP707A3 was under-expressed only in roots of plants in RBD and RKN. CYP707A3 and NCED3 were grouped as closely related genes, while members of the Me3 genes were clustered into a separate group. CONCLUSION The biochemical and molecular responses observed in okra plants (cv. ''Meya') subjected to combined stresses of drought and Meloidogyne incognita infection provide valuable insights into enhancing crop resilience under multifaceted stress conditions, particularly relevant for agricultural practices in sub-Saharan Africa facing increasing climatic challenges.
Collapse
Affiliation(s)
- Uchenna Egedigwe
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Obi Udengwu
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Chima Ekeleme-Egedigwe
- Department of Biochemistry, Faculty of Biological Sciences, Alex Ekwueme Federal University, Ndufu Alike, Ikwo, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| | - Chima Maduakor
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Clifford Urama
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Chidera Odo
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria
| | - Eugene Ojua
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, P.M.B. 410001, Nsukka, Enugu State, Nigeria.
| |
Collapse
|
2
|
Shelake RM, Wagh SG, Patil AM, Červený J, Waghunde RR, Kim JY. Heat Stress and Plant-Biotic Interactions: Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:2022. [PMID: 39124140 PMCID: PMC11313874 DOI: 10.3390/plants13152022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Climate change presents numerous challenges for agriculture, including frequent events of plant abiotic stresses such as elevated temperatures that lead to heat stress (HS). As the primary driving factor of climate change, HS threatens global food security and biodiversity. In recent years, HS events have negatively impacted plant physiology, reducing plant's ability to maintain disease resistance and resulting in lower crop yields. Plants must adapt their priorities toward defense mechanisms to tolerate stress in challenging environments. Furthermore, selective breeding and long-term domestication for higher yields have made crop varieties vulnerable to multiple stressors, making them more susceptible to frequent HS events. Studies on climate change predict that concurrent HS and biotic stresses will become more frequent and severe in the future, potentially occurring simultaneously or sequentially. While most studies have focused on singular stress effects on plant systems to examine how plants respond to specific stresses, the simultaneous occurrence of HS and biotic stresses pose a growing threat to agricultural productivity. Few studies have explored the interactions between HS and plant-biotic interactions. Here, we aim to shed light on the physiological and molecular effects of HS and biotic factor interactions (bacteria, fungi, oomycetes, nematodes, insect pests, pollinators, weedy species, and parasitic plants), as well as their combined impact on crop growth and yields. We also examine recent advances in designing and developing various strategies to address multi-stress scenarios related to HS and biotic factors.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sopan Ganpatrao Wagh
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Akshay Milind Patil
- Cotton Improvement Project, Mahatma Phule Krishi Vidyapeeth (MPKV), Rahuri 413722, India;
| | - Jan Červený
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Rajesh Ramdas Waghunde
- Department of Plant Pathology, College of Agriculture, Navsari Agricultural University, Bharuch 392012, India;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nulla Bio Inc., Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Pollok JR, Johnson CS, Eisenback J, David Reed T, Adamo N. Effect of Soil Temperature on Reproduction of Root-knot Nematodes in Flue-cured Tobacco with Homozygous Rk1 and/or Rk2 Resistance Genes. J Nematol 2023; 55:20230032. [PMID: 37533964 PMCID: PMC10390847 DOI: 10.2478/jofnem-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 08/04/2023] Open
Abstract
Most commercial flue-cured tobacco cultivars contain the Rk1 resistance gene, which provides resistance to races 1 and 3 of Meloidogyne incognita and race 1 of M. arenaria. A number of cultivars now possess a second root-knot resistance gene, Rk2. High soil temperatures have been associated with a breakdown of root-knot resistance genes in a number of crops. Three greenhouse trials were performed from 2014 to 2015 investigate the effect of high soil temperature on the efficacy of Rk1 and/or Rk2 genes in reducing parasitism by a population of M. incognita race 3. Trials were arranged in randomized complete block design in open-top growth chambers set at 25°, 30°, and 35°C. Plants were inoculated with 3,000 eggs and data were collected 35 days post-inoculation. Galling, numbers of egg masses and eggs, and reproductive index were compared across cultivar entries. Nematode reproduction was reduced at 25°C and 30°C on entries possessing Rk1 and Rk1Rk2 compared to the susceptible entry and the entry possessing only Rk2. However, there were often no significant differences in reproduction at 35°C between entries with Rk1 and/or Rk2 compared to the susceptible control, indicating an increase of root-knot nematode parasitism on resistant entries at higher temperatures. Although seasonal differences in nematode reproduction were observed among experiments, relative differences among tobacco genotypes remained generally consistent.
Collapse
Affiliation(s)
- Jill R. Pollok
- Virginia Tech, Southern Piedmont Agricultural Research and Extension Center, 2375 Darvills Rd, Blackstone, VA23824
- Virginia Tech, School of Plant and Environmental Sciences, Blacksburg, VA24060
| | - Charles S. Johnson
- Virginia Tech, Southern Piedmont Agricultural Research and Extension Center, 2375 Darvills Rd, Blackstone, VA23824
- Virginia Tech, School of Plant and Environmental Sciences, Blacksburg, VA24060
| | - J.D. Eisenback
- Virginia Tech, School of Plant and Environmental Sciences, Blacksburg, VA24060
| | - T. David Reed
- Virginia Tech, Southern Piedmont Agricultural Research and Extension Center, 2375 Darvills Rd, Blackstone, VA23824
| | - Noah Adamo
- Virginia Tech, Southern Piedmont Agricultural Research and Extension Center, 2375 Darvills Rd, Blackstone, VA23824
- Virginia Tech, School of Plant and Environmental Sciences, Blacksburg, VA24060
| |
Collapse
|
4
|
Silva-Valenzuela M, Rojas-Martínez RI, Zúñiga-Mayo VM. Chili Pepper Jojutla Morelos ( Capsicum annuum L.), CJ-2018: A Variety Resistant to Bactericera cockerelli. INSECTS 2022; 13:742. [PMID: 36005367 PMCID: PMC9409313 DOI: 10.3390/insects13080742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Chili pepper is a vegetable of worldwide economic and gastronomic importance. The psyllid, Bactericera cockerelli, is an economically important pest in this crop, causing considerable losses in its production. Currently, the application of insecticides is the main way to control B. cockerelli. However, the use of varieties resistant to this insect is a viable alternative for its control and management. In this work, the oviposition rate, development, and survival of B. cockerelli in two native varieties of chili were evaluated. Choice and non-choice trials showed that the B. cockerelli oviposition was reduced on CJ-2018 by 92.17 and 80.18%, respectively, compared to the control. In CM-334, the insect showed a behavior similar to the control in the non-choice test, while in the choice test it laid more eggs on CM-334 compared to the control. The development and survival assay showed that only 1.33% of the eggs managed to reach the adult stage on CJ-2018. In contrast, on CM-334 the survival of B. cockerelli was similar to the control. These results suggest that CJ-2018 presented a resistance based on antixenosis and antibiosis against B. cockerelli.
Collapse
Affiliation(s)
- Manuel Silva-Valenzuela
- Postgrado en Fitosanidad-Fitopatología, Colegio de Postgraduados (CP), Campus Montecillo, km 36.5 Carretera México-Texcoco, Montecillo 56230, Estado de México, Mexico
| | - Reyna Isabel Rojas-Martínez
- Postgrado en Fitosanidad-Fitopatología, Colegio de Postgraduados (CP), Campus Montecillo, km 36.5 Carretera México-Texcoco, Montecillo 56230, Estado de México, Mexico
| | - Victor M. Zúñiga-Mayo
- CONACyT, Postgrado en Fitosanidad-Fitopatología, Colegio de Postgraduados (CP), Campus Montecillo, km 36.5 Carretera México-Texcoco, Montecillo 56230, Estado de México, Mexico
| |
Collapse
|
5
|
R-BPMV-Mediated Resistance to Bean pod mottle virus in Phaseolus vulgaris L. Is Heat-Stable but Elevated Temperatures Boost Viral Infection in Susceptible Genotypes. Viruses 2021; 13:v13071239. [PMID: 34206842 PMCID: PMC8310253 DOI: 10.3390/v13071239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
In the context of climate change, elevated temperature is a major concern due to the impact on plant–pathogen interactions. Although atmospheric temperature is predicted to increase in the next century, heat waves during summer seasons have already become a current problem. Elevated temperatures strongly influence plant–virus interactions, the most drastic effect being a breakdown of plant viral resistance conferred by some major resistance genes. In this work, we focused on the R-BPMV gene, a major resistance gene against Bean pod mottle virus in Phaseolus vulgaris. We inoculated different BPMV constructs in order to study the behavior of the R-BPMV-mediated resistance at normal (20 °C) and elevated temperatures (constant 25, 30, and 35 °C). Our results show that R-BPMV mediates a temperature-dependent phenotype of resistance from hypersensitive reaction at 20 °C to chlorotic lesions at 35 °C in the resistant genotype BAT93. BPMV is detected in inoculated leaves but not in systemic ones, suggesting that the resistance remains heat-stable up to 35 °C. R-BPMV segregates as an incompletely dominant gene in an F2 population. We also investigated the impact of elevated temperature on BPMV infection in susceptible genotypes, and our results reveal that elevated temperatures boost BPMV infection both locally and systemically in susceptible genotypes.
Collapse
|
6
|
Desaint H, Aoun N, Deslandes L, Vailleau F, Roux F, Berthomé R. Fight hard or die trying: when plants face pathogens under heat stress. THE NEW PHYTOLOGIST 2021; 229:712-734. [PMID: 32981118 DOI: 10.1111/nph.16965] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/31/2020] [Indexed: 05/22/2023]
Abstract
In their natural environment, plants are exposed to biotic or abiotic stresses that occur sequentially or simultaneously. Plant responses to these stresses have been studied widely and have been well characterised in simplified systems involving single plant species facing individual stress. Temperature elevation is a major abiotic driver of climate change and scenarios have predicted an increase in the number and severity of epidemics. In this context, here we review the available data on the effect of heat stress on plant-pathogen interactions. Considering 45 studies performed on model or crop species, we discuss the possible implications of the optimum growth temperature of plant hosts and pathogens, mode of stress application and temperature variation on resistance modulations. Alarmingly, most identified resistances are altered under temperature elevation, regardless of the plant and pathogen species. Therefore, we have listed current knowledge on heat-dependent plant immune mechanisms and pathogen thermosensory processes, mainly studied in animals and human pathogens, that could help to understand the outcome of plant-pathogen interactions under elevated temperatures. Based on a general overview of the mechanisms involved in plant responses to pathogens, and integrating multiple interactions with the biotic environment, we provide recommendations to optimise plant disease resistance under heat stress and to identify thermotolerant resistance mechanisms.
Collapse
Affiliation(s)
- Henri Desaint
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
- SYNGENTA Seeds, Sarrians, 84260, France
| | - Nathalie Aoun
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | | | | | - Fabrice Roux
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Richard Berthomé
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
7
|
A Comprehensive Transcriptional Profiling of Pepper Responses to Root-Knot Nematode. Genes (Basel) 2020; 11:genes11121507. [PMID: 33333784 PMCID: PMC7765216 DOI: 10.3390/genes11121507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic resistance remains a key component in integrated pest management systems. The cosmopolitan root-knot nematode (RKN; Meloidogyne spp.) proves a significant management challenge as virulence and pathogenicity vary among and within species. RKN greatly reduces commercial bell pepper yield, and breeding programs continuously develop cultivars to emerging nematode threats. However, there is a lack of knowledge concerning the nature and forms of nematode resistance. Defining how resistant and susceptible pepper cultivars mount defenses against RKN attacks can help inform breeding programs. Here, we characterized the transcriptional responses of the highly related resistant (Charleston Belle) and susceptible (Keystone Resistance Giant) pepper cultivars throughout early nematode infection stages. Comprehensive transcriptomic sequencing of resistant and susceptible cultivar roots with or without Meloidogyneincognita infection over three-time points; covering early penetration (1-day), through feeding site maintenance (7-days post-inoculation), produced > 300 million high quality reads. Close examination of chromosome P9, on which nematode resistance hotspots are located, showed more differentially expressed genes were upregulated in resistant cultivar at day 1 when compared to the susceptible cultivar. Our comprehensive approach to transcriptomic profiling of pepper resistance revealed novel insights into how RKN causes disease and the plant responses mounted to counter nematode attack. This work broadens the definition of resistance from a single loci concept to a more complex array of interrelated pathways. Focus on these pathways in breeding programs may provide more sustainable and enduring forms of resistance.
Collapse
|
8
|
Hajihassani A, Rutter WB, Luo X. Resistant Pepper Carrying N, Me1, and Me3 have Different Effects on Penetration and Reproduction of Four Major Meloidogyne species. J Nematol 2019; 51:1-9. [PMID: 31088032 PMCID: PMC6929641 DOI: 10.21307/jofnem-2019-020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 11/11/2022] Open
Abstract
Root-knot nematode (Meloidogyne spp.) exhibits a substantial problem in pepper production, causing reduction in yield throughout the world. Continued assessment for root-knot resistance is important for developing new resistance cultivars. In this study, the effect of Me and N genes on the penetration and reproduction of M. incognita race 3, M. arenaria race 1, M. javanica, and M. haplanaria was examined under controlled greenhouse conditions using susceptible and resistant pepper lines/cultivars (Mellow Star, Yolo Wonder B, Charleston Belle, HDA-149, HDA-330, PM-217, and PM-687) differing in the presence or absence of resistant genes. The penetration and resistance responses of these pepper lines differed depending on the nematode species. More second-stage juveniles penetrated roots of susceptible control cultivar Mellow Star than roots of resistant cultivars/lines. Although, there was no significant difference in the nematode penetration among resistant lines 1 and 3 days after inoculation (DAI), variability in the penetration of M. incognita, M. javanica, and M. haplanaria was observed 5 DAI. This demonstrates the variability among different nematode resistance genes to invasion by Meloidogyne spp. Based on nematode gall index (GI) and reproduction factor (RF), Charleston Belle, HDA-149, PM-217 and PM-687 showed very high resistance (GI < 1 and RF < 0.1) to M. incognita, M. arenaria, and M. javanica. Although, all the Meloidogyne-resistant pepper lines evaluated were resistant to M. javanica and M. haplanaria, the susceptible cultivar Mellow Star was a good host for all nematode species having an RF ranging from 8.1 to 34.7. The N, Me1, and Me3 genes controlled resistance to reproduction of all species of Meloidogyne examined. Root-knot nematode (Meloidogyne spp.) exhibits a substantial problem in pepper production, causing reduction in yield throughout the world. Continued assessment for root-knot resistance is important for developing new resistance cultivars. In this study, the effect of Me and N genes on the penetration and reproduction of M. incognita race 3, M. arenaria race 1, M. javanica, and M. haplanaria was examined under controlled greenhouse conditions using susceptible and resistant pepper lines/cultivars (Mellow Star, Yolo Wonder B, Charleston Belle, HDA-149, HDA-330, PM-217, and PM-687) differing in the presence or absence of resistant genes. The penetration and resistance responses of these pepper lines differed depending on the nematode species. More second-stage juveniles penetrated roots of susceptible control cultivar Mellow Star than roots of resistant cultivars/lines. Although, there was no significant difference in the nematode penetration among resistant lines 1 and 3 days after inoculation (DAI), variability in the penetration of M. incognita, M. javanica, and M. haplanaria was observed 5 DAI. This demonstrates the variability among different nematode resistance genes to invasion by Meloidogyne spp. Based on nematode gall index (GI) and reproduction factor (RF), Charleston Belle, HDA-149, PM-217 and PM-687 showed very high resistance (GI < 1 and RF < 0.1) to M. incognita, M. arenaria, and M. javanica. Although, all the Meloidogyne-resistant pepper lines evaluated were resistant to M. javanica and M. haplanaria, the susceptible cultivar Mellow Star was a good host for all nematode species having an RF ranging from 8.1 to 34.7. The N, Me1, and Me3 genes controlled resistance to reproduction of all species of Meloidogyne examined.
Collapse
Affiliation(s)
| | - William B Rutter
- USDA-ARS United States Vegetable Laboratory , Charleston, SC, 294142
| | - Xuelin Luo
- University of Georgia , Tifton Campus, Tifton, GA, 31794
| |
Collapse
|
9
|
Changkwian A, Venkatesh J, Lee JH, Han JW, Kwon JK, Siddique MI, Solomon AM, Choi GJ, Kim E, Seo Y, Kim YH, Kang BC. Physical Localization of the Root-Knot Nematode ( Meloidogyne incognita) Resistance Locus Me7 in Pepper ( Capsicum annuum). FRONTIERS IN PLANT SCIENCE 2019; 10:886. [PMID: 31354762 PMCID: PMC6629957 DOI: 10.3389/fpls.2019.00886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/21/2019] [Indexed: 05/09/2023]
Abstract
The root-knot nematode (RKN) Meloidogyne incognita severely reduces yields of pepper (Capsicum annuum) worldwide. A single dominant locus, Me7, conferring RKN resistance was previously mapped on the long arm of pepper chromosome P9. In the present study, the Me7 locus was fine mapped using an F2 population of 714 plants derived from a cross between the RKN-susceptible parent C. annuum ECW30R and the RKN-resistant parent C. annuum CM334. CM334 exhibits suppressed RKN juvenile movement, suppressed feeding site enlargement and significant reduction in gall formation compared with ECW30R. RKN resistance screening in the F2 population identified 558 resistant and 156 susceptible plants, which fit a 3:1 ratio confirming that this RKN resistance was controlled by a single dominant gene. Using the C. annuum CM334 reference genome and BAC library sequencing, fine mapping of Me7 markers was performed. The Me7 locus was delimited between two markers G21U3 and G43U3 covering a physical interval of approximately 394.7 kb on the CM334 chromosome P9. Nine markers co-segregated with the Me7 gene. A cluster of 25 putative nucleotide-binding site and leucine-rich repeat (NBS-LRR)-type disease resistance genes were predicted in the delimited Me7 region. We propose that RKN resistance in CM334 is mediated by one or more of these NBS-LRR class R genes. The Me7-linked markers identified here will facilitate marker-assisted selection (MAS) for RKN resistance in pepper breeding programs, as well as functional analysis of Me7 candidate genes in C. annuum.
Collapse
Affiliation(s)
- Amornrat Changkwian
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jelli Venkatesh
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Joung-Ho Lee
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Woong Han
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Muhammad Irfan Siddique
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Abate Mekonnen Solomon
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Gyung-Ja Choi
- Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology, Daejoen, South Korea
| | - Eunji Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yunhee Seo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young-Ho Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Byoung-Cheorl Kang,
| |
Collapse
|
10
|
Bucki P, Paran I, Ozalvo R, Iberkleid I, Ganot L, Braun Miyara S. Pathogenic Variability of Meloidogyne incognita Populations Occurring in Pepper-Production Greenhouses in Israel Toward Me1, Me3 and N Pepper Resistance Genes. PLANT DISEASE 2017; 101:1391-1401. [PMID: 30678600 DOI: 10.1094/pdis-11-16-1667-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Natural variation in the root-knot nematode Meloidogyne incognita is problematic for breeding programs: populations possessing similar morphological characteristics can produce different reactions on the same host. We collected 30 widely dispersed M. incognita populations from protected pepper production systems in major pepper-growing regions of Israel and accurately identified their virulence characteristics by modified differential host test in a growth chamber on tomato, tobacco, cotton, melon, pepper, and peanut. Galling indices and reproduction were determined on the different hosts. All populations fit the published scheme for M. incognita race 2, except for reproduction on cotton plants by five out of 25 tested M. incognita populations, indicating host-range variations. Reaction of three genes that confer resistance to M. incognita-Me1, Me3 and N-to the collected populations was evaluated. Several M. incognita populations induced galling and reproduced successfully on pepper genotypes carrying Me3 and N, whereas plant resistance conferred by Me1 was more robust for all examined populations. Moreover, the effect of genetic background on Me1 resistance demonstrated a relative advantage of several genotypes in nematode infestations. Efficiency of Me3 under local nematode infestation was further studied with a homozygous line carrying two Me3 alleles. Reproduction of virulent populations on the homozygotes (Me3/Me3) and heterozygotes (Me3/Me3+) was similar, suggesting a limited quantitative effect of Me3. These results present the first characterization of host range, reproduction, and molecular aspects of M. incognita from Israel and highlight the importance of taking a multidimensional approach in pepper-breeding programs for resistance to M. incognita.
Collapse
Affiliation(s)
- Patricia Bucki
- Department of Entomology, Units of Chemistry and Nematology, Agricultural Research Organization (ARO), the Volcani Center, Israel
| | - Ilan Paran
- Department of Vegetable and Field Crops, Plant Sciences, ARO, the Volcani Center, Israel
| | - Rachel Ozalvo
- Department of Entomology, Units of Chemistry and Nematology, ARO, the Volcani Center, Israel
| | - Ionit Iberkleid
- Department of Entomology, Units of Chemistry and Nematology, ARO, the Volcani Center, Israel; and Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Liana Ganot
- Negev R & D Center, M.P.O 4, Negev 8544100, Israel
| | - Sigal Braun Miyara
- Department of Entomology, Units of Chemistry and Nematology, ARO, the Volcani Center, Israel
| |
Collapse
|
11
|
Barbary A, Djian-Caporalino C, Marteu N, Fazari A, Caromel B, Castagnone-Sereno P, Palloix A. Plant Genetic Background Increasing the Efficiency and Durability of Major Resistance Genes to Root-knot Nematodes Can Be Resolved into a Few Resistance QTLs. FRONTIERS IN PLANT SCIENCE 2016; 7:632. [PMID: 27242835 PMCID: PMC4861812 DOI: 10.3389/fpls.2016.00632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/25/2016] [Indexed: 05/24/2023]
Abstract
With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS-LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes.
Collapse
Affiliation(s)
- Arnaud Barbary
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia AgrobiotechSophia Antipolis, France
| | - Caroline Djian-Caporalino
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia AgrobiotechSophia Antipolis, France
| | - Nathalie Marteu
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia AgrobiotechSophia Antipolis, France
| | - Ariane Fazari
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia AgrobiotechSophia Antipolis, France
| | - Bernard Caromel
- INRA, UR1052, Génétique et Amélioration des Fruits et LégumesMontfavet, France
| | - Philippe Castagnone-Sereno
- INRA, University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia AgrobiotechSophia Antipolis, France
| | - Alain Palloix
- INRA, UR1052, Génétique et Amélioration des Fruits et LégumesMontfavet, France
| |
Collapse
|
12
|
Barbary A, Djian-Caporalino C, Palloix A, Castagnone-Sereno P. Host genetic resistance to root-knot nematodes, Meloidogyne spp., in Solanaceae: from genes to the field. PEST MANAGEMENT SCIENCE 2015; 71:1591-1598. [PMID: 26248710 DOI: 10.1002/ps.4091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Root-knot nematodes (RKNs) heavily damage most solanaceous crops worldwide. Fortunately, major resistance genes are available in a number of plant species, and their use provides a safe and economically relevant strategy for RKN control. From a structural point of view, these genes often harbour NBS-LRR motifs (i.e. a nucleotide binding site and a leucine rich repeat region near the carboxy terminus) and are organised in syntenic clusters in solanaceous genomes. Their introgression from wild to cultivated plants remains a challenge for breeders, although facilitated by marker-assisted selection. As shown with other pathosystems, the genetic background into which the resistance genes are introgressed is of prime importance to both the expression of the resistance and its durability, as exemplified by the recent discovery of quantitative trait loci conferring quantitative resistance to RKNs in pepper. The deployment of resistance genes at a large scale may result in the emergence and spread of virulent nematode populations able to overcome them, as already reported in tomato and pepper. Therefore, careful management of the resistance genes available in solanaceous crops is crucial to avoid significant reduction in the duration of RKN genetic control in the field. From that perspective, only rational management combining breeding and cultivation practices will allow the design and implementation of innovative, sustainable crop production systems that protect the resistance genes and maintain their durability.
Collapse
Affiliation(s)
- Arnaud Barbary
- INRA, Institut Sophia Agrobiotech, Sophia Antipolis, France
- Université de Nice Sophia Antipolis, Institut Sophia Agrobiotech, Sophia Antipolis, France
- CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Caroline Djian-Caporalino
- INRA, Institut Sophia Agrobiotech, Sophia Antipolis, France
- Université de Nice Sophia Antipolis, Institut Sophia Agrobiotech, Sophia Antipolis, France
- CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Alain Palloix
- INRA, Génétique et Amélioration des Fruits et Légumes, Montfavet Cedex, France
| | - Philippe Castagnone-Sereno
- INRA, Institut Sophia Agrobiotech, Sophia Antipolis, France
- Université de Nice Sophia Antipolis, Institut Sophia Agrobiotech, Sophia Antipolis, France
- CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| |
Collapse
|
13
|
Dunn AR, Smart CD. Interactions of Phytophthora capsici with Resistant and Susceptible Pepper Roots and Stems. PHYTOPATHOLOGY 2015; 105:1355-1361. [PMID: 26010399 DOI: 10.1094/phyto-02-15-0045-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using host resistance is an important strategy for managing pepper root and crown rot caused by Phytophthora capsici. An isolate of P. capsici constitutively expressing a gene for green fluorescent protein was used to investigate pathogen interactions with roots, crowns, and stems of Phytophthora-susceptible bell pepper 'Red Knight', Phytophthora-resistant bell pepper 'Paladin', and Phytophthora-resistant landrace Criollos de Morelos 334 (CM-334). In this study, the same number of zoospores attached to and germinated on roots of all cultivars 30 and 120 min postinoculation (pi), respectively. At 3 days pi, significantly more secondary roots had necrotic lesions on Red Knight than on Paladin and CM-334 plants. By 4 days pi, necrotic lesions had formed on the taproot of Red Knight but not Paladin or CM-334 plants. Although hyphae were visible in the crowns and stems of all Red Knight plants observed at 4 days pi, hyphae were observed in crowns of only a few Paladin and in no CM-334 plants, and never in stems of either resistant cultivar at 4 days pi. These results improve our understanding of how P. capsici infects plants and may contribute to the use of resistant pepper cultivars for disease management and the development of new cultivars.
Collapse
Affiliation(s)
- Amara R Dunn
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Geneva, NY
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Geneva, NY
| |
Collapse
|
14
|
Djian-Caporalino C, Palloix A, Fazari A, Marteu N, Barbary A, Abad P, Sage-Palloix AM, Mateille T, Risso S, Lanza R, Taussig C, Castagnone-Sereno P. Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability. BMC PLANT BIOLOGY 2014; 14:53. [PMID: 24559060 PMCID: PMC3944934 DOI: 10.1186/1471-2229-14-53] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/14/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. RESULTS The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. CONCLUSIONS This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens.
Collapse
Affiliation(s)
| | - Alain Palloix
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS 60094, Montfavet, Cedex F-84143, France
| | - Ariane Fazari
- INRA, UMR1355 INRA/UNSA/CNRS, Institut Sophia Agrobiotech, BP167, Sophia Antipolis F-06903, France
| | - Nathalie Marteu
- INRA, UMR1355 INRA/UNSA/CNRS, Institut Sophia Agrobiotech, BP167, Sophia Antipolis F-06903, France
| | - Arnaud Barbary
- INRA, UMR1355 INRA/UNSA/CNRS, Institut Sophia Agrobiotech, BP167, Sophia Antipolis F-06903, France
| | - Pierre Abad
- INRA, UMR1355 INRA/UNSA/CNRS, Institut Sophia Agrobiotech, BP167, Sophia Antipolis F-06903, France
| | - Anne-Marie Sage-Palloix
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS 60094, Montfavet, Cedex F-84143, France
| | - Thierry Mateille
- IRD, UMR CBGP, Campus de Baillarguet, CS30016, Montferrier-sur-Lez, Cedex F-34988, France
| | - Sabine Risso
- Chambre d’Agriculture des Alpes Maritimes, MIN Fleurs 17 - Box 85, Nice, Cedex 06286, France
| | - Roger Lanza
- Chambre d’Agriculture des Alpes Maritimes, MIN Fleurs 17 - Box 85, Nice, Cedex 06286, France
| | - Catherine Taussig
- APREL, Association Provençale de Recherche et d’Expérimentation Légumière, Route de Mollégès, Saint-Rémy de Provence F-13210, France
| | | |
Collapse
|
15
|
Barbary A, Palloix A, Fazari A, Marteu N, Castagnone-Sereno P, Djian-Caporalino C. The plant genetic background affects the efficiency of the pepper major nematode resistance genes Me1 and Me3. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:499-507. [PMID: 24258389 DOI: 10.1007/s00122-013-2235-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 11/05/2013] [Indexed: 06/02/2023]
Abstract
The plant genetic background influences the efficiency of major resistance genes to root-knot nematodes in pepper and has to be considered in breeding strategies. Root-knot nematodes (RKNs), Meloidogyne spp., are extremely polyphagous plant parasites worldwide. Since the use of most chemical nematicides is being prohibited, genetic resistance is an efficient alternative way to protect crops against these pests. However, nematode populations proved able to breakdown plant resistance, and genetic resources in terms of resistance genes (R-genes) are limited. Sustainable management of these valuable resources is thus a key point of R-gene durability. In pepper, Me1 and Me3 are two dominant major R-genes, currently used in breeding programs to control M. arenaria, M. incognita and M. javanica, the three main RKN species. These two genes differ in the hypersensitive response induced by nematode infection. In this study, they were introgressed in either a susceptible or a partially resistant genetic background, in either homozygous or heterozygous allelic status. Challenging these genotypes with an avirulent M. incognita isolate demonstrated that (1) the efficiency of the R-genes in reducing the reproductive potential of RKNs is strongly affected by the plant genetic background, (2) the allelic status of the R-genes has no effect on nematode reproduction. These results highlight the primary importance of the choice of both the R-gene and the genetic background into which it is introgressed during the selection of new elite cultivars by plant breeders.
Collapse
Affiliation(s)
- A Barbary
- INRA, UMR1355 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France,
| | | | | | | | | | | |
Collapse
|
16
|
Aarrouf J, Castro-Quezada P, Mallard S, Caromel B, Lizzi Y, Lefebvre V. Agrobacterium rhizogenes-dependent production of transformed roots from foliar explants of pepper (Capsicum annuum): a new and efficient tool for functional analysis of genes. PLANT CELL REPORTS 2012; 31:391-401. [PMID: 22016085 DOI: 10.1007/s00299-011-1174-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/12/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
Pepper is known to be a recalcitrant species to genetic transformation via Agrobacterium tumefaciens. A. rhizogenes-mediated transformation offers an alternative and rapid possibility to study gene functions in roots. In our study, we developed a new and efficient system for A. rhizogenes transformation of the cultivated species Capsicum annuum. Hypocotyls and foliar organs (true leaves and cotyledons) of Yolo Wonder (YW) and Criollo de Morelos 334 (CM334) pepper cultivars were inoculated with the two constructs pBIN-gus and pHKN29-gfp of A. rhizogenes strain A4RS. Foliar explants of both pepper genotypes infected by A4RS-pBIN-gus or A4RS-pHKN29-gfp produced transformed roots. Optimal results were obtained using the combination of the foliar explants with A4RS-pHKN29-gfp. 20.5% of YW foliar explants and 14.6% of CM334 foliar explants inoculated with A4RS-pHKN29-gfp produced at least one root expressing uniform green fluorescent protein. We confirmed by polymerase chain reaction the presence of the rolB and gfp genes in the co-transformed roots ensuring that they integrated both the T-DNA from the Ri plasmid and the reporter gene. We also demonstrated that co-transformed roots of YW and CM334 displayed the same resistance response to Phytophthora capsici than the corresponding untransformed roots. Our novel procedure to produce C. annuum hairy roots will thus support the functional analysis of potential resistance genes involved in pepper P. capsici interaction.
Collapse
Affiliation(s)
- J Aarrouf
- INRA Avignon, UR 1052, Unité de Génétique et Amélioration des Fruits et Légumes, BP 94, 84143, Montfavet Cedex, France,
| | | | | | | | | | | |
Collapse
|
17
|
Barchi L, Bonnet J, Boudet C, Signoret P, Nagy I, Lanteri S, Palloix A, Lefebvre V. A high-resolution, intraspecific linkage map of pepper (Capsicum annuum L.) and selection of reduced recombinant inbred line subsets for fast mapping. Genome 2007; 50:51-60. [PMID: 17546071 DOI: 10.1139/g06-140] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A high-resolution, intraspecific linkage map of pepper (Capsicum annuum L.) was constructed from a population of 297 recombinant inbred lines. The parents were the large-fruited inbred cultivar 'Yolo Wonder' and the hot pepper line 'Criollo de Morelos 334', which is heavily used as a source of resistance to a number of diseases. A set of 587 markers (507 amplified fragment length polymorphisms, 40 simple sequence repeats, 19 restriction fragment length polymorphisms, 17 sequence-specific amplified polymorphisms, and 4 sequence tagged sites) were used to generate the map; of these, 489 were assembled into 49 linkage groups (LGs), including 14 LGs with 10 to 60 markers per LG and 35 with 2 to 9 markers per LG. The framework map covered 1857 cM with an average intermarker distance of 5.71 cM. Twenty-three LGs, composed of 69% of the markers and covering 1553 cM, were assigned to 1 of the 12 haploid pepper chromosomes, leaving 26 LGs (304 cM) unassigned. The chromosome framework map built with 250 markers led to a high level of mapping confidence and an average intermarker distance of 6.54 cM. By applying MapPop software, it was possible to select smaller subsets of 141 or 93 most informative individuals with a view to reducing the time and cost of further mapping and phenotyping. To define the smallest number of individuals sufficient for assigning any new marker to a chromosome, subsets from 12 to 45 individuals and a set of 13 markers distributed over all 12 chromosomes were screened. In most cases, the markers were correctly assigned to their expected chromosome, but the accuracy of the map position decreased as the number of individuals was reduced.
Collapse
Affiliation(s)
- Lorenzo Barchi
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, BP94, Montfavet F-84140, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen R, Li H, Zhang L, Zhang J, Xiao J, Ye Z. CaMi, a root-knot nematode resistance gene from hot pepper (Capsium annuum L.) confers nematode resistance in tomato. PLANT CELL REPORTS 2007; 26:895-905. [PMID: 17310335 DOI: 10.1007/s00299-007-0304-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 12/04/2006] [Accepted: 01/02/2007] [Indexed: 05/08/2023]
Abstract
Several root-knot nematode (Meloidogyne spp.) resistance genes have been discovered in different pepper (Capsium annuum L.) lines; however, none of them has yet been cloned. In this study, a candidate root-knot nematode resistance gene (designated as CaMi) was isolated from the resistant pepper line PR 205 by degenerate PCR amplification combined with the RACE technique. Expression profiling analysis revealed that this gene was highly expressed in roots, leaves, and flowers and expressed at a lower level in stems and was not detectable in fruits. To verify the function of CaMi, a sense vector containing the genomic DNA spanning the full coding region of CaMi was constructed and transferred into root-knot nematode susceptible tomato plants. Sixteen transgenic plants carrying one to five copies of T-DNA inserts were generated from two nematode susceptible tomato cultivars. RT-PCR analysis revealed that the expression levels of CaMi gene varied in different transgenic plants. Nematode assays showed that the resistance to root-knot nematodes was significantly improved in some transgenic lines compared to untransformed susceptible plants, and that the resistance was inheritable. Ultrastructure analysis showed that nematodes led to the formation of galls or root knots in the susceptible lines while in the resistant transgenic plants, the CaMi gene triggered a hypersensitive response (HR) as well as many necrotic cells around nematodes.
Collapse
Affiliation(s)
- Rugang Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
19
|
Djian-Caporalino C, Fazari A, Arguel MJ, Vernie T, VandeCasteele C, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V, Abad P. Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:473-86. [PMID: 17136373 DOI: 10.1007/s00122-006-0447-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 10/25/2006] [Indexed: 05/12/2023]
Abstract
The root-knot nematode (Meloidogyne spp.) is a major plant pathogen, affecting several solanaceous crops worldwide. In Capsicum annuum, resistance to this pathogen is controlled by several independent dominant genes--the Me genes. Six Me genes have previously been shown to be stable at high temperature in three highly resistant and genetically distant accessions: PI 322719, PI 201234, and CM334 (Criollo de Morelos 334). Some genes (Me4, Mech1, and Mech2) are specific to certain Meloidogyne species or populations, whereas others (Me1, Me3, and Me7) are effective against a wide range of Meloidogyne species, including M. arenaria, M. javanica, and M. incognita, the most common species in Mediterranean and tropical areas. These genes direct different response patterns in root cells depending on the pepper line and nematode species. Allelism tests and fine mapping using the BSA-AFLP approach showed these genes to be different but linked, with a recombination frequency of 0.02-0.18. Three of the PCR-based markers identified in several genetic backgrounds were common to the six Me genes. Comparative mapping with CarthaGene software indicated that these six genes clustered in a single genomic region within a 28 cM interval. Four markers were used to anchor this cluster on the P9 chromosome on an intraspecific reference map for peppers. Other disease resistance factors have earlier been mapped in the vicinity of this cluster. This genomic area is colinear to chromosome T12 of tomato and chromosome XII of potato. Four other nematode resistance genes have earlier been identified in this area, suggesting that these nematode resistance genes are located in orthologous genomic regions in Solanaceae.
Collapse
Affiliation(s)
- C Djian-Caporalino
- INRA, UMR 1064 Interactions Plantes Microorganismes et Santé Végétale, BP167, F-06903, Sophia Antipolis, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Djian-Caporalino C, Lefebvre V, Sage-Daubèze AM, Palloix A. Capsicum. GENETIC RESOURCES, CHROMOSOME ENGINEERING, AND CROP IMPROVEMENT 2006. [DOI: 10.1201/9781420009569.ch6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Lafortune D, Béramis M, Daubèze AM, Boissot N, Palloix A. Partial Resistance of Pepper to Bacterial Wilt Is Oligogenic and Stable Under Tropical Conditions. PLANT DISEASE 2005; 89:501-506. [PMID: 30795429 DOI: 10.1094/pd-89-0501] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Genetic analysis of resistance of pepper to bacterial wilt was performed in the doubled haploid progeny from a cross between a resistant parental line PM 687 and a susceptible cultivar Yolo Wonder. After artificial inoculation with a local isolate of Ralstonia solanacearum, the progeny consisting of 90 lines was transplanted into a naturally infested field in Guadeloupe, Lesser Antilles. The 2 years of experimentation resulted in repeatable results, with a high heritability of the resistance, attesting the reliability of the evaluation procedure and the stability of the resistance over years. Two to five genes with additive effects were estimated to control the resistance, indicating an oligogenic control as observed in tomato sources of resistance. Relationships with resistance to other soilborne or tropical diseases were examined. Susceptibility to Tobacco mosaic virus (TMV) and to nematodes (Meloidogyne spp.) were significantly linked with resistance to bacterial wilt, whereas neither resistance to Phytophthora capsici nor to Leveillula taurica were linked. The similarity of the genetics of resistance to bacterial wilt in pepper and tomato and linkage with TMV resistance locus warrant the comparative mapping of the resistance quantitative trait loci in the genomes of the two species.
Collapse
Affiliation(s)
- Denis Lafortune
- INRA-URPV, Domaine Duclos, Prise d'eau, 97170 Petit Bourg, France
| | - Michel Béramis
- INRA-URPV, Domaine Duclos, Prise d'eau, 97170 Petit Bourg, France
| | | | | | | |
Collapse
|
22
|
Pegard A, Brizzard G, Fazari A, Soucaze O, Abad P, Djian-Caporalino C. Histological Characterization of Resistance to Different Root-Knot Nematode Species Related to Phenolics Accumulation in Capsicum annuum. PHYTOPATHOLOGY 2005; 95:158-65. [PMID: 18943985 DOI: 10.1094/phyto-95-0158] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ABSTRACT In the pepper Capsicum annuum CM334, which is used by breeders as a source of resistance to Phytophthora spp. and potyviruses, a resistance gene entirely suppresses reproduction of the root-knot nematode (Meloidogyne spp.). The current study compared the histological responses of this resistant line and a susceptible cultivar to infection with the three most damaging root-knot nematodes: M. arenaria, M. incognita, or M. javanica. Resistance of CM334 to root-knot nematodes was associated with unidentified factors that limited nematode penetration and with post-penetration biochemical responses, including the hypersensitive response, which apparently blocked nematode migration and thereby prevented juvenile development and reproduction. High-performance liquid chromatography analysis suggested that phenolic compounds, especially chlorogenic acid, may be involved in CM334 resistance. The response to infection in the resistant line varied with root-knot nematode species and was correlated with nematode behavior and pathogenicity in the susceptible cultivar: nematode species that quickly reached the vascular cylinder and initiated feeding sites in the susceptible cultivar were quickly recognized in CM334 and stopped in the epidermis or cortex. After comparing our data with those from other resistant pepper lines, we suggest that timing of the resistance response and the mechanism of resistance vary with plant genotype, resistance gene, and root-knot nematode species.
Collapse
|