1
|
Wu Q, Hu Z, Wang Z, Che Y, Zhang M, Zheng S, Xing K, Zhong X, Chen Y, Shi F, Yuan S. Glut10 restrains neointima formation by promoting SMCs mtDNA demethylation and improving mitochondrial function. Transl Res 2023; 260:1-16. [PMID: 37220836 DOI: 10.1016/j.trsl.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Neointimal hyperplasia is a major clinical complication of coronary artery bypass graft and percutaneous coronary intervention. Smooth muscle cells (SMCs) play a vital roles in neointimal hyperplasia development and undergo complex phenotype switching. Previous studies have linked glucose transporter member 10(Glut10) to the phenotypic transformation of SMCs. In this research, we reported that Glut10 helps maintain the contractile phenotype of SMCs. The Glut10-TET2/3 signaling axis can arrest neointimal hyperplasia progression by improving mitochondrial function via promotion of mtDNA demethylation in SMCs. Glut10 is significantly downregulated in both human and mouse restenotic arteries. Global Glut10 deletion or SMC-specific Glut10 ablation in the carotid artery of mice accelerated neointimal hyperplasia, while Glut10 overexpression in the carotid artery triggered the opposite effects. All of these changes were accompanied by a significant increase in vascular SMCs migration and proliferation. Mechanistically, Glut10 is expressed primarily in the mitochondria after platelet-derived growth factor-BB (PDGF-BB) treatment. Glut10 ablation induced a reduction in ascorbic acid (VitC) concentrations in mitochondria and mitochondrial DNA (mtDNA) hypermethylation by decreasing the activity and expression of the Ten-eleven translocation (TET) protein family. We also observed that Glut10 deficiency aggravated mitochondrial dysfunction and decreased the adenosinetriphosphate (ATP) content and the oxygen consumption rate, which also caused SMCs to switch their phenotype from contractile to synthetic phenotype. Furthermore, mitochondria-specific TET family inhibition partially reversed these effects. These results suggested that Glut10 helps maintain the contractile phenotype of SMCs. The Glut10-TET2/3 signaling axis can arrest neointimal hyperplasia progression by improving mitochondrial function via the promotion of mtDNA demethylation in SMCs.
Collapse
Affiliation(s)
- Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhipeng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yanjia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Zhang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sihao Zheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kai Xing
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohan Zhong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Shi
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Vitamin C attenuates predisposition to high-fat diet-induced metabolic dysregulation in GLUT10-deficient mouse model. GENES & NUTRITION 2022; 17:10. [PMID: 35842612 PMCID: PMC9288715 DOI: 10.1186/s12263-022-00713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022]
Abstract
Background The development of type 2 diabetes mellitus (T2DM) is highly influenced by complex interactions between genetic and environmental (dietary and lifestyle) factors. While vitamin C (ascorbic acid, AA) has been suggested as a complementary nutritional treatment for T2DM, evidence for the significance and beneficial effects of AA in T2DM is thus far inconclusive. We suspect that clinical studies on the topic might need to account for combination of genetic and dietary factors that could influence AA effects on metabolism. In this study, we tested this general idea using a mouse model with genetic predisposition to diet-induced metabolic dysfunction. In particular, we utilized mice carrying a human orthologous GLUT10G128E variant (GLUT10G128E mice), which are highly sensitive to high-fat diet (HFD)-induced metabolic dysregulation. The genetic variant has high relevance to human populations, as genetic polymorphisms in glucose transporter 10 (GLUT10) are associated with a T2DM intermediate phenotype in nondiabetic population. Results We investigated the impacts of AA supplementation on metabolism in wild-type (WT) mice and GLUT10G128E mice fed with a normal diet or HFD. Overall, the beneficial effects of AA on metabolism were greater in HFD-fed GLUT10G128E mice than in HFD-fed WT mice. At early postnatal stages, AA improved the development of compromised epididymal white adipose tissue (eWAT) in GLUT10G128E mice. In adult animals, AA supplementation attenuated the predisposition of GLUT10G128E mice to HFD-triggered eWAT inflammation, adipokine dysregulation, ectopic fatty acid accumulation, metabolic dysregulation, and body weight gain, as compared with WT mice. Conclusions Taken together, our findings suggest that AA has greater beneficial effects on metabolism in HFD-fed GLUT10G128E mice than HFD-fed WT mice. As such, AA plays an important role in supporting eWAT development and attenuating HFD-induced metabolic dysregulation in GLUT10G128E mice. Our results suggest that proper WAT development is essential for metabolic regulation later in life. Furthermore, when considering the usage of AA as a complementary nutrition for prevention and treatment of T2DM, individual differences in genetics and dietary patterns should be taken into account. Supplementary Information The online version contains supplementary material available at 10.1186/s12263-022-00713-y.
Collapse
|
3
|
Jiang CL, Jen WP, Tsao CY, Chang LC, Chen CH, Lee YC. Glucose transporter 10 modulates adipogenesis via an ascorbic acid-mediated pathway to protect mice against diet-induced metabolic dysregulation. PLoS Genet 2020; 16:e1008823. [PMID: 32453789 PMCID: PMC7274451 DOI: 10.1371/journal.pgen.1008823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/05/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022] Open
Abstract
The development of type 2 diabetes mellitus (T2DM) depends on interactions between genetic and environmental factors, and a better understanding of gene-diet interactions in T2DM will be useful for disease prediction and prevention. Ascorbic acid has been proposed to reduce the risk of T2DM. However, the links between ascorbic acid and metabolic consequences are not fully understood. Here, we report that glucose transporter 10 (GLUT10) maintains intracellular levels of ascorbic acid to promote adipogenesis, white adipose tissue (WAT) development and protect mice from high-fat diet (HFD)-induced metabolic dysregulation. We found genetic polymorphisms in SLC2A10 locus are suggestively associated with a T2DM intermediate phenotype in non-diabetic Han Taiwanese. Additionally, mice carrying an orthologous human Glut10G128E variant (Glut10G128E mice) with compromised GLUT10 function have reduced adipogenesis, reduced WAT development and increased susceptibility to HFD-induced metabolic dysregulation. We further demonstrate that GLUT10 is highly expressed in preadipocytes, where it regulates intracellular ascorbic acid levels and adipogenesis. In this context, GLUT10 increases ascorbic acid-dependent DNA demethylation and the expression of key adipogenic genes, Cebpa and Pparg. Together, our data show GLUT10 regulates adipogenesis via ascorbic acid-dependent DNA demethylation to benefit proper WAT development and protect mice against HFD-induced metabolic dysregulation. Our findings suggest that SLC2A10 may be an important HFD-associated susceptibility locus for T2DM. Environmental triggers may amplify genetically determined disease susceptibility, especially for carriers of rare variants with relatively large individual effect sizes, making these polymorphisms highly informative for predicting individualized clinical risk and preventing disease. Since transitions in dietary pattern have greatly contributed to the increased prevalence of obesity and accelerated the spread of the T2DM epidemic worldwide, a better understanding of gene-diet interactions in T2DM will be useful for disease prediction and prevention. Here, we demonstrate that polymorphisms in the gene encoding GLUT10 are associated with a T2DM intermediate phenotype in non-diabetic human subjects. Additionally, mice that carry a GLUT10 rare variant have reduced WAT development and are susceptible for HFD-induced T2DM. We further demonstrate that GLUT10 is highly expressed in preadipocytes, where it regulates intracellular ascorbic acid levels and ascorbic acid-dependent DNA demethylation to control adipogenesis. Preadipocytes carrying the GLUT10 rare variant or with knockdown of GLUT10 expression have reduced the adipogenesis. Thus, we are able to conclude that GLUT10 regulates adipogenesis via ascorbic acid-dependent DNA demethylation to affect WAT development and contribute to the sensitivity of HFD-induced metabolic dysregulation.
Collapse
Affiliation(s)
- Chung-Lin Jiang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Ping Jen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chang-Yu Tsao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ching Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
4
|
Yang S, Zhao H, Xu K, Qian Y, Wu M, Yang T, Chen Y, Zhao X, Chen J, Wen J, Hu Z, Gu HF, Shen H, Shen C. Evaluation of common variants in MG53 and the risk of type 2 diabetes and insulin resistance in Han Chinese. SPRINGERPLUS 2017; 5:612. [PMID: 28443211 PMCID: PMC5395513 DOI: 10.1186/s40064-016-2218-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/22/2016] [Indexed: 11/10/2022]
Abstract
Abnormally increased skeletal-muscle-specific E3 ubiquitin ligase (MG53) is associated with the inhibition of insulin signalling and insulin resistance (IR) in animal models. Four community-based studies of Han Chinese populations were included in this study to test the association of variants of MG53 and type 2 diabetes (T2D). The results showed that rs7186832 and rs12929077 in MG53 were significantly associated with T2D and impaired fasting glucose (IFG) of females in the discovery-stage case-control study and cohort study respectively of rural population but not in the replication sample of urban population. In rural population, the fasting insulin (mU/L) of the subjects with AA, AG and GG genotypes in rs12929077 were 8.70 ± 8.05, 10.71 ± 11.16 and 13.41 ± 14.26, respectively, and increased linearly in T2D cases without medication treatment (P = 0.04). This variant was significantly associated with HOMA-IR (P = 0.020) and HOMA-IS (P = 0.023). In individuals with IFG, the insulin and HOMA-IR of AG carriers were significantly higher than those of AA carriers. In urban population, after glucose loading, there were significant differences in the 30-min glucose, the area under the curve (AUC) of 30-min glucose and the AUC of 120-min glucose according to the genotypes of rs7186832 and rs12929077 in males but not females. Our findings suggest that MG53 variants might confer risk susceptibility to the development of T2D of females and IR particularly in rural population.
Collapse
Affiliation(s)
- Song Yang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, 214200 China
| | - Hailong Zhao
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166 China
| | - Kuangfeng Xu
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029 China
| | - Yun Qian
- Department of Chronic Non-communicable Disease Control, Wuxi Center for Disease Control and Prevention, Wuxi, 214023 China
| | - Ming Wu
- Institute of Chronic Disease Control, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, 210009 China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029 China
| | - Yanchun Chen
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, 214200 China
| | - Xianghai Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, 214200 China
| | - Jinfeng Chen
- Department of Clinical Epidemiology, Jiangsu Province Geriatrics Institute, Nanjing, 210024 China
| | - Jinbo Wen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166 China
| | - Zhibing Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166 China
| | - Harvest F Gu
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska University Hospital, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166 China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning, Nanjing, 211166 China.,Department of Clinical Epidemiology, Jiangsu Province Geriatrics Institute, Nanjing, 210024 China
| |
Collapse
|
5
|
Navale AM, Paranjape AN. Glucose transporters: physiological and pathological roles. Biophys Rev 2016; 8:5-9. [PMID: 28510148 DOI: 10.1007/s12551-015-0186-2] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 12/01/2015] [Indexed: 12/17/2022] Open
Abstract
Glucose is a primary energy source for most cells and an important substrate for many biochemical reactions. As glucose is a need of each and every cell of the body, so are the glucose transporters. Consequently, all cells express these important proteins on their surface. In recent years developments in genetics have shed new light on the types and physiology of various glucose transporters, of which there are two main types-sodium-glucose linked transporters (SGLTs) and facilitated diffusion glucose transporters (GLUT)-which can be divided into many more subclasses. Transporters differ in terms of their substrate specificity, distribution and regulatory mechanisms. Glucose transporters have also received much attention as therapeutic targets for various diseases. In this review, we attempt to present a simplified view of this complex topic which may be of interest to researchers involved in biochemical and pharmacological research.
Collapse
Affiliation(s)
- Archana M Navale
- Department of Pharmacology, Faculty of Pharmacy, Parul University, P.O. Limda, Waghodia Taluka, Vadodara District, 391760, Gujarat, India.
| | | |
Collapse
|
6
|
Abstract
Soluble sugars serve five main purposes in multicellular organisms: as sources of carbon skeletons, osmolytes, signals, and transient energy storage and as transport molecules. Most sugars are derived from photosynthetic organisms, particularly plants. In multicellular organisms, some cells specialize in providing sugars to other cells (e.g., intestinal and liver cells in animals, photosynthetic cells in plants), whereas others depend completely on an external supply (e.g., brain cells, roots and seeds). This cellular exchange of sugars requires transport proteins to mediate uptake or release from cells or subcellular compartments. Thus, not surprisingly, sugar transport is critical for plants, animals, and humans. At present, three classes of eukaryotic sugar transporters have been characterized, namely the glucose transporters (GLUTs), sodium-glucose symporters (SGLTs), and SWEETs. This review presents the history and state of the art of sugar transporter research, covering genetics, biochemistry, and physiology-from their identification and characterization to their structure, function, and physiology. In humans, understanding sugar transport has therapeutic importance (e.g., addressing diabetes or limiting access of cancer cells to sugars), and in plants, these transporters are critical for crop yield and pathogen susceptibility.
Collapse
Affiliation(s)
- Li-Qing Chen
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305;
| | | | | | | | | |
Collapse
|
7
|
Chien LC, Chiu YF, Liang KY, Chuang LM. Simultaneous estimation of the locations and effects of multiple disease loci in case-control studies. Biostatistics 2014; 16:222-39. [PMID: 25481194 DOI: 10.1093/biostatistics/kxu052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genetic basis of complex diseases often involves multiple causative loci. Under such a disease etiology, assuming one disease locus in linkage disequilibrium mapping is likely to induce bias and lead to efficiency loss in disease locus estimation. An approach is needed for simultaneously localizing multiple functional loci within the same region. However, due to the increasing number of parameters accompanying disease loci, these estimates can be computationally infeasible. To circumvent this problem, we propose to estimate the main and two-adjacent-locus joint effects and a nuisance parameter at the disease loci separately through a linear approximation. Estimates of the genetic effects are entered into a generalized estimating equation to estimate disease loci, and the procedure is conducted iteratively until convergence. The proposed method provides estimates and confidence intervals (CIs) for the disease loci, the genetic main effects, and the joint effects of two adjacent disease loci, with the CIs for the disease loci providing useful regions for further fine-mapping. We apply the proposed approach to a data example of case-control studies. Results of the simulations and data example suggest that the developed method performs well in terms of bias, variance, and coverage probability under scenarios with up to three disease loci.
Collapse
Affiliation(s)
- Li-Chu Chien
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Yen-Feng Chiu
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan, ROC; Institute of Statistics, National Chiao Tung University Hsinchu 30010, Taiwan, ROC; Biostatistics Center, China Medical University, Taichung 40402, Taiwan, ROC
| | - Kung-Yee Liang
- Institution of Public Health and Department of Public Health, National Yang Ming University, Taipei 11221, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
8
|
Tang L, Wang L, Liao Q, Wang Q, Xu L, Bu S, Huang Y, Zhang C, Ye H, Xu X, Liu Q, Ye M, Mai Y, Duan S. Genetic associations with diabetes: meta-analyses of 10 candidate polymorphisms. PLoS One 2013; 8:e70301. [PMID: 23922971 PMCID: PMC3726433 DOI: 10.1371/journal.pone.0070301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Aims The goal of our study is to investigate the combined contribution of 10 genetic variants to diabetes susceptibility. Methods Bibliographic databases were searched from 1970 to Dec 2012 for studies that reported on genetic association study of diabetes. After a comprehensive filtering procedure, 10 candidate gene variants with informative genotype information were collected for the current meta-anlayses. Using the REVMAN software, odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate the combined contribution of the selected genetic variants to diabetes. Results A total of 37 articles among 37,033 cases and 54,716 controls were involved in the present meta-analyses of 10 genetic variants. Three variants were found to be significantly associated with type 1 diabetes (T1D): NLRP1 rs12150220 (OR = 0.71, 95% CI = 0.55–0.92, P = 0.01), IL2RA rs11594656 (OR = 0.86, 95% CI = 0.82–0.91, P<0.00001), and CLEC16A rs725613 (OR = 0.71, 95% CI = 0.55–0.92, P = 0.01). APOA5 −1131T/C polymorphism was shown to be significantly associated with of type 2 diabetes (T2D, OR = 1.27, 95% CI = 1.03–1.57, P = 0.03). No association with diabetes was showed in the meta-analyses of other six genetic variants, including SLC2A10 rs2335491, ATF6 rs2070150, KLF11 rs35927125, CASQ1 rs2275703, GNB3 C825T, and IL12B 1188A/C. Conclusion Our results demonstrated that IL2RA rs11594656 and CLEC16A rs725613 are protective factors of T1D, while NLRP1 rs12150220 and APOA5 −1131T/C are risky factors of T1D and T2D, respectively.
Collapse
Affiliation(s)
- Linlin Tang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyan Wang
- Bank of Blood Products, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Qi Liao
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Qinwen Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Leiting Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shizhong Bu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Cheng Zhang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Huadan Ye
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xuting Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Qiong Liu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Meng Ye
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (SD); (YM); (MY)
| | - Yifeng Mai
- The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (SD); (YM); (MY)
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- * E-mail: (SD); (YM); (MY)
| |
Collapse
|
9
|
Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics 2011; 8:113-28. [PMID: 18660845 DOI: 10.2174/138920207780368187] [Citation(s) in RCA: 369] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 12/08/2006] [Accepted: 12/17/2007] [Indexed: 12/17/2022] Open
Abstract
Glucose is the major energy source for mammalian cells as well as an important substrate for protein and lipid synthesis. Mammalian cells take up glucose from extracellular fluid into the cell through two families of structurallyrelated glucose transporters. The facilitative glucose transporter family (solute carriers SLC2A, protein symbol GLUT) mediates a bidirectional and energy-independent process of glucose transport in most tissues and cells, while the NaM(+)/glucose cotransporter family (solute carriers SLC5A, protein symbol SGLT) mediates an active, Na(+)-linked transport process against an electrochemical gradient. The GLUT family consists of thirteen members (GLUT1-12 and HMIT). Phylogenetically, the members of the GLUT family are split into three classes based on protein similarities. Up to now, at least six members of the SGLT family have been cloned (SGLT1-6). In this review, we report both the genomic structure and function of each transporter as well as intra-species comparative genomic analysis of some of these transporters. The affinity for glucose and transport kinetics of each transporter differs and ranges from 0.2 to 17mM. The ability of each protein to transport alternative substrates also differs and includes substrates such as fructose and galactose. In addition, the tissue distribution pattern varies between species. There are different regulation mechanisms of these transporters. Characterization of transcriptional control of some of the gene promoters has been investigated and alternative promoter usage to generate different protein isoforms has been demonstrated. We also introduce some pathophysiological roles of these transporters in human.
Collapse
Affiliation(s)
- Feng-Qi Zhao
- Lactation and Mammary Gland Biology Group, Department of Animal Science, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
10
|
Pezzulo AA, Gutiérrez J, Duschner KS, McConnell KS, Taft PJ, Ernst SE, Yahr TL, Rahmouni K, Klesney-Tait J, Stoltz DA, Zabner J. Glucose depletion in the airway surface liquid is essential for sterility of the airways. PLoS One 2011; 6:e16166. [PMID: 21311590 PMCID: PMC3029092 DOI: 10.1371/journal.pone.0016166] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/08/2010] [Indexed: 11/19/2022] Open
Abstract
Diabetes mellitus predisposes the host to bacterial infections. Moreover, hyperglycemia has been shown to be an independent risk factor for respiratory infections. The luminal surface of airway epithelia is covered by a thin layer of airway surface liquid (ASL) and is normally sterile despite constant exposure to bacteria. The balance between bacterial growth and killing in the airway determines the outcome of exposure to inhaled or aspirated bacteria: infection or sterility. We hypothesized that restriction of carbon sources--including glucose--in the ASL is required for sterility of the lungs. We found that airway epithelia deplete glucose from the ASL via a novel mechanism involving polarized expression of GLUT-1 and GLUT-10, intracellular glucose phosphorylation, and low relative paracellular glucose permeability in well-differentiated cultures of human airway epithelia and in segments of airway epithelia excised from human tracheas. Moreover, we found that increased glucose concentration in the ASL augments growth of P. aeruginosa in vitro and in the lungs of hyperglycemic ob/ob and db/db mice in vivo. In contrast, hyperglycemia had no effect on intrapulmonary bacterial growth of a P. aeruginosa mutant that is unable to utilize glucose as a carbon source. Our data suggest that depletion of glucose in the airway epithelial surface is a novel mechanism for innate immunity. This mechanism is important for sterility of the airways and has implications in hyperglycemia and conditions that result in disruption of the epithelial barrier in the lung.
Collapse
Affiliation(s)
- Alejandro A. Pezzulo
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeydith Gutiérrez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Kelly S. Duschner
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Kelly S. McConnell
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Peter J. Taft
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sarah E. Ernst
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Timothy L. Yahr
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Kamal Rahmouni
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Julia Klesney-Tait
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - David A. Stoltz
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
11
|
Jiang YD, Chang YC, Chiu YF, Chang TJ, Li HY, Lin WH, Yuan HY, Chen YT, Chuang LM. SLC2A10 genetic polymorphism predicts development of peripheral arterial disease in patients with type 2 diabetes. SLC2A10 and PAD in type 2 diabetes. BMC MEDICAL GENETICS 2010; 11:126. [PMID: 20735855 PMCID: PMC2939510 DOI: 10.1186/1471-2350-11-126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 08/25/2010] [Indexed: 11/30/2022]
Abstract
Background Recent data indicate that loss-of-function mutation in the gene encoding the facilitative glucose transporter GLUT10 (SLC2A10) causes arterial tortuosity syndrome via upregulation of the TGF-β pathway in the arterial wall, a mechanism possibly causing vascular changes in diabetes. Methods We genotyped 10 single nucleotide polymorphisms and one microsatellite spanning 34 kb across the SLC2A10 gene in a prospective cohort of 372 diabetic patients. Their association with the development of peripheral arterial disease (PAD) in type 2 diabetic patients was analyzed. Results At baseline, several common SNPs of SLC2A10 gene were associated with PAD in type 2 diabetic patients. A common haplotype was associated with higher risk of PAD in type 2 diabetic patients (haplotype frequency: 6.3%, P = 0.03; odds ratio [OR]: 14.5; 95% confidence interval [CI]: 1.3- 160.7) at baseline. Over an average follow-up period of 5.7 years, carriers with the risk-conferring haplotype were more likely to develop PAD (P = 0.007; hazard ratio: 6.78; 95% CI: 1.66- 27.6) than were non-carriers. These associations remained significant after adjustment for other risk factors of PAD. Conclusion Our data demonstrate that genetic polymorphism of the SLC2A10 gene is an independent risk factor for PAD in type 2 diabetes.
Collapse
Affiliation(s)
- Yi-Der Jiang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lee YC, Huang HY, Chang CJ, Cheng CH, Chen YT. Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome. Hum Mol Genet 2010; 19:3721-33. [PMID: 20639396 DOI: 10.1093/hmg/ddq286] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in glucose transporter 10 (GLUT10) alter angiogenesis and cause arterial tortuosity syndrome (ATS); however, the mechanisms by which these mutations cause disease remain unclear. It has been reported that in most cells, mitochondria are the major source of reactive oxygen species (ROS). Moreover, mitochondria are known to incorporate as well as recycle vitamin C, which plays a critical role in redox homeostasis, although the molecular mechanism(s) underlying mitochondrial vitamin C uptake are poorly understood. We report here that GLUT10 localizes predominantly to the mitochondria of smooth muscle cells and insulin-stimulated adipocytes, where GLUT10 is highly expressed. We further demonstrate that GLUT10 facilitates transport of l-dehydroascorbic acid (DHA), the oxidized form of vitamin C, into mitochondria, and also increases cellular uptake of DHA, which in turn protects cells against oxidative stress. This protection is compromised when GLUT10 expression in mitochondria is inhibited. In addition, we found that aortic smooth muscle cells from GLUT10-mutant mice have higher ROS levels than those from wild-type mice. Our results identify the physiological role of GLUT10 as the mitochondrial DHA transporter, and demonstrate that GLUT10 protects cells from oxidative injury. Furthermore, our findings provide a mechanism to explain the ascorbate in mitochondria and show how loss-of-function GLUT10 mutations may lead to arterial abnormalities in ATS. These results also reinforce the importance of vitamin C and ROS in degenerative diseases.
Collapse
Affiliation(s)
- Yi-Ching Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
13
|
Augustin R. The protein family of glucose transport facilitators: It's not only about glucose after all. IUBMB Life 2010; 62:315-33. [PMID: 20209635 DOI: 10.1002/iub.315] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein family of facilitative glucose transporters comprises 14 isoforms that share common structural features such as 12 transmembrane domains, N- and C-termini facing the cytoplasm of the cell, and a N-glycosylation side either within the first or fifth extracellular loop. Based on their sequence homology, three classes can be distinguished: class I includes GLUT1-4 and GLUT14, class II the "odd transporters" GLUT5, 7, 9, 11, and class III the "even transporters" GLUT6, 8, 10, 12 and the proton driven myoinositol transporter HMIT (or GLUT13). With the cloning and characterization of the more recent class II and III isoforms, it became apparent that despite their structural similarities, the different isoforms not only show a distinct tissue-specific expression pattern but also show distinct characteristics such as alternative splicing, specific (sub)cellular localization, and affinities for a spectrum of substrates. This review summarizes the current understanding of the physiological role for the various transport facilitators based on human genetically inherited disorders or single-nucleotide polymorphisms and knockout mice models. The emphasis of the review will be on the potential functional role of the more recent isoforms.
Collapse
Affiliation(s)
- Robert Augustin
- Department of Cardiometabolic Diseases Research, Boehringer-Ingelheim Pharma GmbH&Co KG, Biberach a.d. Riss, Germany.
| |
Collapse
|
14
|
Aschenbach JR, Steglich K, Gäbel G, Honscha KU. Expression of mRNA for glucose transport proteins in jejunum, liver, kidney and skeletal muscle of pigs. J Physiol Biochem 2010; 65:251-66. [PMID: 20119820 DOI: 10.1007/bf03180578] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Indexed: 01/12/2023]
Abstract
Although pigs are adapted to starch-rich diets and have high turnover rates of glucose, very scarce information is available on the molecular basis of glucose transport. Therefore, the present study attempted a systematic screening for the presence of mRNA of glucose transport proteins in main organs of glucose absorption, production and conservation. From the members of the solute carrier family SLC5A (sodium glucose cotransporter), the porcine jejunum was positive for SGLT1 and SGLT3, but also contained detectable levels of SGLT5. Liver contained SGLT1, SGLT5, traces of SGLT3 and, in one of five pigs, SGLT2. Kidney contained SGLT1, SGLT2, SGLT3, SGLT5 and hardly detectable levels of SGLT4. Skeletal muscle showed weak signals for SGLT3 and SGLT5. Screening for members of the SLC2A family (facilitated glucose transporter) in intestine revealed the presence of mRNA for GLUT1, GLUT2, GLUT5, GLUT7 and GLUT8, while GLUT3, GLUT4, GLUT10 and GLUT11 were also detectable. The liver contained GLUT1, GLUT2 and GLUT8 mRNA, while GLUT3, GLUT4, GLUT5, GLUT10 and GLUT11 were poorly detectable. The kidney was positive for GLUT1, GLUT2, GLUT5, GLUT8 and GLUT11, but traces of GLUT3, GLUT4 and GLUT10 could also be detected. Skeletal muscle had the strongest signal for GLUT4, while GLUT1, GLUT3, GLUT5, GLUT8, GLUT10 and GLUT11 showed weak signals. A total of 12 unique partial cDNA sequences were submitted to GenBank. In conclusion, this study provides molecular insight into the organ-specific expression of glucose transporters in pigs and thus sheds light on the way of glucose handling in this omnivorous species.
Collapse
Affiliation(s)
- J R Aschenbach
- Institute of Veterinary Physiology, University of Leipzig, An den Tierkliniken 7, D-04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
15
|
Calvo MB, Figueroa A, Pulido EG, Campelo RG, Aparicio LA. Potential role of sugar transporters in cancer and their relationship with anticancer therapy. Int J Endocrinol 2010; 2010:205357. [PMID: 20706540 PMCID: PMC2913528 DOI: 10.1155/2010/205357] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/20/2010] [Indexed: 12/18/2022] Open
Abstract
Sugars, primarily glucose and fructose, are the main energy source of cells. Because of their hydrophilic nature, cells use a number of transporter proteins to introduce sugars through their plasma membrane. Cancer cells are well known to display an enhanced sugar uptake and consumption. In fact, sugar transporters are deregulated in cancer cells so they incorporate higher amounts of sugar than normal cells. In this paper, we compile the most significant data available about biochemical and biological properties of sugar transporters in normal tissues and we review the available information about sugar carrier expression in different types of cancer. Moreover, we describe the possible pharmacological interactions between drugs currently used in anticancer therapy and the expression or function of facilitative sugar transporters. Finally, we also go into the insights about the future design of drugs targeted against sugar utilization in cancer cells.
Collapse
Affiliation(s)
- Moisés Blanco Calvo
- Biomedical Research Institute, A Coruña University Hospital, As Xubias 84, 15006 A Coruña, Spain
| | - Angélica Figueroa
- Biomedical Research Institute, A Coruña University Hospital, As Xubias 84, 15006 A Coruña, Spain
| | - Enrique Grande Pulido
- Clinical Oncology Department, Ramón y Cajal University Hospital, Ctra. de Colmenar Viejo Km. 9,100, 28034 Madrid, Spain
| | - Rosario García Campelo
- Clinical Oncology Department, A Coruña University Hospital, As Xubias 84, 15006 A Coruña, Spain
| | - Luís Antón Aparicio
- Clinical Oncology Department, A Coruña University Hospital, As Xubias 84, 15006 A Coruña, Spain
- Medicine Department, University of A Coruña, Oza s/n, 15006 A Coruña, Spain
- *Luís Antón Aparicio:
| |
Collapse
|
16
|
Cheng CH, Kikuchi T, Chen YH, Sabbagha NGAAA, Lee YC, Pan HJ, Chang C, Chen YT. Mutations in the SLC2A10 gene cause arterial abnormalities in mice. Cardiovasc Res 2008; 81:381-8. [DOI: 10.1093/cvr/cvn319] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Callewaert B, Willaert A, Kerstjens-Frederikse W, De Backer J, Devriendt K, Albrecht B, Ramos-Arroyo M, Doco-Fenzy M, Hennekam R, Pyeritz R, Krogmann O, Gillessen-kaesbach G, Wakeling E, Nik-zainal S, Francannet C, Mauran P, Booth C, Barrow M, Dekens R, Loeys B, Coucke P, De Paepe A. Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum Mutat 2008; 29:150-8. [DOI: 10.1002/humu.20623] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Chiu YF, Liang KY, Chuang LM, Beaty TH. Incorporation of covariates into multipoint linkage disequilibrium mapping in case-control studies. Genet Epidemiol 2007; 32:143-51. [PMID: 17968989 DOI: 10.1002/gepi.20271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Case-control designs are commonly adopted in genetic epidemiological studies because they are cost effective and offer powerful tests for genetic and environmental risk factors, as well as their interactions. Previously, we proposed an association mapping approach to estimate the position of an unobserved disease locus as well as measuring its genetic effect on risk. The method provides a confidence interval for the estimated map position to help narrow the chromosomal region potentially harboring a disease locus. However, concerns often rise about case-control designs including possible false positives or bias due to confounders, heterogeneity or interactions among genes and between genes and environments. In the present work, we extended the multipoint linkage disequilibrium mapping approach for case-control studies to incorporate information about factors influencing the effect of causal genes to improve precision and efficiency of the estimated location. The efficiency, bias and coverage probability of this extended approach for locating a disease locus using case-control data with and without additional information on a covariate were compared through simulation. An example of a case-control study for type 2 diabetes was used to illustrate this extended method. In this study, a strong association between diabetes and a candidate gene, SCL2A10, was detected among nonobese subjects, whereas no evidence of association was found for either obese subjects or the whole sample when obesity was ignored. Simulation studies and these diabetes data both demonstrate how the efficiency of the estimated location of a disease gene can be improved substantially by incorporating information on covariates.
Collapse
Affiliation(s)
- Yen-Feng Chiu
- Division of Biostatistics and Bioinformatics, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | |
Collapse
|
19
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2007; 14:329-57. [PMID: 17940461 DOI: 10.1097/med.0b013e3282c3a898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas. Curr Opin Endocrinol Diabetes Obes 2007; 14:170-96. [PMID: 17940437 DOI: 10.1097/med.0b013e3280d5f7e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|