1
|
Sabet Sarvestani F, Tamaddon AM, Yaghoobi R, Geramizadeh B, Abolmaali SS, Kaviani M, Keshtkar S, Pakbaz S, Azarpira N. Indirect co-culture of islet cells in 3D biocompatible collagen/laminin scaffold with angiomiRs transfected mesenchymal stem cells. Cell Biochem Funct 2023; 41:296-308. [PMID: 36815688 DOI: 10.1002/cbf.3781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Diabetes is an autoimmune disease in which the pancreatic islets produce insufficient insulin. One of the treatment strategies is islet isolation, which may damage these cells as they lack vasculature. Biocompatible scaffolds are one of the efficient techniques for dealing with this issue. The current study is aimed to determine the effect of transfected BM-MSCS with angiomiR-126 and -210 on the survival and functionality of islets loaded into a 3D scaffold via laminin (LMN). AngiomiRs/Poly Ethylenimine polyplexes were transfected into bone marrow-mesenchymal stem cells (BM-MSCs), followed by 3-day indirect co-culturing with islets laden in collagen (Col)-based hydrogel scaffolds containing LMN. Islet proliferation and viability were significantly increased in LMN-containing scaffolds, particularly in the miRNA-126 treated group. Insulin gene expression was superior in Col scaffolds, especially, in the BM-MSCs/miRNA-126 treated group. VEGF was upregulated in the LMN-containing scaffolds in both miRNA-treated groups, specifically in the miRNA-210, leading to VEGF secretion. MiRNAs' target genes showed no downregulation in LMN-free scaffolds; while a drastic downregulation was seen in the LMN-containing scaffolds. The highest insulin secretion was recorded in the Oxidized dextran (Odex)/ColLMN+ group with miRNA-126. LMN-containing biocompatible scaffolds, once combined with angiomiRs and their downstream effectors, promote islets survival and restore function, leading to enhanced angiogenesis and glycemic status.
Collapse
Affiliation(s)
| | - Ali-Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Islamic Republic of Iran, Shiraz, Iran.,Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran, Shiraz, Iran
| | - Ramin Yaghoobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Islamic Republic of Iran, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Keshtkar
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Giblin MJ, Ontko CD, Penn JS. Effect of cytokine-induced alterations in extracellular matrix composition on diabetic retinopathy-relevant endothelial cell behaviors. Sci Rep 2022; 12:12955. [PMID: 35902594 PMCID: PMC9334268 DOI: 10.1038/s41598-022-12683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Retinal vascular basement membrane (BM) thickening is an early structural abnormality of diabetic retinopathy (DR). Recent studies suggest that BM thickening contributes to the DR pathological cascade; however, much remains to be elucidated about the exact mechanisms by which BM thickening develops and subsequently drives other pathogenic events in DR. Therefore, we undertook a systematic analysis to understand how human retinal microvascular endothelial cells (hRMEC) and human retinal pericytes (hRP) change their expression of key extracellular matrix (ECM) constituents when treated with diabetes-relevant stimuli designed to model the three major insults of the diabetic environment: hyperglycemia, dyslipidemia, and inflammation. TNFα and IL-1β caused the most potent and consistent changes in ECM expression in both hRMEC and hRP. We also demonstrate that conditioned media from IL-1β-treated human Müller cells caused dose-dependent, significant increases in collagen IV and agrin expression in hRMEC. After narrowing our focus to inflammation-induced changes, we sought to understand how ECM deposited by hRMEC and hRP under inflammatory conditions affects the behavior of naïve hRMEC. Our data demonstrated that diabetes-relevant alterations in ECM composition alone cause both increased adhesion molecule expression by and increased peripheral blood mononuclear cell (PBMC) adhesion to naïve hRMEC. Taken together, these data demonstrate novel roles for inflammation and pericytes in driving BM pathology and suggest that inflammation-induced ECM alterations may advance other pathogenic behaviors in DR, including leukostasis.
Collapse
Affiliation(s)
- Meredith J Giblin
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, USA.
| | - Cayla D Ontko
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - John S Penn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
3
|
Roy S, Kim D. Retinal capillary basement membrane thickening: Role in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2020; 82:100903. [PMID: 32950677 DOI: 10.1016/j.preteyeres.2020.100903] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Vascular basement membrane (BM) thickening has been hailed over half a century as the most prominent histological lesion in diabetic microangiopathy, and represents an early ultrastructural change in diabetic retinopathy (DR). Although vascular complications of DR have been clinically well established, specific cellular and molecular mechanisms underlying dysfunction of small vessels are not well understood. In DR, small vessels develop insidiously as BM thickening occurs. Studies examining high resolution imaging data have established BM thickening as one of the foremost structural abnormalities of retinal capillaries. This fundamental structural change develops, at least in part, from excess accumulation of BM components. Although BM thickening is closely associated with the development of DR, its contributory role in the pathogenesis of DR is coming to light recently. DR develops over several years before clinical manifestations appear, and it is during this clinically silent period that hyperglycemia induces excess synthesis of BM components, contributes to vascular BM thickening, and promotes structural and functional lesions including cell death and vascular leakage in the diabetic retina. Studies using animal models show promising results in preventing BM thickening with subsequent beneficial effects. Several gene regulatory approaches are being developed to prevent excess synthesis of vascular BM components in an effort to reduce BM thickening. This review highlights current understanding of capillary BM thickening development, role of BM thickening in retinal vascular lesions, and strategies for preventing vascular BM thickening as a potential therapeutic strategy in alleviating characteristic lesions associated with DR.
Collapse
Affiliation(s)
- Sayon Roy
- Boston University School of Medicine, Boston, MA, USA.
| | - Dongjoon Kim
- Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Kim D, Lee D, Trackman PC, Roy S. Effects of High Glucose-Induced Lysyl Oxidase Propeptide on Retinal Endothelial Cell Survival: Implications for Diabetic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1945-1952. [PMID: 31537300 PMCID: PMC6880772 DOI: 10.1016/j.ajpath.2019.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 01/19/2023]
Abstract
Diabetic retinopathy (DR) is characterized by apoptotic cell loss in the retinal vasculature. Lysyl oxidase propeptide (LOX-PP), released during LOX processing, has been implicated in promoting apoptosis in various diseased tissues. However, its role in the development and progression of DR is unknown. We investigated whether high glucose (HG) or diabetes alters LOX-PP expression and thereby influences AKT pathway and affects retinal endothelial cell survival. Rat retinal endothelial cells were grown in normal medium, normal medium and exposed to recombinant LOX-PP (rLOX-PP) or HG medium and examined for LOX-PP expression, AKT and caspase-3 activation. Similarly, rats intravitreally injected with rLOX-PP were examined for changes in retinal LOX-PP levels, AKT phosphorylation, and the number of acellular capillaries and pericyte loss compared with those of control diabetic and nondiabetic rats. Results indicate that HG up-regulates LOX-PP expression and reduces AKT activation. In addition, cells exposed to rLOX-PP alone exhibited increased apoptosis concomitant with decreased AKT phosphorylation. In retinas of diabetic rats, increased LOX-PP level, decreased AKT phosphorylation, and increased number of acellular capillaries and pericyte loss compared with those of nondiabetic rats were observed. Of interest, similar changes were noted in the retinas of rats injected with rLOX-PP. Findings from this study suggest that hyperglycemia-induced LOX-PP overexpression may contribute to retinal vascular cell loss associated with DR.
Collapse
Affiliation(s)
- Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Dayeun Lee
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Philip C Trackman
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
5
|
Kim D, Mecham RP, Trackman PC, Roy S. Downregulation of Lysyl Oxidase Protects Retinal Endothelial Cells From High Glucose-Induced Apoptosis. Invest Ophthalmol Vis Sci 2017; 58:2725-2731. [PMID: 28538980 PMCID: PMC5444550 DOI: 10.1167/iovs.16-21340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose To investigate the effect of reducing high glucose (HG)-induced lysyl oxidase (LOX) overexpression and increased activity on retinal endothelial cell apoptosis. Methods Rat retinal endothelial cells (RRECs) were grown in normal (N) or HG (30 mM glucose) medium for 7 days. In parallel, RRECs were grown in HG medium and transfected with LOX small interfering RNA (siRNA), scrambled siRNA as control, or exposed to β-aminopropionitrile (BAPN), a LOX inhibitor. LOX expression, AKT activation, and caspase-3 activity were determined by Western blot (WB) analysis and apoptosis by differential dye staining assay. Moreover, to determine whether diabetes-induced LOX overexpression alters AKT activation and promotes apoptosis, changes in LOX expression, AKT phosphorylation, caspase-3 activation, and Bax expression were assessed in retinas of streptozotocin (STZ)-induced diabetic mice and LOX heterozygous knockout (LOX+/-) mice. Results WB analysis indicated significant LOX overexpression and reduced AKT activation under HG condition in RRECs. Interestingly, when cells grown in HG were transfected with LOX siRNA or exposed to BAPN, the number of apoptotic cells was significantly decreased concomitant with increased AKT phosphorylation. Diabetic mouse retinas exhibited LOX overexpression, decreased AKT phosphorylation, and increased Bax and caspase-3 activation compared to values in nondiabetic mice. In LOX+/- mice, reduced LOX levels were observed with increased AKT activity, and reduced Bax and caspase-3 activity. Furthermore, decreased levels of LOX in the LOX+/- mice was protective against diabetes-induced apoptosis. Conclusions Findings from this study indicate that preventing LOX overexpression may be protective against HG-induced apoptosis in retinal vascular cells associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States 2Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Philip C Trackman
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, United States
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States 2Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Roy S, Kim D, Hernández C, Simó R, Roy S. Beneficial effects of fenofibric acid on overexpression of extracellular matrix components, COX-2, and impairment of endothelial permeability associated with diabetic retinopathy. Exp Eye Res 2015; 140:124-129. [PMID: 26297615 DOI: 10.1016/j.exer.2015.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 12/17/2022]
Abstract
In the Fenofibric Acid (FA) Intervention and Event Lowering in Diabetes (FIELD) study, FA, a lipid-lowering drug, has been shown to significantly reduce macular edema in diabetic patients. In the present study, we investigated whether FA reduces vascular permeability by inhibiting cyclooxygenase-2 (COX-2), a critical mediator of inflammation, and reducing overexpression of fibronectin (FN) and collagen IV (Coll IV), two basement membrane (BM) components upregulated in diabetic retinopathy. Rat retinal endothelial cells (RRECs) were grown in normal (N:5 mM glucose) or high glucose (HG:30 mM glucose) medium with or without FA for 7 days. Total protein isolated from these cells was assessed for FN, Coll IV, COX-2, and zonula occludens-1 (ZO-1), a tight junction protein, using Western blot analysis. In addition, the distribution and localization of ZO-1 was determined by immunofluorescence microscopy, and cell monolayer permeability was studied by in vitro permeability (IVP) assay. RRECs grown in HG medium showed significant increase in FN, Coll IV, and COX-2 expression (179%, 144%, 139% of N respectively), and a decrease in ZO-1 expression (48% of N) compared to those of N cells. Cells grown in HG medium supplemented with FA significantly reduced FN, Coll IV, and COX-2 expression by 47%, 32%, and 34% respectively, with concomitant increase in ZO-1 expression by 42%. In parallel studies, IVP assays showed a significant increase (139% of N) in cell monolayer permeability in RRECs grown in HG medium, which was significantly reduced with FA treatment. Additionally, immunostaining results indicated FA prevents HG-induced downregulation of ZO-1. The findings indicate that the beneficial effect of FA in reducing excess permeability is mediated, at least in part, by downregulating abnormal overexpression of BM components and inflammatory factors and preventing compromised tight junctions associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Sumon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), and CIBERDEM, Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), and CIBERDEM, Barcelona, Spain
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
Rubenstein DA, Maria Z, Yin W. Glycated albumin modulates endothelial cell thrombogenic and inflammatory responses. J Diabetes Sci Technol 2011; 5:703-13. [PMID: 21722586 PMCID: PMC3192637 DOI: 10.1177/193229681100500325] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND It has become established that a diabetic vasculature promotes cardiovascular disease progression via changes to endothelial cells, platelets, and the interactions of these cells. It is believed that the majority of these changes are induced by the presence of advanced glycation end products (AGEs), which permanently alter various functions. Studies have shown that platelets perpetuate endothelial cell responses under these conditions. However, the role of changes in endothelial cell thrombogenicity and inflammatory responses, after subjected to AGEs, has not been characterized. Our objective was to evaluate the effects of AGEs on these functions. METHODS To accomplish this, albumin was chemically modified by exposure to glucose for up to 8 weeks, and endothelial cells were subjected to glycated albumin for up to 5 days in a cell culture system. A time course for changes in endothelial cell viability, density, morphology, and metabolic activity were investigated, along with the surface expression of intercellular adhesion molecule-1, thrombomodulin, tissue factor, connexin-43, and caveolin-1. RESULTS Endothelial cells exposed to irreversibly glycated albumin were less viable, proliferated slower, and had a lower metabolic activity as compared to cells exposed to nonglycated albumin. Endothelial cells that were exposed to any glycated albumin were procoagulant and proinflammatory as compared with all other conditions. There were no overall trends in the expression of connexin-43 or caveolin-1. CONCLUSIONS Our data suggest that the presence of irreversible glycated albumin is deleterious to endothelial cells, makes endothelial cells more procoagulant, and promotes inflammatory responses. It is therefore possible that endothelial cell activation may precede and promote platelet activation during diabetic conditions.
Collapse
Affiliation(s)
- David A Rubenstein
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma, USA.
| | | | | |
Collapse
|
8
|
Mogensen C, Bergner B, Wallner S, Ritter A, d'Avis S, Ninichuk V, Kameritsch P, Gloe T, Nagel W, Pohl U. Isolation and functional characterization of pericytes derived from hamster skeletal muscle. Acta Physiol (Oxf) 2011; 201:413-26. [PMID: 20969729 DOI: 10.1111/j.1748-1716.2010.02206.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM At the interface of tissue and capillaries, pericytes (PC) may generate electrical signals to be conducted along the skeletal muscle vascular network, but they are functionally not well characterized. We aimed to isolate and cultivate muscle PC allowing to analyse functional properties considered important for signal generation and conduction. METHODS Pericytes were enzymatically isolated from hamster thigh muscles and further selected during a 16-30 days' cultivation period. PC markers were studied by fluorescence activated cell scanning (FACS) and immunocytochemistry. Electrical properties of the cultured PC were investigated by patch clamp technique as well as the membrane potential sensitive dye DiBAC(4) (3). RESULTS The cultured cells showed typical PC morphology and were positive for NG2, alpha smooth muscle actin, PDGFR-β and the gap junction protein Cx43. Expressions of at least one single or combinations of several markers were found in 80-90% of subpopulations. A subset of the patched cells expressed channel activities consistent with a Kv1.5 channel. In vivo presence of the channels was confirmed in sections of hamster thigh muscles. Interleukin-8, a myokine known to be released from exercising muscle, increased the expression but not the activity of this channel. Pharmacologic stimulation of the channel activity by flufenamic acid induced hyperpolarization of PC alone but not of endothelial cells [human umbilical vein endothelial cells (HUVEC)] alone. However, hyperpolarization was observed in HUVEC adjacent to PC when kept in co-culture. CONCLUSION We established a culture method for PC from skeletal muscle. A first functional characterization revealed properties which potentially enable these cells to generate hyperpolarizing signals and to communicate them to endothelial cells.
Collapse
Affiliation(s)
- C Mogensen
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Roy S, Ha J, Trudeau K, Beglova E. Vascular basement membrane thickening in diabetic retinopathy. Curr Eye Res 2010; 35:1045-56. [PMID: 20929292 DOI: 10.3109/02713683.2010.514659] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vascular basement membrane (BM) thickening is a fundamental structural alteration of small blood vessels in diabetes. Over two decades of research has established hyperglycemia as the primary causal factor mediating this alteration. Various high glucose-induced mechanisms have been investigated and excess synthesis of BM components has been identified as a major contributing factor to BM thickening. Although BM thickening has been long hailed as the histological hallmark of diabetic microangiopathy, the consequences of BM thickening on the functionality of target organs of diabetes remain elusive even today. This review presents an overview of our current understanding of the BM structure and function, and focuses on how capillary BM thickening develops, its effect on retinal vascular function, and potential strategies for preventing the development of BM thickening in diabetic retinopathy.
Collapse
Affiliation(s)
- Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
10
|
Tarallo S, Beltramo E, Berrone E, Dentelli P, Porta M. Effects of high glucose and thiamine on the balance between matrix metalloproteinases and their tissue inhibitors in vascular cells. Acta Diabetol 2010; 47:105-11. [PMID: 19404565 DOI: 10.1007/s00592-009-0124-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
Pericyte survival in diabetic retinopathy depends also on interactions with extracellular matrix (ECM) proteins, which are degraded by matrix metalloproteinases (MMP). Elevated glucose influences ECM turnover, through expression of MMP and their tissue inhibitors, TIMP. We reported on reduced pericyte adhesion to high glucose-conditioned ECM and correction by thiamine. We aimed at verifying the effects of thiamine and benfotiamine on MMP-2, MMP-9 and TIMP expression and activity in human vascular cells with high glucose. In HRP, MMP-2 activity, though not expression, increased with high glucose and decreased with thiamine and benfotiamine; TIMP-1 expression increased with high glucose plus thiamine and benfotiamine; MMP-9 was not expressed. In EC, MMP-9 and MMP-2 expression and activity increased with high glucose, but thiamine and benfotiamine had no effects; TIMP-1 expression was unchanged. Neither glucose nor thiamine modified TIMP-2 and TIMP-3 expression. TIMP-1 concentrations did not change in either HRP or EC. High glucose imbalances MMP/TIMP regulation, leading to increased ECM turnover. Thiamine and benfotiamine correct the increase in MMP-2 activity due to high glucose in HRP, while increasing TIMP-1.
Collapse
Affiliation(s)
- Sonia Tarallo
- Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| | | | | | | | | |
Collapse
|
11
|
Moon JJ, Saik JE, Poché RA, Leslie-Barbick JE, Lee SH, Smith AA, Dickinson ME, West JL. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 2010; 31:3840-7. [PMID: 20185173 DOI: 10.1016/j.biomaterials.2010.01.104] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
To achieve the task of fabricating functional tissues, scaffold materials that can be sufficiently vascularized to mimic functionality and complexity of native tissues are yet to be developed. Here, we report development of synthetic, biomimetic hydrogels that allow the rapid formation of a stable and mature vascular network both in vitro and in vivo. Hydrogels were fabricated with integrin binding sites and protease-sensitive substrates to mimic the natural provisional extracellular matrices, and endothelial cells cultured in these hydrogels organized into stable, intricate networks of capillary-like structures. The resulting structures were further stabilized by recruitment of mesenchymal progenitor cells that differentiated into a smooth muscle cell lineage and deposited collagen IV and laminin in vitro. In addition, hydrogels transplanted into mouse corneas were infiltrated with host vasculature, resulting in extensive vascularization with functional blood vessels. These results indicate that these hydrogels may be useful for applications in basic biological research, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- James J Moon
- Department of Bioengineering, Rice University, Houston, TX 77251-1892, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Beltramo E, Nizheradze K, Berrone E, Tarallo S, Porta M. Thiamine and benfotiamine prevent apoptosis induced by high glucose-conditioned extracellular matrix in human retinal pericytes. Diabetes Metab Res Rev 2009; 25:647-56. [PMID: 19768736 DOI: 10.1002/dmrr.1008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Early and selective loss of pericytes and thickening of the basement membrane are hallmarks of diabetic retinopathy. We reported reduced adhesion, but no changes in apoptosis, of bovine retinal pericytes cultured on extracellular matrix (ECM) produced by endothelial cells in high glucose (HG). Since human and bovine pericytes may behave differently in conditions mimicking the diabetic milieu, we verified the behaviour of human retinal pericytes cultured on HG-conditioned ECM. METHODS Pericytes were cultured in physiological/HG on ECM produced by human umbilical vein endothelial cells in physiological/HG, alone or in the presence of thiamine and benfotiamine. Adhesion, proliferation, apoptosis, p53 and Bcl-2/Bax ratio (mRNA levels and protein concentrations) were measured in wild-type and immortalized human pericytes. RESULTS Both types of pericytes adhered less to HG-conditioned ECM and plastic than to physiological glucose-conditioned ECM. DNA synthesis was impaired in pericytes cultured in HG on the three different surfaces but there were no differences in proliferation. DNA fragmentation and Bcl-2/Bax ratio were greatly enhanced by HG-conditioned ECM in pericytes kept in both physiological and HG. Addition of thiamine and benfotiamine to HG during ECM production completely prevented these damaging effects. CONCLUSIONS Apoptosis is strongly increased in pericytes cultured on ECM produced by endothelium in HG, probably due to impairment of the Bcl-2/Bax ratio. Thiamine and benfotiamine completely revert this effect. This behaviour is therefore completely different from that of bovine pericytes, underlining the importance of establishing species-specific cell models to study the mechanisms of diabetic retinopathy.
Collapse
Affiliation(s)
- Elena Beltramo
- Laboratory of Diabetic Retinopathy, Department of Internal Medicine, University of Turin, Torino, Italy.
| | | | | | | | | |
Collapse
|
13
|
Nordquist L, Stridh S. Effects of proinsulin C-peptide on oxygen transport, uptake and utilization in insulinopenic diabetic subjects--a review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 645:193-8. [PMID: 19227471 DOI: 10.1007/978-0-387-85998-9_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Exogenous C-peptide administration has beneficial effects in many of the tissues commonly affected by diabetic complications. Diabetes-induced circulatory impairments such as decreased blood flow are prevented by C-peptide, possibly via Ca2+-mediated effects on nitric oxide release. C-peptide also improves diabetes-induced erythrocyte deformability, which likely improves oxygen availability and uptake in affected tissues. Furthermore, C-peptide prevents diabetic neuropathy via improvements of endoneural blood flow and by preventing axonal swelling. In the kidney, C-peptide normalizes the diabetes-induced increase in oxygen consumption via inhibition of the Na+/K+-ATPase. Surprisingly, C-peptide has also been shown to prevent complications in patients with type II diabetes. Taken together, these results may indicate that C-peptide treatment has the potential to reduce the prevalence of diabetic complications. In this paper, the current knowledge regarding these beneficial effects of C-peptide administered to diabetic subjects will be reviewed briefly.
Collapse
Affiliation(s)
- Lina Nordquist
- Department of Medical Cell Biology, Uppsala University, BMC, PO 571, 751 23 Uppsala, Sweden
| | | |
Collapse
|
14
|
Beltramo E, Berrone E, Tarallo S, Porta M. Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications. Acta Diabetol 2008; 45:131-41. [PMID: 18581039 DOI: 10.1007/s00592-008-0042-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/30/2008] [Indexed: 01/19/2023]
Abstract
Thiamine (vitamin B1) is an essential cofactor in most organisms and is required at several stages of anabolic and catabolic intermediary metabolism, such as intracellular glucose metabolism, and is also a modulator of neuronal and neuro-muscular transmission. Lack of thiamine or defects in its intracellular transport can cause a number of severe disorders. Thiamine acts as a coenzyme for transketolase (TK) and for the pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase complexes, enzymes which play a fundamental role for intracellular glucose metabolism. In particular, TK is able to shift excess fructose-6-phosphate and glycerhaldeyde-3-phosphate from glycolysis into the pentose-phosphate shunt, thus eliminating these potentially damaging metabolites from the cytosol. Diabetes might be considered a thiamine-deficient state, if not in absolute terms at least relative to the increased requirements deriving from accelerated and amplified glucose metabolism in non-insulin dependent tissues that, like the vessel wall, are prone to complications. A thiamine/TK activity deficiency has been described in diabetic patients, the correction of which by thiamine and/or its lipophilic derivative, benfotiamine, has been demonstrated in vitro to counteract the damaging effects of hyperglycaemia on vascular cells. Little is known, however, on the positive effects of thiamine/benfotiamine administration in diabetic patients, apart from the possible amelioration of neuropathic symptoms. Clinical trials on diabetic patients would be necessary to test this vitamin as a potential and inexpensive approach to the prevention and/or treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Elena Beltramo
- Department of Internal Medicine, University of Turin, Corso AM Dogliotti, 14, 10126, Turin, Italy.
| | | | | | | |
Collapse
|
15
|
Liu H, Yang R, Tinner B, Choudhry A, Schutze N, Chaqour B. Cysteine-rich protein 61 and connective tissue growth factor induce deadhesion and anoikis of retinal pericytes. Endocrinology 2008; 149:1666-77. [PMID: 18187544 DOI: 10.1210/en.2007-1415] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Loss of retinal pericytes is one of the distinctive features of diabetic retinopathy (DR), which is characterized by retinal capillary obliteration. The matricellular proteins, cysteine-rich protein 61 (Cyr61) and connective tissue growth factor (CTGF), are aberrantly expressed in the retinal vasculature from the early stages of DR, but their effects on retinal pericytes are unknown. We show herein that rat retinal pericytes (RRPs) exposed to advanced glycosylation-end products, an important injurious stimulus of diabetes, express increased levels of both Cyr61 and CTGF, and concomitantly undergo anoikis, a form of apoptosis by loss of cell-matrix interactions. Adenovirus-mediated expression of Cyr61 and/or CTGF conferred an anoikis-prone phenotype to rat retinal pericytes, including decreased phosphotyrosine protein levels at focal adhesion points and formation of cortical actin rings. When used as substrates for pericyte attachment and compared with other matrix proteins (e.g. type IV collagen), recombinant Cyr61 and CTGF proteins exhibited antiadhesive and apoptogenic activities. Phosphatase inhibitors reversed these effects, suggesting that Cyr61 and CTGF promote dephosphorylation events. Furthermore, Cyr61- and CTGF-induced apoptosis was mediated through the intrinsic pathway and involved the expression of genes that have been functionally grouped as p53 target genes. Expression of the matrix metalloproteinase-2 gene, a known target of p53, was increased in pericytes overexpressing either Cyr61 or CTGF. Inhibition of matrix metalloproteinase-2 had, at least in part, a protective effect against Cyr61- and CTGF-induced apoptosis. Taken together, these findings support the involvement of Cyr61 and CTGF in pericyte detachment and anoikis, implicating these proteins in the pathogenesis of DR.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | |
Collapse
|
16
|
Berrone E, Beltramo E, Solimine C, Ape AU, Porta M. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. J Biol Chem 2006; 281:9307-13. [PMID: 16452468 DOI: 10.1074/jbc.m600418200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hyperglycemia is a causal factor in the development of the vascular complications of diabetes. One of the biochemical mechanisms activated by excess glucose is the polyol pathway, the key enzyme of which, aldose reductase, transforms d-glucose into d-sorbitol, leading to imbalances of intracellular homeostasis. We aimed at verifying the effects of thiamine and benfotiamine on the polyol pathway, transketolase activity, and intracellular glucose in endothelial cells and pericytes under high ambient glucose. Human umbilical vein endothelial cells and bovine retinal pericytes were cultured in normal (5.6 mmol/liter) or high (28 mmol/liter) glucose, with or without thiamine or benfotiamine 50 or 100 mumol/liter. Transketolase and aldose reductase mRNA expression was determined by reverse transcription-PCR, and their activity was measured spectrophotometrically; sorbitol concentrations were quantified by gas chromatography-mass spectrometry and intracellular glucose concentrations by fluorescent enzyme-linked immunosorbent assay method. Thiamine and benfotiamine reduce aldose reductase mRNA expression, activity, sorbitol concentrations, and intracellular glucose while increasing the expression and activity of transketolase, for which it is a coenzyme, in human endothelial cells and bovine retinal pericytes cultured in high glucose. Thiamine and benfotiamine correct polyol pathway activation induced by high glucose in vascular cells. Activation of transketolase may shift excess glycolytic metabolites into the pentose phosphate cycle, accelerate the glycolytic flux, and reduce intracellular free glucose, thereby preventing its conversion to sorbitol. This effect on the polyol pathway, together with other beneficial effects reported for thiamine in high glucose, could justify testing thiamine as a potential approach to the prevention and/or treatment of diabetic complications.
Collapse
Affiliation(s)
- Elena Berrone
- Department of Internal Medicine, University of Turin, I-10126 Turin, Italy.
| | | | | | | | | |
Collapse
|
17
|
Abstract
After peroxynitrite addition to aqueous solutions of thiamine at neutral and alkaline pH formation of thiamine disulfide and fluorescent products was observed. The fluorescent compounds were identified as thiochrome (TChr) and oxodihydrothiochrome (ODTChr) using spectral and fluorescent methods as well as paper chromatography and mass spectrometry. TChr and ODTChr are not the end products of thiamine oxidation and in neutral medium are unstable to peroxynitrite action and degrade rapidly to form non-fluorescent products. Thiamine, TChr, and ODTChr protects tyrosine from its modification by peroxynitrite. In the presence of TChr and ODTChr modification of tyrosinyl residues in human serum albumin and cytocrome c decreased. The prolonged thiamine incubation with glucose, amino acids and nitrite was accompanied by oxidative transformation of thiamine and formation of fluorescent products. We have shown that thiamine is also oxidized into TChr and ODTChr, i.e., it forms the same products as after thiamine oxidation by peroxynitrite. Moreover, thiamine (or its derivatives) appears as peroxynitrite scavenger leading to toxic effects lowering at diabetes mellitus.
Collapse
Affiliation(s)
- I I Stepuro
- Institute of Biochemistry, National Academy of Sciences of Belarus, BLK-50, 230009 Grodno, Belarus.
| |
Collapse
|
18
|
Stitt AW, Hughes SJ, Canning P, Lynch O, Cox O, Frizzell N, Thorpe SR, Cotter TG, Curtis TM, Gardiner TA. Substrates modified by advanced glycation end-products cause dysfunction and death in retinal pericytes by reducing survival signals mediated by platelet-derived growth factor. Diabetologia 2004; 47:1735-46. [PMID: 15502926 DOI: 10.1007/s00125-004-1523-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 06/01/2004] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Premature death of retinal pericytes is a pathophysiological hallmark of diabetic retinopathy. Among the mechanisms proposed for pericyte death is exposure to AGE, which accumulate during diabetes. The current study used an in vitro model, whereby retinal pericytes were exposed to AGE-modified substrate and the mechanisms underlying pericyte death explored. METHODS Pericytes were isolated from bovine retinal capillaries and propagated on AGE-modified basement membrane (BM) extract or non-modified native BM. The extent of AGE modification was analysed. Proliferative responses of retinal pericytes propagated on AGE-modified BM were investigated using a 5-bromo-2-deoxy-uridine-based assay. The effect of extrinsically added platelet-derived growth factor (PDGF) isoforms on these proliferative responses was also analysed alongside mRNA expression of the PDGF receptors. Apoptotic death of retinal pericytes grown on AGE-modified BM was investigated using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling labelling, mitochondrial membrane depolarisation and by morphological assessment. We also measured both the ability of PDGF to reverse Akt dephosphorylation that was mediated by AGE-modified BM, and increased pericyte apoptosis. RESULTS Retinal pericytes exposed to AGE-modified BM showed reduced proliferative responses in comparison to controls (p<0.05-0.01), although this effect was reversed at low-AGE modifications. PDGF mRNA levels were differentially altered by exposure to low and high AGE levels, and AGE-modified BM caused significantly increased apoptosis in retinal pericytes. Pre-treatment of AGE-modified BM with PDGF-AA and -BB reversed the apoptosis (p<0.05-0.001) and restored Akt phosphorylation in retinal pericytes. CONCLUSIONS/INTERPRETATION Evidence suggests that substrate-derived AGE such as those that occur during diabetes could have a major influence on retinal pericyte survival. During diabetic retinopathy, AGE modification of vascular BM may reduce bioavailability of pro-survival factors for retinal pericytes.
Collapse
Affiliation(s)
- A W Stitt
- Ophthalmic Research Centre, Ophthalmology & Vision Science, Queen's University Belfast, Royal Victoria Hospital, Belfast, Northern Ireland, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mayhew TM, Charnock-Jones DS, Kaufmann P. Aspects of human fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies. Placenta 2004; 25:127-39. [PMID: 14972445 DOI: 10.1016/j.placenta.2003.10.010] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2003] [Indexed: 01/14/2023]
Abstract
Patterns of fetoplacental angiogenesis vary not only during the course of a normal pregnancy but also in certain pregnancy pathologies. Here, we review some of the molecular and morphological events which occur in complicated pregnancies. The pregnancy complications are chosen in an attempt to represent the possible different origins (preplacental, uteroplacental, postplacental) of fetal hypoxia. Molecular events focus on reported changes in hypoxia-inducible factors, angiopoietins and the vascular endothelial, basic fibroblast and placenta growth factors and their receptors. Morphological changes focus on patterns of angiogenesis (branching and non-branching) and a consistent set of morphometric descriptors (covering measures of total capillary growth, villous capillarization and capillary size and shape in transverse section). Apart from some uncertainties due to lack of information, or failure to resolve fully the effects of intrauterine growth restriction and pre-eclampsia, alterations in the angiogenic growth factors and morphologies of capillaries and villi in different complicated pregnancies seem to conform reasonably well to those predicted by the fetal hypoxia paradigm. However, it is clear that future studies on the effects of different origins of fetal hypoxia should exercise more care in the choice and interpretation of relevant descriptors and take more account of the parallel effects of possible confounders. In addition, rather than comparing uncomplicated and complicated pregnancies only at term, more information about molecular and morphological events that occur throughout gestation would be extremely valuable. This includes further studies on changes in growth factor receptors, the less-well-documented angiogenic factors (e.g. angiogenin, angiostatin, endostatin) and the associations between endothelial cells and pericytes. A more integrated approach involving also parallel analysis of the effects of erythropoietin and other potential vasoactive factors on the behaviour and morphology of fetal vessels would be beneficial.
Collapse
Affiliation(s)
- T M Mayhew
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, E Floor, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | |
Collapse
|
20
|
Current literature in diabetes. Diabetes Metab Res Rev 2003; 19:421-8. [PMID: 12951651 DOI: 10.1002/dmrr.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|