1
|
Sawada S, Miyagi-Shiohira C, Kuwae K, Tamaki Y, Nishime K, Sakai-Yonaha M, Yonaha T, Saitoh I, Watanabe M, Noguchi H. Pancreas preservation with amphotericin B deteriorates islet yield for porcine islet isolation. Xenotransplantation 2021; 28:e12690. [PMID: 33811411 DOI: 10.1111/xen.12690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Amphotericin B is a crucial agent in the management of serious systemic fungal infections. It is also known to be cytotoxic. In this study, we evaluated the effect of amphotericin B added to the preservation solution on islet yield during islet isolation. METHODS Porcine pancreata were preserved in the preservation solution with or without amphotericin B (0.25 μg/mL) for approximately 18 hours at 4°C, and then islet isolation was performed. An optimized number (1750 IE) of isolated islets from each group were transplanted into streptozotocin-induced diabetic mice. The culture of isolated islets and acinar tissue with amphotericin B was also evaluated. RESULTS The islet yield before and after purification in the amphotericin B (-) group was significantly higher than that in the amphotericin B (+) group. After islet transplantation into diabetic mice, blood glucose levels reached the normoglycemic range, with 50% and 0% of that of the diabetic mice in the amphotericin B (-) and amphotericin B (+) groups, respectively. In the culture study, amphotericin B was found to be cytotoxic to porcine islets and acinar tissue. CONCLUSIONS Amphotericin B added to the preservation solution deteriorates islet yield during porcine islet isolation. Thus, the use of amphotericin B should be considered carefully for the preservation of the pancreas for islet isolation and islet culture before islet transplantation.
Collapse
Affiliation(s)
- Sayaka Sawada
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Kazuho Kuwae
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Yoshihito Tamaki
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Kai Nishime
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Mayuko Sakai-Yonaha
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Tasuku Yonaha
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
2
|
Yonaha T, Miyagi-Shiohira C, Kuwae K, Tamaki Y, Nishime K, Sakai-Yonaha M, Saitoh I, Watanabe M, Noguchi H. Pancreas preservation in extracellular-type p38 inhibitor-containing solution improves islet yield for porcine islet isolation. Xenotransplantation 2020; 28:e12661. [PMID: 33231337 DOI: 10.1111/xen.12661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND For islet transplantation, pancreas preservation and islet isolation activate p38, which is a member of the stress-activated group of mitogen-activated protein kinases (MAPKs). In this study, we evaluated an extracellular-type p38 inhibitor-containing (EP) solution with University of Wisconsin (UW) solution, the gold standard for organ preservation. The EP solution has high sodium-low potassium composition with low viscosity compared to UW solution. Moreover, EP solution contains a recently developed p38 inhibitor (11R-p38I110 ) from our laboratory. METHODS Porcine pancreata were preserved in UW, EP, or EP-P solution (EP solution without 11R-p38I110 ), and then islet isolation was performed. An optimized number (1500 IE) of isolated islets from each group were transplanted into streptozotocin-induced diabetic mice. RESULTS The islet yield before and after purification was significantly higher in the EP group than in the UW group. The islet yield before and after purification was not significantly different between the EP and EP-P groups; however, the EP solution prevented a reduction in the number of islets during culture. Western blot analysis showed that p38 activation was attenuated by EP solution. For islet transplantation into streptozotocin-induced diabetic mice, pancreas preservation in EP solution improved the outcome of islet transplantation. CONCLUSIONS Pancreas preservation with EP solution preserved islet function better than with UW solution. The advantages of EP solution over UW solution may include the inhibition of p38 activity as well as the composition of the solution.
Collapse
Affiliation(s)
- Tasuku Yonaha
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazuho Kuwae
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshihito Tamaki
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kai Nishime
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Mayuko Sakai-Yonaha
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
3
|
The MEK Inhibitor Trametinib Suppresses Major Histocompatibility Antigen-mismatched Rejection Following Pancreatic Islet Transplantation. Transplant Direct 2020; 6:e591. [PMID: 32851124 PMCID: PMC7423917 DOI: 10.1097/txd.0000000000001045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 11/26/2022] Open
Abstract
Background. Potential adverse effects, such as functional impairment of islets, render conventional immunosuppressive drugs unsuitable for use in islet transplantation. In addition, as a single therapy, they cannot prolong islet allograft survival. Here, we investigated the utility of the mitogen-activated protein kinase inhibitor trametinib and asked whether it ameliorates acute rejection of transplanted islets without the need for conventional immunosuppressants. Methods. Islets from fully major histocompatibility complex-mismatched BALB/c mice were transplanted into streptozotocin-induced diabetic C57BL/6 mice via the portal vein. These mice received trametinib or vehicle (orally) for 28 days. Isolated islets from BALB/c mice were incubated in vitro with different concentrations of trametinib to determine viability and function. Results. Trametinib (0.1 and 0.3 mg/kg) prolonged graft survival significantly (P = 0.0007 and P = 0.005, respectively) when compared with vehicle. Histologic analyses revealed that cellular infiltration of the graft by lymphocytes was inhibited significantly on day 7 (P < 0.05). In addition, trametinib suppressed functional differentiation of naive CD4+ T cells in recipients. Expression of mRNA encoding inflammatory cytokines interleukin (IL)-2, tumor necrosis factor α, and interferon γ in recipients treated with trametinib was also inhibited (P < 0.001, P < 0.05, and P < 0.01, respectively). Trametinib also increased production of IL-4 and IL-10 (P < 0.05 and P = 0.20, respectively). In vitro, islets incubated with different concentrations of trametinib exhibited no harmful effects with respect to viability and function. Conclusions. Trametinib delayed islet graft rejection by inhibiting functional differentiation of naive CD4+ T cells and regulating inflammatory cytokines. Trametinib might be a promising candidate for maintenance immunosuppressive therapy after allogeneic islet transplantation.
Collapse
|
4
|
Noguchi H, Miyagi-Shiohira C, Nakashima Y, Saitoh I, Watanabe M. Novel cell-permeable p38-MAPK inhibitor efficiently prevents porcine islet apoptosis and improves islet graft function. Am J Transplant 2020; 20:1296-1308. [PMID: 31834983 DOI: 10.1111/ajt.15740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 01/25/2023]
Abstract
During islet transplantation, mitogen-activated protein kinase (MAPK) p38 is preferentially activated in response to the isolation of islets and the associated inflammation. Although therapeutic effects of p38 inhibitors are expected, the clinical application of small-molecule inhibitors of p38 is not recommended because of their serious adverse effects on the liver and central nervous system. Here we designed peptides to inhibit p38, which were derived from the sites on p38 that mediate binding to proteins such as MAPK kinases. Peptide 11R-p38I110 significantly inhibited the activation of p38. To evaluate the effects of 11R-p38I110 , porcine islets were incubated with 10 µmol/L 11R-p38I110 or a mutant form designated 11R-mp38I110 . After islet transplantation, blood glucose levels reached the normoglycemic range in 58.3% and 0% of diabetic mice treated with 11R-p38I110 or 11R-mp38I110 , respectively. These data suggest that 11R-p38I110 inhibited islet apoptosis and improved islet function. Peptide p38I110 is a noncompetitive inhibitor of ATP and targets a unique docking site. Therefore, 11R-p38I110 specifically inhibits p38 activation, which may avoid the adverse effects that have discouraged the clinical use of small-molecule inhibitors of p38. Moreover, our methodology to design "peptide inhibitors" could be used to design other inhibitors derived from the binding sites of proteins.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
5
|
Noguchi H. Regulation of c-Jun NH 2-Terminal Kinase for Islet Transplantation. J Clin Med 2019; 8:jcm8111763. [PMID: 31652814 PMCID: PMC6912371 DOI: 10.3390/jcm8111763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Islet transplantation has been demonstrated to provide superior glycemic control with reduced glucose lability and hypoglycemic events compared with standard insulin therapy. However, the insulin independence rate after islet transplantation from one donor pancreas has remained low. The low frequency of islet grafting is dependent on poor islet recovery from donors and early islet loss during the first hours following grafting. The reduction in islet mass during pancreas preservation, islet isolation, and islet transplantation leads to β-cell death by apoptosis and the prerecruitment of intracellular death signaling pathways, such as c-Jun NH2-terminal kinase (JNK), which is one of the stress groups of mitogen-activated protein kinases (MAPKs). In this review, we show some of the most recent contributions to the advancement of knowledge of the JNK pathway and several possibilities for the treatment of diabetes using JNK inhibitors.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| |
Collapse
|
6
|
A Novel Preservation Solution Containing a JNK Inhibitory Peptide Efficiently Improves Islet Yield for Porcine Islet Isolation. Transplantation 2019; 103:344-352. [DOI: 10.1097/tp.0000000000002555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Nahar S, Nakashima Y, Miyagi-Shiohira C, Kinjo T, Toyoda Z, Kobayashi N, Saitoh I, Watanabe M, Noguchi H, Fujita J. Cytokines in adipose-derived mesenchymal stem cells promote the healing of liver disease. World J Stem Cells 2018; 10:146-159. [PMID: 30631390 PMCID: PMC6325075 DOI: 10.4252/wjsc.v10.i11.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/07/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are a treatment cell source for patients with chronic liver injury. ADSCs are characterized by being harvested from the patient's own subcutaneous adipose tissue, a high cell yield (i.e., reduced immune rejection response), accumulation at a disease nidus, suppression of excessive immune response, production of various growth factors and cytokines, angiogenic effects, anti-apoptotic effects, and control of immune cells via cell-cell interaction. We previously showed that conditioned medium of ADSCs promoted hepatocyte proliferation and improved the liver function in a mouse model of acute liver failure. Furthermore, as found by many other groups, the administration of ADSCs improved liver tissue fibrosis in a mouse model of liver cirrhosis. A comprehensive protein expression analysis by liquid chromatography with tandem mass spectrometry showed that the various cytokines and chemokines produced by ADSCs promote the healing of liver disease. In this review, we examine the ability of expressed protein components of ADSCs to promote healing in cell therapy for liver disease. Previous studies demonstrated that ADSCs are a treatment cell source for patients with chronic liver injury. This review describes the various cytokines and chemokines produced by ADSCs that promote the healing of liver disease.
Collapse
Affiliation(s)
- Saifun Nahar
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Takao Kinjo
- Department of Basic Laboratory Sciences, School of Health Sciences in the Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Zensei Toyoda
- Department of Basic Laboratory Sciences, School of Health Sciences in the Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | | | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan
| | - Masami Watanabe
- Department of Urology, Okayama Univer sity Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| | - Jiro Fujita
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
8
|
Early TLR4 Blockade Attenuates Sterile Inflammation-mediated Stress in Islets During Isolation and Promotes Successful Transplant Outcomes. Transplantation 2018; 102:1505-1513. [DOI: 10.1097/tp.0000000000002287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Noguchi H, Miyagi-Shiohira C, Nakashima Y, Ebi N, Hamada E, Tamaki Y, Kuwae K, Kobayashi N, Saitoh I, Watanabe M. Modified cell-permeable JNK inhibitors efficiently prevents islet apoptosis and improves the outcome of islet transplantation. Sci Rep 2018; 8:11082. [PMID: 30038242 PMCID: PMC6056537 DOI: 10.1038/s41598-018-29481-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022] Open
Abstract
We previously reported that treatment with a JNK inhibitory peptide (11R-JNKI) prevents islet apoptosis and enhances the islet function in vivo. In the present study, we explored more efficient JNK inhibitors. The inhibition of the JNK activity by five types of deletion peptides in 11R-JNKI was investigated. One of the peptides, 8R-sJNKI(-9), significantly prevented JNK activation. At a concentration of 1 µM, 8R-sJNKI(-9) inhibited JNK activity similarly to 10 µM 11R-JNKI and the inhibition of the JNK activity by 10 µM 8R-sJNKI(-9) was significantly greater than that by 10 µM 11R-JNK. To evaluate the effects of 8R-sJNKI(-9), porcine islets were cultured with 1 µM of 8R-sJNKI(-9) or 8R-mutant sJNKI(-9) (8R-mJNKI(-9)). After 1 day of culture, the numbers of islets in the 8R-sJNKI(-9)-treated group was significantly higher than that in the 8R-mJNKI(-9)-treated group. After islet transplantation, the blood glucose levels reached the normoglycemic range in 58.3% of streptozotocin-induced diabetic mice in the 8R-sJNKI(-9) group and 0% of the mice in the 8R-mJNKI(-9)-treated group. These data suggest that 8R-sJNKI(-9) inhibits islet apoptosis and improves islet function.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan.
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Nana Ebi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Eri Hamada
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Yoshihito Tamaki
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Kazuho Kuwae
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | | | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951-8514, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| |
Collapse
|
10
|
Yoshimatsu G, Kunnathodi F, Saravanan PB, Shahbazov R, Chang C, Darden CM, Zurawski S, Boyuk G, Kanak MA, Levy MF, Naziruddin B, Lawrence MC. Pancreatic β-Cell-Derived IP-10/CXCL10 Isletokine Mediates Early Loss of Graft Function in Islet Cell Transplantation. Diabetes 2017; 66:2857-2867. [PMID: 28855240 PMCID: PMC5652609 DOI: 10.2337/db17-0578] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Pancreatic islets produce and secrete cytokines and chemokines in response to inflammatory and metabolic stress. The physiological role of these "isletokines" in health and disease is largely unknown. We observed that islets release multiple inflammatory mediators in patients undergoing islet transplants within hours of infusion. The proinflammatory cytokine interferon-γ-induced protein 10 (IP-10/CXCL10) was among the highest released, and high levels correlated with poor islet transplant outcomes. Transgenic mouse studies confirmed that donor islet-specific expression of IP-10 contributed to islet inflammation and loss of β-cell function in islet grafts. The effects of islet-derived IP-10 could be blocked by treatment of donor islets and recipient mice with anti-IP-10 neutralizing monoclonal antibody. In vitro studies showed induction of the IP-10 gene was mediated by calcineurin-dependent NFAT signaling in pancreatic β-cells in response to oxidative or inflammatory stress. Sustained association of NFAT and p300 histone acetyltransferase with the IP-10 gene required p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) activity, which differentially regulated IP-10 expression and subsequent protein release. Overall, these findings elucidate an NFAT-MAPK signaling paradigm for induction of isletokine expression in β-cells and reveal IP-10 as a primary therapeutic target to prevent β-cell-induced inflammatory loss of graft function after islet cell transplantation.
Collapse
Affiliation(s)
| | | | | | - Rauf Shahbazov
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX
| | - Charles Chang
- Institute of Biomedical Studies, Baylor University, Waco, TX
| | - Carly M Darden
- Institute of Biomedical Studies, Baylor University, Waco, TX
| | | | - Gulbahar Boyuk
- Adacell Medical Research Center, Department of Endocrinology and Metabolism, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Mazhar A Kanak
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Marlon F Levy
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Bashoo Naziruddin
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX
| | | |
Collapse
|
11
|
Zhou Y, Chung ACK, Fan R, Lee HM, Xu G, Tomlinson B, Chan JCN, Kong APS. Sirt3 Deficiency Increased the Vulnerability of Pancreatic Beta Cells to Oxidative Stress-Induced Dysfunction. Antioxid Redox Signal 2017; 27:962-976. [PMID: 28375738 DOI: 10.1089/ars.2016.6859] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIMS Hyperlipidemia-induced oxidative stress is considered to be one of the main pathogenic factors that contribute to pancreatic beta cell dysfunction in the development of type 2 diabetes (T2D). Sirtuin 3 (Sirt3) is abundantly expressed in the mitochondria as an NAD+-dependent deacetylase and regulates mitochondrial adaptive responses to oxidative stress. We examined the antioxidant defense mechanism of Sirt3 in pancreatic beta cells in the context of hyperlipidemia. RESULTS Chronic high-fat diet (HFD) feeding caused elevated oxidative stress accompanied by reduced Sirt3 expression in the pancreatic beta cells of wild-type mice. Primary pancreatic islets of Sirt3 knockout (KO) mice and murine pancreatic MIN6 cells with downregulated Sirt3 expression showed increased superoxide dismutase 2 (SOD2) acetylation and reduced glucose-stimulated insulin secretion and glucose-stimulated adenosine triphosphate (ATP) generation. Moreover, Sirt3 deficiency sensitized the pancreatic islets and MIN6 cells to palmitate- and H2O2-induced beta cell dysfunction linked with aggravated c-Jun N-terminal kinase phosphorylation and cleaved caspase-3 expression. These negative effects were reversed by antioxidant chemical treatment or restoration of Sirt3 in KO islets. Finally, overexpression of Sirt3 in MIN6 cells partially rescued palmitate-induced reactive oxygen species generation, pancreatic and duodenal homeobox-1 (Pdx-1) nucleo-cytoplasmic translocation, and beta cell dysfunction. INNOVATION We present that Sirt3 expression protected pancreatic beta cells from lipotoxicity by antagonizing oxidative stress-induced cell damage. CONCLUSION These results suggest that Sirt3 may be a target for amelioration of beta cell dysfunction due to obesity and T2D. Antioxid. Redox Signal. 27, 962-976.
Collapse
Affiliation(s)
- Yu Zhou
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong .,2 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong .,3 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Arthur C K Chung
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong .,3 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong .,4 Partner State Key Laboratory of Environmental and Biological Analysis and Department of Chemistry, The Hong Kong Baptist University , Hong Kong, Hong Kong
| | - Rongrong Fan
- 5 Department of Biosciences and Nutrition, Karolinska Institute , Stockholm, Sweden
| | - Heung Man Lee
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong .,2 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong .,3 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Gang Xu
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong .,3 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong .,6 School of Chinese Medicine, The Hong Kong Baptist University , Hong Kong, Hong Kong
| | - Brian Tomlinson
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Juliana C N Chan
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong .,2 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong .,3 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Alice P S Kong
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong .,2 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong .,3 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Prince of Wales Hospital, Hong Kong, Hong Kong
| |
Collapse
|
12
|
Otsuki K, Ito T, Kenmochi T, Maruyama M, Akutsu N, Saigo K, Hasegawa M, Aoyama H, Matsumoto I, Uchino Y. Positron Emission Tomography and Autoradiography of (18)F-Fluorodeoxyglucose Labeled Islets With or Without Warm Ischemic Stress in Portal Transplanted Rats. Transplant Proc 2016; 48:229-33. [PMID: 26915873 DOI: 10.1016/j.transproceed.2015.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The use of positron-emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) -labeled islets has been considered to be a potential modality to visualize and quantify early engraftment of islet transplantation. The objective of this study was to evaluate the early islets' survival of the FDG-labeled islets with or without warm ischemic stress in portal transplanted rats using PET and autoradiography. METHODS Islets were isolated from Lewis rat pancreata with or without 30-minute warm ischemia times (WITs). For islets' labeling, 300 islets were incubated with 3 MBq FDG for 60 minutes. FDG-labeled islets were transplanted into the liver via portal vein. In in vivo study, a PET study was scanned for 90 minutes and the FDG uptake was expressed as percentage of liver injection dose (ID). In ex vivo study, the liver was exposed for 30 minutes with single fluorescence autoradiography. RESULTS In the PET study, the percentage of liver ID of the islets without WIT was 27.8 and that of the WIT islets was 20.1 at the end of islet transplantation. At 90 minutes after transplantation, the percentage of liver ID was decreased to 14.7 in the islets without WIT and 10.1 in the WIT islets. In the autoradiogram, the number of hot spots was more obviously visualized in the liver transplanted without WIT islets than in the liver transplanted with WIT islets. CONCLUSION Almost 50% of the islets were immediately lost in both the islets without WIT and those with WIT transplantation in the early period. However, islet survival was 1.4 times higher in the islets without WIT than that in those with WIT in the early engraftment phase.
Collapse
Affiliation(s)
- K Otsuki
- Department of Surgery, National Chiba-East Hospital, Chiba, Japan.
| | - T Ito
- Department of Transplantation Surgery, National Chiba-East Hospital, Chiba, Japan
| | - T Kenmochi
- Department of Transplantation Surgery, National Chiba-East Hospital, Chiba, Japan
| | - M Maruyama
- Department of Surgery, National Chiba-East Hospital, Chiba, Japan
| | - N Akutsu
- Department of Surgery, National Chiba-East Hospital, Chiba, Japan
| | - K Saigo
- Department of Surgery, National Chiba-East Hospital, Chiba, Japan
| | - M Hasegawa
- Department of Surgery, National Chiba-East Hospital, Chiba, Japan
| | - H Aoyama
- Department of Surgery, National Chiba-East Hospital, Chiba, Japan
| | - I Matsumoto
- Department of Surgery, National Chiba-East Hospital, Chiba, Japan
| | - Y Uchino
- Chiba Ryogo Center, PET Imaging Division, Chiba, Japan
| |
Collapse
|
13
|
Fukaya M, Brorsson CA, Meyerovich K, Catrysse L, Delaroche D, Vanzela EC, Ortis F, Beyaert R, Nielsen LB, Andersen ML, Mortensen HB, Pociot F, van Loo G, Størling J, Cardozo AK. A20 Inhibits β-Cell Apoptosis by Multiple Mechanisms and Predicts Residual β-Cell Function in Type 1 Diabetes. Mol Endocrinol 2015; 30:48-61. [PMID: 26652732 DOI: 10.1210/me.2015-1176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation of the transcription factor nuclear factor kappa B (NFkB) contributes to β-cell death in type 1 diabetes (T1D). Genome-wide association studies have identified the gene TNF-induced protein 3 (TNFAIP3), encoding for the zinc finger protein A20, as a susceptibility locus for T1D. A20 restricts NF-κB signaling and has strong antiapoptotic activities in β-cells. Although the role of A20 on NF-κB inhibition is well characterized, its other antiapoptotic functions are largely unknown. By studying INS-1E cells and rat dispersed islet cells knocked down or overexpressing A20 and islets isolated from the β-cell-specific A20 knockout mice, we presently demonstrate that A20 has broader effects in β-cells that are not restricted to inhibition of NF-κB. These involves, suppression of the proapoptotic mitogen-activated protein kinase c-Jun N-terminal kinase (JNK), activation of survival signaling via v-akt murine thymoma viral oncogene homolog (Akt) and consequently inhibition of the intrinsic apoptotic pathway. Finally, in a cohort of T1D children, we observed that the risk allele of the rs2327832 single nucleotide polymorphism of TNFAIP3 predicted lower C-peptide and higher hemoglobin A1c (HbA1c) levels 12 months after disease onset, indicating reduced residual β-cell function and impaired glycemic control. In conclusion, our results indicate a critical role for A20 in the regulation of β-cell survival and unveil novel mechanisms by which A20 controls β-cell fate. Moreover, we identify the single nucleotide polymorphism rs2327832 of TNFAIP3 as a possible prognostic marker for diabetes outcome in children with T1D.
Collapse
Affiliation(s)
- Makiko Fukaya
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Caroline A Brorsson
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Kira Meyerovich
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Leen Catrysse
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Diane Delaroche
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Emerielle C Vanzela
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Fernanda Ortis
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Rudi Beyaert
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Lotte B Nielsen
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Marie L Andersen
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Henrik B Mortensen
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Flemming Pociot
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Geert van Loo
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Joachim Størling
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| | - Alessandra K Cardozo
- Université Libre de Bruxelles Center for Diabetes Research (M.F., K.M., D.D., E.C.V., A.K.C.), Free University Brussels, 1070 Brussels, Belgium; Copenhagen Diabetes Research Center (C.A.B., L.B.N., M.L.A., H.B.M., F.P., J.S.), Department of Pediatrics E, Copenhagen University Hospital Herlev, DL-2730 Herlev, Denmark; Inflammation Research Center (L.C., R.B., G.v.L.), Vlaams Instituut voor Biotechnologie, 9052 Gent, Belgium; Department of Biomedical Molecular Biology (L.C., R.B., G.v.L.), 9052 Gent University, Gent, Belgium; Laboratory of Endocrine Pancreas and Metabolism (E.C.V.), Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil; and Department of Development and Cellular Biology (F.O.), Institute of Biomedical Sciences, 05508-900 São Paulo University, São Paulo, Brazil
| |
Collapse
|
14
|
Noguchi H, Miyagi-Shiohira C, Kurima K, Kobayashi N, Saitoh I, Watanabe M, Noguchi Y, Matsushita M. Islet Culture/Preservation Before Islet Transplantation. CELL MEDICINE 2015; 8:25-9. [PMID: 26858905 DOI: 10.3727/215517915x689047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although islet culture prior to transplantation provides flexibility for the evaluation of isolated islets and the pretreatment of patients, it is well known that isolated islets deteriorate rapidly in culture. Human serum albumin (HSA) is used for medium supplementation instead of fetal bovine serum (FBS), which is typically used for islet culture research, to avoid the introduction of xenogeneic materials. However, FBS contains several factors that are beneficial to islet viability and which also neutralize the endogenous pancreatic enzymes or exogenous enzymes left over from the isolation process. Several groups have reported the comparison of cultures at 22°C and 37°C. Recent studies have demonstrated the superiority of 4°C preservation to 22°C and 37°C cultures. We herein review the current research on islet culture/preservation for clinical islet transplantation.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | - Kiyoto Kurima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | | | - Issei Saitoh
- ‡ Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University , Niigata , Japan
| | - Masami Watanabe
- § Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yasufumi Noguchi
- ¶ Department of Socio-environmental Design, Hiroshima International University , Hiroshima , Japan
| | - Masayuki Matsushita
- # Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| |
Collapse
|
15
|
Kanak MA, Takita M, Kunnathodi F, Lawrence MC, Levy MF, Naziruddin B. Inflammatory response in islet transplantation. Int J Endocrinol 2014; 2014:451035. [PMID: 24883060 PMCID: PMC4021753 DOI: 10.1155/2014/451035] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/04/2014] [Accepted: 02/12/2014] [Indexed: 12/23/2022] Open
Abstract
Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation.
Collapse
Affiliation(s)
- Mazhar A. Kanak
- Institute for Biomedical Studies, Baylor University, Waco, TX 76712, USA
| | - Morihito Takita
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX 75204, USA
| | - Faisal Kunnathodi
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX 75204, USA
| | | | - Marlon F. Levy
- Baylor Annette C. and Harold C. Simmons Transplant Institute, 3410 Worth Street, Dallas, TX 75246, USA
| | - Bashoo Naziruddin
- Baylor Annette C. and Harold C. Simmons Transplant Institute, 3410 Worth Street, Dallas, TX 75246, USA
| |
Collapse
|
16
|
Wittig C, Laschke MW, Scheuer C, Menger MD. Incorporation of bone marrow cells in pancreatic pseudoislets improves posttransplant vascularization and endocrine function. PLoS One 2013; 8:e69975. [PMID: 23875013 PMCID: PMC3715469 DOI: 10.1371/journal.pone.0069975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/14/2013] [Indexed: 01/01/2023] Open
Abstract
Failure of revascularization is known to be the major reason for the poor outcome of pancreatic islet transplantation. In this study, we analyzed whether pseudoislets composed of islet cells and bone marrow cells can improve vascularization and function of islet transplants. Pancreatic islets isolated from Syrian golden hamsters were dispersed into single cells for the generation of pseudoislets containing 4×103 cells. To create bone marrow cell-enriched pseudoislets 2×103 islet cells were co-cultured with 2×103 bone marrow cells. Pseudoislets and bone marrow cell-enriched pseudoislets were transplanted syngeneically into skinfold chambers to study graft vascularization by intravital fluorescence microscopy. Native islet transplants served as controls. Bone marrow cell-enriched pseudoislets showed a significantly improved vascularization compared to native islets and pseudoislets. Moreover, bone marrow cell-enriched pseudoislets but not pseudoislets normalized blood glucose levels after transplantation of 1000 islet equivalents under the kidney capsule of streptozotocin-induced diabetic animals, although the bone marrow cell-enriched pseudoislets contained only 50% of islet cells compared to pseudoislets and native islets. Fluorescence microscopy of bone marrow cell-enriched pseudoislets composed of bone marrow cells from GFP-expressing mice showed a distinct fraction of cells expressing both GFP and insulin, indicating a differentiation of bone marrow-derived cells to an insulin-producing cell-type. Thus, enrichment of pseudoislets by bone marrow cells enhances vascularization after transplantation and increases the amount of insulin-producing tissue. Accordingly, bone marrow cell-enriched pseudoislets may represent a novel approach to increase the success rate of islet transplantation.
Collapse
Affiliation(s)
- Christine Wittig
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | |
Collapse
|
17
|
Lanuza-Masdeu J, Arévalo MI, Vila C, Barberà A, Gomis R, Caelles C. In vivo JNK activation in pancreatic β-cells leads to glucose intolerance caused by insulin resistance in pancreas. Diabetes 2013; 62:2308-17. [PMID: 23349497 PMCID: PMC3712047 DOI: 10.2337/db12-1097] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin resistance is a key condition in the development of type 2 diabetes. It is well established that exacerbated Jun NH2-terminal kinase (JNK) activity is involved in promoting insulin resistance in peripheral insulin-target tissues; however, this involvement is less documented in pancreatic β-cells. Using a transgenic mouse model, here we show that JNK activation in β-cells led to glucose intolerance as a result of impaired capacity to increase insulinemia in response to hyperglycemia. Pancreatic islets from these mice showed no obvious morphostructural abnormalities or decreased insulin content. In contrast, these islets failed to secrete insulin in response to glucose or insulin but were competent in succinate-, ketoisocaproate-, 3-isobutyl-1-methylxanthine (IBMX-), KCl-, and tolbutamide-induced insulin secretion. At the molecular level, JNK activation in β-cells inhibited insulin-induced Akt phosphorylation, pancreatic and duodenal homeobox 1 nucleocytoplasmic shuttling, and transcription of insulin-target genes. Remarkably, rosiglitazone restored insulin secretion in response to hyperglycemia in mice and insulin-induced insulin secretion and signaling in isolated islets. In conclusion, the mere activation of JNK suffices to induce insulin resistance in pancreatic β-cells by inhibition of insulin signaling in these cells, but it is not sufficient to elicit β-cell death. In addition, we provide the first evidence that thiazolidinediones exert insulin-sensitizing action directly on pancreatic β-cells.
Collapse
Affiliation(s)
- Jordi Lanuza-Masdeu
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Cell Signaling Research Group, Institute for Research in Biomedicine, Barcelona, Spain
| | - M. Isabel Arévalo
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Cell Signaling Research Group, Institute for Research in Biomedicine, Barcelona, Spain
| | - Cristina Vila
- Cell Signaling Research Group, Institute for Research in Biomedicine, Barcelona, Spain
| | - Albert Barberà
- Diabetes and Obesity Laboratory, IDIBAPS-Hospital Clínic, University of Barcelona, Barcelona, Spain
- CIBERDEM, Spain
| | - Ramon Gomis
- Diabetes and Obesity Laboratory, IDIBAPS-Hospital Clínic, University of Barcelona, Barcelona, Spain
- CIBERDEM, Spain
| | - Carme Caelles
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Cell Signaling Research Group, Institute for Research in Biomedicine, Barcelona, Spain
- Corresponding author: Carme Caelles,
| |
Collapse
|
18
|
Oishi K, Noguchi H, Saito H, Yukawa H, Miyamoto Y, Ono K, Murase K, Sawada M, Hayashi S. Novel Positive-Charged Nanoparticles for Efficient Magnetic Resonance Imaging of Islet Transplantation. CELL MEDICINE 2012; 3:43-49. [PMID: 28058180 DOI: 10.3727/215517912x639397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Significant graft loss immediately after islet transplantation occurs due to immunological and nonimmunological events. Magnetic resonance imaging (MRI) is an attractive potential tool for monitoring islet mass in vivo. Although an efficient uptake of MRI contrast agent is required for islet cell labeling, commercially available magnetic nanoparticles are not efficiently transduced into cells. In this study, we developed six kinds of novel magnetic iron oxide nanoparticles, which are electrically charged by cationic end-group substitution of dextran. Each of the nanoparticles consisted of a small monocrystalline, superparamagnetic iron oxide core that is stabilized by a cross-linked aminated dextran coating to improve stability. We also used three different commercially available nanoparticles for controls. The labeling efficiency of the novel nanoparticles was evaluated, and the feasibility of the imaging by MRI was assessed. The positive-charged nanoparticles were transduced into a β-cell line, MIN6 cells, but not three commercially available nanoparticles. MRI showed a marked decrease in signal intensity on T1- and T2-weighted images at the site of the labeled cells in vitro. These data suggest that novel positive-charged nanoparticles could be useful MRI contrast agents to monitor islet mass after transplantation.
Collapse
Affiliation(s)
- Koichi Oishi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Hirofumi Noguchi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya, Japan; †Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Saito
- ‡ Nagoya Research Laboratory, MEITO Sangyo Co., Ltd. , Nagoya , Japan
| | - Hiroshi Yukawa
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yoshitaka Miyamoto
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Kenji Ono
- § Department of Brain Functions, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University , Nagoya , Japan
| | - Katsutoshi Murase
- ‡ Nagoya Research Laboratory, MEITO Sangyo Co., Ltd. , Nagoya , Japan
| | - Makoto Sawada
- § Department of Brain Functions, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University , Nagoya , Japan
| | - Shuji Hayashi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
19
|
Implication of mitochondrial cytoprotection in human islet isolation and transplantation. Biochem Res Int 2012; 2012:395974. [PMID: 22611495 PMCID: PMC3352213 DOI: 10.1155/2012/395974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 01/30/2012] [Indexed: 12/23/2022] Open
Abstract
Islet transplantation is a promising therapy for type 1 diabetes mellitus; however, success rates in achieving both short- and long-term insulin independence are not consistent, due in part to inconsistent islet quality and quantity caused by the complex nature and multistep process of islet isolation and transplantation. Since the introduction of the Edmonton Protocol in 2000, more attention has been placed on preserving mitochondrial function as increasing evidences suggest that impaired mitochondrial integrity can adversely affect clinical outcomes. Some recent studies have demonstrated that it is possible to achieve islet cytoprotection by maintaining mitochondrial function and subsequently to improve islet transplantation outcomes. However, the benefits of mitoprotection in many cases are controversial and the underlying mechanisms are unclear. This article summarizes the recent progress associated with mitochondrial cytoprotection in each step of the islet isolation and transplantation process, as well as islet potency and viability assays based on the measurement of mitochondrial integrity. In addition, we briefly discuss immunosuppression side effects on islet graft function and how transplant site selection affects islet engraftment and clinical outcomes.
Collapse
|
20
|
Wang XH, Ding XM, Li Y, Liu HB, Xue WJ, Tian XH, Feng XS, Jiao FM, Zheng J. Simultaneous blockade of the CD40/CD40L and NF-κB pathways prolonged islet allograft survival. Transpl Int 2011; 25:118-26. [PMID: 22017688 DOI: 10.1111/j.1432-2277.2011.01374.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of NF-κB pathway and co-stimulatory system CD40/CD40L promotes the inflammation, which plays a key role in the failure of islet graft. Therefore, the purpose of this study was to determine if simultaneous blockade of CD40/CD40L and IκB/NF-κB pathways could protect islet graft. Streptozocin-induced diabetic Wistar rats were transplanted intraportally with 2000 IEQ islets isolated from Sprague-Dawley rats. The rats were divided into five groups: nontreatment group, AdGFP-treated group, Ad-IκBα-treated group, Ad-sCD40LIg-treated group, and Ad-IκBα-IRES(2) -sCD40L-treated group. The islet graft mean survival time (MST), insulin expression of islet grafts, and the levels of cytokines in peripheral blood, were measured for the animals in each group. Our study confirmed that islet cells transfected with low doses of adenovirus could achieve high transfection efficiency, and would not affect the function of islet cells (P > 0.05). Splenocytes cultured with Ad-IκBα-IRES2-CD40L-transfected islets resulted in homospecific hyporesponsiveness. The islet graft MST (>100 d) in the Ad-IκBα-IRES2-sCD40L-treated group was dramatically prolonged compared with that in the nontreatment group (7.1 ± 1.16 d). In addition, TNF-α, IL-1β, and IFN-γ were diminished in the Ad-IκBα-IRES2-sCD40L-treated group, which was commensurate with the reduced cellular infiltration (P < 0.01). Simultaneous blockade of the CD40/CD40L and IκB/NF-κB pathways could effectively extend the survival of islet grafts.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- Department of Renal Transplant, Center of Nephropathy, The First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, Shanxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pancreas procurement and preservation for islet transplantation: personal considerations. J Transplant 2011; 2011:783168. [PMID: 21918716 PMCID: PMC3171759 DOI: 10.1155/2011/783168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/29/2011] [Accepted: 07/13/2011] [Indexed: 12/14/2022] Open
Abstract
Pancreatic islet transplantation is a promising option for the treatment of type 1 diabetic patients. After the successful demonstration of the Edmonton protocol, islet transplantation has advanced significantly on several fronts, including improved pancreas procurement and preservation systems. Since we frequently use pancreata from donors after cardiac death in Japan,we have applied the in situ regional organ cooling system for pancreas procurement to reduce the warm ischemic time. To reduce the apoptosis of pancreatic tissue during cold preservation, we have applied the ductal injection of preservation solution. For pancreas preservation, we use modified Kyoto solution, which is advantageous at trypsin inhibition and less collagenase inhibition. In this paper, we show pancreas procurement and preservation in our group for islet transplantation.
Collapse
|
22
|
Rizzari MD, Suszynski TM, Kidder LS, Stein SA, O'Brien TD, Sajja VSK, Scott WE, Kirchner VA, Weegman BP, Avgoustiniatos ES, Todd PW, Kennedy DJ, Hammer BE, Sutherland DER, Hering BJ, Papas KK. Surgical protocol involving the infusion of paramagnetic microparticles for preferential incorporation within porcine islets. Transplant Proc 2011; 42:4209-12. [PMID: 21168666 DOI: 10.1016/j.transproceed.2010.09.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/21/2010] [Accepted: 09/29/2010] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Despite significant advances, widespread applicability of islet cell transplantation remains elusive. Refinement of current islet isolation protocols may improve transplant outcomes. Islet purification by magnetic separation has shown early promise. However, surgical protocols must be optimized to maximize the incorporation of paramagnetic microparticles (MP) within a greater number of islets. This study explores the impact of MP concentration and infusion method on optimizing MP incorporation within islets. METHODS Five porcine pancreata were procured from donors after cardiac death. Splenic lobes were isolated and infused with varying concentrations of MP (8, 16, and 32 × 10(8) MP/L of cold preservation solution) and using one of two delivery techniques (hanging bag versus hand-syringe). After procurement and infusion, pancreata were stored at 0°C to 4°C during transportation (less than 1 hour), fixed in 10% buffered formalin, and examined by standard magnetic resonance imaging (MRI) and histopathology. RESULTS T2*-weighted MRI showed homogeneous distribution of MP in all experimental splenic lobes. In addition, histologic analysis confirmed that MP were primarily located within the microvasculature of islets (82% to 85%), with few MP present in acinar tissue (15% to 18%), with an average of five to seven MP per islet (within a 5-μm thick section). The highest MP incorporation was achieved at a concentration of 16 × 10(8) MP/L using the hand-syringe technique. CONCLUSION This preliminary study suggests that optimization of a surgical protocol, MP concentrations, and applied infusion pressures may enable more uniform distribution of MP in the porcine pancreas and better control of MP incorporation within islets. These results may have implications in maximizing the efficacy of islet purification by magnetic separation.
Collapse
Affiliation(s)
- M D Rizzari
- Schulze Diabetes Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jin SM, Kim KS, Lee SY, Gong CH, Park SK, Shin JS, Park CG, Kim SJ. The sequential combination of a JNK inhibitor and simvastatin protects porcine islets from peritransplant apoptosis and inflammation. Cell Transplant 2010; 20:1139-51. [PMID: 21176401 DOI: 10.3727/096368910x550170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intraductal administration of a c-Jun NH(2)-terminal kinase (JNK) inhibitor enhances islet viability. However, its role in reducing the inflammatory response in islets is unknown. It is also unknown whether a JNK inhibitor could act in synergy with statins. We examined if the sequential combination of a JNK inhibitor and simvastatin would reduce islet inflammation and improve islet viability. We performed porcine islet isolation with or without intraductal administration of SP600125, a JNK inhibitor. This was followed by culture medium supplementation with either nicotinamide alone or nicotinamide plus simvastatin. We assessed the viability of islets by flow cytometry, islet loss during overnight culture, graft function in NOD/SCID mice, and expression of inflammation-related genes in islets. The sequential combination of a JNK inhibitor and simvastatin increased the β-cell viability index of porcine islets cultured overnight (p = 0.015) as well as islet viability as assessed by a DNA binding dye staining (p = 0.011). The combination of a JNK inhibitor and simvastatin significantly increased the islet survival rate (p = 0.027) when the histomorphometry of donor pancreas indicated a large islet proportion of greater than 50.55%. When we transplanted the same islet mass per recipient for each group, there was no difference in overall islet graft function. Intraductal administration of JNK inhibitor significantly suppressed mRNA expression levels of interleukin-1β (IL-1β), interferon-γ, tumor necrosis factor-α, IL-6, IL-8, and macrophage chemoattractant protein-1. It also decreased the concentration of IL-1β (p = 0.040) and IL-8 (p = 0.023) in the culture supernatant. In conclusion, the sequential combination of a JNK inhibitor and simvastatin protected porcine islets from peritransplant apoptosis. Inhibition of JNK reduced the inflammatory response and could be considered an alternative target for suppression of porcine islet inflammation.
Collapse
Affiliation(s)
- Sang-Man Jin
- Xenotransplantation Research Center, Seoul National University Hospital, 103 Daehak-ro Jongno-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Noguchi H, Matsumoto S, Onaca N, Naziruddin B, Jackson A, Ikemoto T, Shimoda M, Fujita Y, Chujo D, Iwanaga Y, Nagata H, Okitsu T, Kobayashi N, Ueno H, Chaussabel D, Grayburn P, Banchereau J, Levy MF. Ductal injection of JNK inhibitors before pancreas preservation prevents islet apoptosis and improves islet graft function. Hum Gene Ther 2010; 20:73-85. [PMID: 18925829 DOI: 10.1089/hum.2008.125] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human islet isolation to obtain high-quality islets is still challenging. This study investigates how c-Jun NH2- terminal kinase (JNK ) is activated during human and porcine islet isolation. We also investigated whether ductal injection of preservation solution with JNK inhibitors improves islet isolation results by preventing apoptosis of islet cells. A low molecular weight inhibitor (SP600125) and a cell-permeable peptide inhibitor, the latter introduced by protein transduction technology, were used in porcine and human studies, respectively. JNK activity progressively increased during the isolation procedure. The addition of 10 microM JNK inhibitors into the ductal preservation solution prevented JNK activation during the isolation procedure and prevented islet apoptosis immediately after isolation. We incubated islets (2000 islet equivalents) for 24-48 hr and then transplanted them below the kidney capsule of streptozotocin-induced diabetic mice. The blood glucose levels reached normoglycemia in more than 80% of the JNK inhibitor-positive group, whereas less than 20% of the JNK inhibitor-negative group achieved normoglycemia. These findings suggest that the JNK pathway is the major mediator of islet deterioration during/immediately after isolation and that JNK inhibition before islet isolation could improve outcomes after pancreatic islet transplantation.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Baylor All Saints Medical Center/Baylor Institute for Immunology Research, Baylor Research Institute, Dallas/Fort Worth, TX 75204, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Noguchi H, Matsushita M, Kobayashi N, Levy MF, Matsumoto S. Recent Advances in Protein Transduction Technology. Cell Transplant 2010; 19:649-54. [DOI: 10.3727/096368910x508744] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During the past 15 years, a variety of peptides, known as protein transduction domains (PTDs), or cell-penetrating peptides (CPPs), have been characterized for their ability to translocate into live cells. There are now numerous examples of biologically active full-length proteins and peptides that have been successfully delivered to cells and tissues, both in vitro and in vivo. One of the principal mechanisms of protein transduction is via electrostatic interactions with the plasma membrane, subsequent penetration into the cells by macropinocytosis, and release into the cytoplasm and nuclei by retrograde transport. Recent reports have also now shown that some of the limitations of protein transduction technology have been overcome. In particular, the use of ubiquitination-resistant proteins has been demonstrated to be a more effective strategy for transduction because the half-life of these molecules is significantly increased. Moreover, the use of the NH2-terminal domain of the influenza virus hemagglutinin-2 subunit (HA2) or photosensitive PTDs has been shown to specifically enhance macropinosome escape. Hence, these and other recent advances in protein transduction technologies have created a number of possibilities for the development of new peptide-based drugs.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Baylor All Saints Medical Center, Baylor Research Institute, Fort Worth, TX, USA
| | | | - Naoya Kobayashi
- Department of Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Marlon F. Levy
- Baylor All Saints Medical Center, Baylor Research Institute, Fort Worth, TX, USA
| | - Shinichi Matsumoto
- Baylor All Saints Medical Center, Baylor Research Institute, Fort Worth, TX, USA
| |
Collapse
|
26
|
Abstract
The present study uses a novel approach to gene therapy in which plasmid DNA is targeted to the pancreas in vivo using ultrasound targeted microbubble destruction (UTMD) to achieve islet regeneration. Intravenous microbubbles carrying plasmids are destroyed within the pancreatic microcirculation by ultrasound, achieving local gene expression that is further targeted to beta-cells by a modified rat insulin promoter (RIP3.1). A series of genes implicated in endocrine development were delivered to rats 2 days after streptozotocin-induced diabetes. The genes PAX4, Nkx2.2, Nkx6.1, Ngn3, and Mafa produced alpha cell hyperplasia, but no significant improvement in beta cell mass or blood glucose 30 days after UTMD. In contrast, RIP3.1-NeuroD1 promoted islet regeneration from surviving beta-cells, with normalization of glucose, insulin, and C-peptide at 30 days. In a longer-term experiment, 4 of 6 rats had return of diabetes at 90 days, accompanied by beta cell apoptosis on Tunel staining. Pre-treatment with the JNK inhibitor SP600125 successfully blocked beta-cell apoptosis and resulted in restoration of beta cell mass and normalization of blood glucose for up to 90 days. This technique allows in vivo islet regeneration, restoration of beta cell mass, and normalization of blood sugar, insulin, and C-peptide in rats without viruses.
Collapse
|
27
|
Natalicchio A, De Stefano F, Orlando MR, Melchiorre M, Leonardini A, Cignarelli A, Labarbuta R, Marchetti P, Perrini S, Laviola L, Giorgino F. Exendin-4 prevents c-Jun N-terminal protein kinase activation by tumor necrosis factor-alpha (TNFalpha) and inhibits TNFalpha-induced apoptosis in insulin-secreting cells. Endocrinology 2010; 151:2019-29. [PMID: 20219981 DOI: 10.1210/en.2009-1166] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glucagon-like peptide-1 and its analogs may preserve pancreatic beta-cell mass by promoting resistance to cytokine-mediated apoptosis. The mechanisms of TNFalpha-induced apoptosis and of its inhibition by exendin-4 were investigated in insulin-secreting cells. INS-1 and MIN6 insulinoma cells were exposed to 20 ng/ml TNFalpha, with or without pretreatment with 10 nm exendin-4. Treatment with TNFalpha increased c-Jun N-terminal protein kinase (JNK) phosphorylation 2-fold, reduced inhibitor-kappaBalpha (IkappaBalpha) protein content by 50%, induced opposite changes in caspase-3 and Bcl-2 protein content, and increased cellular apoptosis. Moreover, exposure to TNFalpha resulted in increased serine phosphorylation of both insulin receptor substrate (IRS)-1 and IRS-2 and reduced basal and insulin-induced Akt phosphorylation. However, in the presence of a JNK inhibitor, TNFalpha-induced apoptosis was diminished and serine phosphorylation of IRS proteins was prevented. When cells were pretreated with exendin-4, TNFalpha-induced JNK and IRS-1/2 serine phosphorylation was markedly reduced, Akt phosphorylation was increased, caspase-3 and Bcl-2 protein levels were restored to normal, and TNFalpha-induced apoptosis was inhibited by 50%. This was associated with a 2-fold increase in IRS-2 expression levels. A similar ability of exendin-4 to prevent TNFalpha-induced JNK phosphorylation was found in isolated pancreatic human islets. The inhibitory effect of exendin-4 on TNFalpha-induced JNK phosphorylation was abrogated in the presence of the protein kinase A inhibitor H89. In conclusion, JNK activation mediates TNFalpha-induced apoptosis and impairment of the IRS/Akt signaling pathway in insulin-secreting cells. By inhibiting JNK phosphorylation in a PKA-dependent manner, exendin-4 counteracts TNFalpha-mediated apoptosis and reverses the inhibitory events in the IRS/Akt pathway, resulting in promotion of cell survival.
Collapse
Affiliation(s)
- Annalisa Natalicchio
- Department of Emergency and Organ Transplantation, Section on Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari, Piazza Giulio Cesare, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Islet amyloid deposition limits the viability of human islet grafts but not porcine islet grafts. Proc Natl Acad Sci U S A 2010; 107:4305-10. [PMID: 20160085 DOI: 10.1073/pnas.0909024107] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Islet transplantation is a promising treatment for diabetes but long-term success is limited by progressive graft loss. Aggregates of the beta cell peptide islet amyloid polypeptide (IAPP) promote beta cell apoptosis and rapid amyloid formation occurs in transplanted islets. Porcine islets are an attractive alternative islet source as they demonstrate long-term graft survival. We compared the capacity of transplanted human and porcine islets to form amyloid as an explanation for differences in graft survival. Human islets were transplanted into streptozotocin-diabetic immune-deficient mice. Amyloid deposition was detectable at 4 weeks posttransplantation and was associated with islet graft failure. More extensive amyloid deposition was observed after 8 weeks. By contrast, no amyloid was detected in transplanted neonatal or adult porcine islets that had maintained normoglycemia for up to 195 days. To determine whether differences in IAPP sequence between humans and pigs could explain differences in amyloid formation and transplant viability, we sequenced porcine IAPP. Porcine IAPP differs from the human sequence at 10 positions and includes substitutions predicted to reduce its amyloidogenicity. Synthetic porcine IAPP was considerably less amyloidogenic than human IAPP as determined by transmission electron microscopy, circular dichroism, and thioflavin T binding. Viability assays indicated that porcine IAPP is significantly less toxic to INS-1 beta cells than human IAPP. Our findings demonstrate that species differences in IAPP sequence can explain the lack of amyloid formation and improved survival of transplanted porcine islets. These data highlight the potential of porcine islet transplantation as a therapeutic approach for human diabetes.
Collapse
|
29
|
Noguchi H, Naziruddin B, Jackson A, Shimoda M, Ikemoto T, Fujita Y, Chujo D, Takita M, Kobayashi N, Onaca N, Levy MF, Matsumoto S. Low-temperature preservation of isolated islets is superior to conventional islet culture before islet transplantation. Transplantation 2010; 89:47-54. [PMID: 20061918 DOI: 10.1097/tp.0b013e3181be3bf2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although culturing islets before transplantation provides flexibility for evaluation of isolated islets and pretreatment of patients, it is well-known that isolated islets deteriorate rapidly in culture. In this study, we evaluated optimal temperature for culture/preservation of isolated human islets before transplantation. METHODS Isolated islets were cultured or preserved for 48 hr in the following culture/preservation conditions: preservation at 4 degrees C in University of Wisconsin solution and culture at 22 degrees C or 37 degrees C in culture medium. RESULTS Islet morphology after 4 degrees C preservation was similar to that of fresh islets, whereas islet diameter after 37 degrees C or 22 degrees C culture was smaller than that of fresh islets. Islet yield significantly decreased at higher temperatures (24% loss in 37 degrees C culture and 19% loss in 22 degrees C culture, but <5% loss in 4 degrees C preservation). Cultured/preserved islets were transplanted into diabetic nude mice. The attainability of posttransplantation normoglycemia was significantly higher in the 4 degrees C preservation group than in 22 degrees C and 37 degrees C culture groups. CONCLUSION Preservation of isolated islets at 4 degrees C improves the outcome of islet transplantation more efficiently than preservation at 22 degrees C or 37 degrees C. Based on these data, we have performed short-time cold storage of isolated islets instead of culturing for current clinical islet transplantation.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Baylor All Saints Medical Center, Baylor Research Institute, Fort Worth, TX 76104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Noguchi H, Naziruddin B, Onaca N, Jackson A, Shimoda M, Ikemoto T, Fujita Y, Kobayashi N, Levy MF, Matsumoto S. Comparison of modified Celsior solution and M-kyoto solution for pancreas preservation in human islet isolation. Cell Transplant 2010; 19:751-8. [PMID: 20955657 DOI: 10.3727/096368909x508852] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Since the successful demonstration of the Edmonton protocol, islet transplantation has advanced significantly on several fronts, including improved pancreas preservation systems. In this study, we evaluated two different types of organ preservation solutions for human islet isolation. Modified Celsior (Celsior solution with hydroxyethyl starch and nafamostat mesilate; HNC) solution and modified Kyoto (MK) solution were compared for pancreas preservation prior to islet isolation. Islet yield after purification was significantly higher in the MK group than in the HNC group (MK = 6186 ± 985 IE/g; HNC = 3091 ± 344 IE/g). The HNC group had a longer phase I period (digestion time), a higher volume of undigested tissue, and a higher percentage of embedded islets, suggesting that the solution may inhibit collagenase. However, there was no significant difference in ATP content in the pancreata or in the attainability of posttransplant normoglycemia in diabetic nude mice between the two groups, suggesting that the quality of islets was similar among the two groups. In conclusion, MK solution is better for pancreas preservation before islet isolation than HNC solution due to the higher percentage of islets that can be isolated from the donor pancreas. MK solution should be the solution of choice among the commercially available solutions for pancreatic islet isolation leading to transplantation.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Baylor All Saints Medical Center, Baylor Research Institute, Fort Worth, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Noguchi H. Recent advances in stem cell research for the treatment of diabetes. World J Stem Cells 2009; 1:36-42. [PMID: 21607105 PMCID: PMC3097914 DOI: 10.4252/wjsc.v1.i1.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/15/2009] [Accepted: 10/22/2009] [Indexed: 02/06/2023] Open
Abstract
The success achieved over the last decade with islet transplantation has intensified interest in treating diabetes, not only by cell transplantation, but also by stem cells. The formation of insulin-producing cells from pancreatic duct, acinar, and liver cells is an active area of investigation. Protocols for the in vitro differentiation of embryonic stem (ES) cells based on normal developmental processes, have generated insulin-producing cells, though at low efficiency and without full responsiveness to extracellular levels of glucose. Induced pluripotent stem cells, which have been generated from somatic cells by introducing Oct3/4, Sox2, Klf4, and c-Myc, and which are similar to ES cells in morphology, gene expression, epigenetic status and differentiation, can also differentiate into insulin-producing cells. Overexpression of embryonic transcription factors in stem cells could efficiently induce their differentiation into insulin-expressing cells. The purpose of this review is to demonstrate recent progress in the research for new sources of β-cells, and to discuss strategies for the treatment of diabetes.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Hirofumi Noguchi, Regenerative Research Islet Cell Transplant Program, Baylor All Saints Medical Center, Baylor Research Institute, Fort Worth, TX 76104, United States
| |
Collapse
|
32
|
Noguchi H, Levy MF, Kobayashi N, Matsumoto S. Pancreas preservation by the two-layer method: does it have a beneficial effect compared with simple preservation in University of Wisconsin solution? Cell Transplant 2009; 18:497-503. [PMID: 19775509 DOI: 10.1177/096368970901805-603] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A large number of reports have shown that the two-layer method (TLM), which employs oxygenated perfluorochemical (PFC) and University of Wisconsin (UW) solution, is superior to simple cold storage in UW in islet transplantation. However, two recent large-scale studies showed no beneficial effect of TLM compared with UW storage in human islet transplantation. We reevaluated the effect of TLM by following three groups: group 1: UW simple storage; group 2: TLM performed by multiorgan procurement teams (not specialists of islet isolation); and group 3: TLM performed by specialists of islet isolation (Noguchi and Matsumoto). There were no significant differences between groups 1 and 2, whereas islet yields were significantly higher in group 3 compared with either group 1 or 2. Our data suggest that exact, complete performance of TLM could improve the outcome of islet isolation and transplantation. In this review, we describe the mechanisms of the TLM, the procedure of preoxygenated TLM, and the several possibilities for the reasons of the discrepancy.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Baylor Institute for Immunology Research/Baylor All Saints Medical Center, Baylor Research Institute, Dallas, TX, USA.
| | | | | | | |
Collapse
|
33
|
Noguchi H, Oishi K, Ueda M, Yukawa H, Hayashi S, Kobayashi N, Levy MF, Matusmoto S. Establishment of mouse pancreatic stem cell line. Cell Transplant 2009; 18:563-71. [PMID: 19775518 DOI: 10.1177/096368970901805-612] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
beta-Cell replacement therapy via islet transplantation is a promising possibility for the optimal treatment of type 1 diabetes. However, such an approach is severely limited by the shortage of donor organs. Pancreatic stem/progenitor cells could become a useful target for beta-cell replacement therapy in diabetic patients because the cells are abundantly available in the pancreas of these patients and in donor organs. In this study, we established a mouse pancreatic stem cell line without genetic manipulation. The duct-rich population after islet isolation was inoculated into 96-well plates in limiting dilution. From over 200 clones, 15 clones were able to be cultured for over 3 months. The HN#13 cells, which had the highest expression of insulin mRNA after induction, expressed PDX-1 transcription factor, glucagon-like peptide-1 (GLP-1) receptor, and cytokeratin-19 (duct-like cells). These cells continue to divide actively beyond the population doubling level (PDL) of 300. Exendin-4 treatment and transduction of PDX-1 and NeuroD proteins by protein transduction technology in HN#13 cells induced insulin and pancreas-related gene expression. This cell line could be useful for analyzing pancreatic stem cell differentiation. Moreover, the isolation technique might be useful for identification and isolation of human pancreatic stem/progenitor cells.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Baylor Institute for Immunology Research/Baylor All Saints Medical Center, Baylor Research Institute, Dallas, TX 75204, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Noguchi H, Ueda M, Hayashi S, Kobayashi N, Okitsu T, Iwanaga Y, Nagata H, Liu X, Kamiya H, Levy MF, Matsumoto S. Comparison of trypsin inhibitors in preservation solution for islet isolation. Cell Transplant 2009; 18:541-7. [PMID: 19775515 DOI: 10.1177/096368970901805-609] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Islet transplantation has recently emerged as an effective therapy and potential cure for type 1 diabetes mellitus. Recent reports show that the two-layer method (TLM), which employs oxygenated perfluorochemical (PFC) and University of Wisconsin (UW) solution, is superior to simple cold storage in UW for pancreas preservation in islet transplantation. Moreover, we recently reported that islet yield was significantly higher in the ET-Kyoto solution with ulinastatin (MK)/PFC preservation solution compared with the UW/PFC preservation solution in the porcine model and that the advantages of MK solution are trypsin inhibition and less collagenase inhibition. In this study, we compared ulinastatin with another trypsin inhibitor, Pefabloc, in preservation solution for islet isolation. Islet yield before purification was higher in the MK/PFC group compared with the ET-Kyoto with Pefabloc (PK)/PFC group. The stimulation index was higher for the MK/PFC group than for the PK/PFC group. These data suggest that ET-Kyoto with ulinastatin was the better combination for pancreas preservation than ET-Kyoto with Pefabloc. Based on these data, we now use ET-Kyoto solution with ulinastatin for clinical islet transplantation.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Transplantation Unit, Kyoto University Hospital, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
BACKGROUND Islet transplantation success depends on the number and quality of islets transplanted. This study aimed at exploring the molecular mechanisms associated with cold pancreas preservation and their impact on islet cell survival and function. METHODS Rat pancreata were stored in cold University of Wisconsin preservation solution for short (3 hr; control) or long (18 hr) cold ischemia times (CIT). RESULTS Pancreata exposed to long CIT yielded lower islet numbers and showed reduced cellular viability; isolated islets displayed higher levels of phosphorylated stress-activated protein kinase (c-jun N-terminal Kinase and Mitogen-Activated Protein Kinase-p38), and chemokine (C-C) ligand-3, and lower levels of vascular endothelial growth factor, interleukins (IL)-9 and IL-10. Islets obtained from long-CIT pancreata were functionally impaired after transplantation. Differential proteomic expression in pancreatic tissue after CIT included increased eukaryotic translation elongation factor-1-alpha-1 (apoptosis related) and reduced Clade-B (serine protease inhibitor). CONCLUSIONS Our study indicates that cold ischemia stimulates inflammatory pathways (chemokine (c-c)ligand-3, phosphorylation of c-jun N-terminal Kinase and mitogen-activated protein kinase-p38, and eukaryotic translation elongation factor-1-alpha-1) and decreases repair/cytoprotective pathways (IL-10, vascular endothelial growth factor, and Clade-B), all of which may negatively affect the quality and mass of islets obtained from a donor pancreas.
Collapse
|
36
|
Noguchi H, Ikemoto T, Naziruddin B, Jackson A, Shimoda M, Fujita Y, Chujo D, Takita M, Kobayashi N, Onaca N, Levy MF, Matsumoto S. Iodixanol-controlled density gradient during islet purification improves recovery rate in human islet isolation. Transplantation 2009; 87:1629-35. [PMID: 19502953 DOI: 10.1097/tp.0b013e3181a5515c] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND For pancreatic islet transplantation, islet purification minimizes the risks associated with islet infusion through the portal vein by reducing the amount of transplanted tissue. However, the purification step may result in decreased numbers of islets recovered from digested tissue and be traumatic to the islets. In this study, we evaluated the effectiveness of iodixanol-controlled density gradients on the islet purification step. METHODS For 14.3% of the isolations, the density was 1.085 g/cm3, 32.1% were 1.090 g/cm3, 46.4% were 1.095 g/cm3, 3.6% were 1.100 g/cm3, and 3.6% were 1.105 g/cm3, indicating that the density varies with each isolation. This has profound implications for the difficulty of islet purification. According to the density of digested tissue before purification, the density of the purification solutions was controlled by changing the volumetric ratio of iodixanol and the purification solutions (iodixanol-Kyoto [IK] solutions). RESULTS Islet yield after purification and rate of postpurification recovery were significantly higher in the IK group than with standard continuous gradient purification by Ficoll solutions (islet yield=Ficoll group: 377,230+/-50,207 islet equivalents, IK group: 594,136+/-50,570 islet equivalents, P less than 0.01; percentage of recovery=Ficoll group: 55.6%+/-5.8%, IK group: 84.9%+/-4.2%, P less than 0.01). In vitro and in vivo assays suggest that the quality of islets was similar between the two groups. CONCLUSION Our data suggest that using an iodixanol-controlled density gradient improves the islet recovery rate in human islet isolation. On the basis of these data, we now use this purification method for clinical islet transplantation.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Baylor All Saints Medical Center, Baylor Research Institute, Fort Worth, TX 76104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Oishi K, Noguchi H, Yukawa H, Inoue M, Takagi S, Iwata H, Hasegawa M, Hayashi S. Recombinant Sendai Virus-Mediated Gene Transfer to Mouse Pancreatic Stem Cells. Cell Transplant 2009; 18:573-80. [PMID: 19775519 DOI: 10.1177/096368970901805-613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Efficient gene transfer into stem cells is essential for the basic research and for therapeutic applications in gene-modified regenerative medicine. Adenovirus (AdV) vectors, one of the most commonly used types of vectors, can mediate high, albeit transient, levels of expression of the transgene in pancreatic stem/progenitor cells. However, high multiplicity of infection (MOI) with AdV vectors can result in cellular toxicity. Therefore, AdV vectors have been of limited usefulness in clinical applications. In this study, we investigated the in vitro gene transfer efficiency of Sendai virus (SeV) vectors, a paramyxovirus vector that can efficiently introduce foreign genes without toxicity into several cell types, including pancreatic stem cells. The dose-dependent GFP expression of pancreatic stem cells transfected with SeV vectors after 48 h of culture at 37°C was observed. The transfection of pancreatic stem cells with SeV vectors and AdV vectors results in equal expression of the transgene (GFP expression) in the cells after 48 h of culture at 37°C. Although the transfection of pancreatic stem cells with AdV vectors at high MOIs was cytotoxic, transfection with SeV vectors at high MOIs was rarely cytotoxic. In addition, pancreatic stem cells transfected with SeV maintained their differentiation ability. These data suggest that SeV could provide advantages with respect to safety issues in gene-modified regenerative medicine.
Collapse
Affiliation(s)
- Koichi Oishi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hirofumi Noguchi
- Baylor Institute for Immunology Research/Baylor All Saints Medical Center, Baylor Research Institute, Dallas, TX 75204, USA
| | - Hiroshi Yukawa
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | - Soichi Takagi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hisashi Iwata
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Aichi 487-8501, Japan
| | | | - Shuji Hayashi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
38
|
Oishi K, Noguchi H, Yukawa H, Hayashi S. Differential Ability of Somatic Stem Cells. Cell Transplant 2009; 18:581-9. [PMID: 19775520 DOI: 10.1177/096368970901805-614] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Somatic stem cells can be isolated from a variety of sources. Although some studies have suggested that somatic stem cells may represent a cell population that is very similar to embryonic stem (ES) cells, it remains unclear whether somatic stem cells retain the potential to differentiate into any cell type derived from the three germ layers. In this study, we investigated the transdifferentiation potential of somatic stem cells using adipose tissue-derived stem/progenitor cells (ASCs; mesodermal stem cells) and pancreatic stem cells (endodermal stem cells). Previous reports from other groups describe the protocol that has been used to differentiate ASCs or mesenchymal stem cells (MSCs) in bone marrow into insulin-producing cells. Induction 1: ASCs were cultured for 3 days in ultra-low attachment plates under serum-free conditions. Induction 2: ASCs were cultured for 24 h with L-DMEM, and reinduced with serum-free H-DMEM for another 10 h. Unlike previous reports, we did not get ASCs to express any pancreas-specific genes, including insulin-1 or insulin-2. Pancreatic stem cells were induced to differentiate into adipo/osteogenic by the following protocols. Induction protocol 1: ACSs were cultured for 7 days with medium containing indometacin, dexamethasone, hydrocortisone, and insulin for adipogenic differentiation. Induction protocol 2: The cells were cultured for 7 days with medium containing dexamethasone, ascorbate-2-phosphate, and β-glycerophosphate for osteogenic differentiation. Although these approaches have been widely used for adipo/osteogenic differentiation from MSCs, adipo/osteogenic differentiation from pancreatic stem cells was not observed. These data suggest that it is not easy for somatic stem cells to transdifferentiate into other germ cell types, at least, under these conditions.
Collapse
Affiliation(s)
- Koichi Oishi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hirofumi Noguchi
- Baylor Institute for Immunology Research/Baylor All Saints Medical Center, Baylor Research Institute, Dallas, TX 75204, USA
| | - Hiroshi Yukawa
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shuji Hayashi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
39
|
Savić R, Azzam T, Eisenberg A, Nedev H, Rosenberg L, Maysinger D. Block-copolymer micelles as carriers of cell signaling modulators for the inhibition of JNK in human islets of Langerhans. Biomaterials 2009; 30:3597-604. [PMID: 19342094 DOI: 10.1016/j.biomaterials.2009.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
Here we investigate the potential of PCL-b-PEO micelles in preventing the cell death of isolated human islets of Langerhans. PCL-b-PEO micelles were loaded with c-Jun NH2-terminal kinases inhibitor SP600125 to rescue the isolated islets. Mechanistic studies of the uptake were conducted in PC12 cells. Incorporation of SP600125 afforded 8.2 fold greater solubility of SP600125 in micelle suspension. To investigate the effectiveness of micelle-incorporated SP600125 in preventing the islet cell death, we challenged the islets with TNF-alpha, IL-1, and IFN gamma. Micelle-incorporated SP600125 did not lose its inhibitory activity during incorporation into micelles, and it protected the islets against cytokine-induced loss of viability to the same extent as control SP600125. Moreover, the concentration of micelle-incorporated SP600125 used was 13-fold lower, demonstrating the greater efficacy of micelle delivered SP600125. Micelles maintained their cytoplasmic distribution without detectable nuclear localization in islets. The inhibition of JNK was confirmed by western blots. This study suggests that micelle-based intracellular delivery of potent, poorly water soluble, cell-death-pathway inhibitors may represent a valuable addition to established delivery of cytocidal block-copolymer micelle-incorporated bioactives.
Collapse
Affiliation(s)
- Radoslav Savić
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The transplantation of human islets has come a long way since the first diabetic person became insulin independent in 1989. The advent of a steroid-free immunosuppressive protocol in 2000 resulted in most recipients becoming insulin independent and remaining so for a year. However, beta-cell function declines thereafter. Strategies to enhance the islet mass transplanted and preserve beta-cell function are necessary. RECENT FINDINGS This review covers recent advances in determining the selection of appropriate enzymes for islet isolation, use of pancreases from heart-dead donors and techniques for predicting the functional capacity of isolated islets prior to transplantation. Changing the transplantation site away from the liver, where many islets are destroyed by an inflammatory process, is reviewed, and the possibility of seeding islets onto three-dimensional biodegradable scaffolds discussed. A method of preventing apoptosis of the beta cells prior to transplantation is detailed, as is the beneficial effect of using exenatide, after transplantation. Novel techniques to image islets are discussed, and this requires the labelling of the islets prior to implantation. Enhancing the vascularization of islets is shown to enhance functional outcomes. Encapsulation of the islets should obviate the need for using antirejection drugs, and it may be possible to expand beta cells in vitro. SUMMARY The above strategies are likely to enhance the outcomes of clinical islet transplants.
Collapse
|
41
|
Varona-Santos JL, Pileggi A, Molano RD, Sanabria NY, Ijaz A, Atsushi M, Ichii H, Pastori RL, Inverardi L, Ricordi C, Fornoni A. c-Jun N-terminal kinase 1 is deleterious to the function and survival of murine pancreatic islets. Diabetologia 2008; 51:2271-80. [PMID: 18853132 DOI: 10.1007/s00125-008-1169-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 09/02/2008] [Indexed: 12/26/2022]
Abstract
AIMS/HYPOTHESIS Inhibition of c-jun N-terminal kinase (JNK) favours pancreatic islet function and survival. Since two JNK isoforms are present in the pancreas (JNK1 and JNK2), we addressed their specific roles in experimental islet transplantation. METHODS C57BL/6J (wild-type [WT]), Jnk1 (also known as Mapk8)(-/-) and Jnk2 (also known as Mapk9)(-/-) mice were used as donor/recipients in a syngeneic islet transplantation model. Islet cell composition, function, viability, production of cytokines and of vascular endothelial growth factor (VEGF) were also studied in vitro. RESULTS Jnk1 ( -/- ) islets secreted more insulin in response to glucose and were more resistant to cytokine-induced cell death compared with WT and Jnk2 (-/-) islets (p < 0.01). Cytokines reduced VEGF production in WT and Jnk2 (-/-) but not Jnk1 ( -/- ) islets; VEGF blockade restored Jnk1 ( -/- ) islet susceptibility to cytokine-induced cell death. Transplantation of Jnk1 ( -/- ) or WT islets into WT recipients made diabetic had similar outcomes. However, Jnk1 ( -/- ) recipients of WT islets had shorter time to diabetes reversal (17 vs 55 days in WT, p = 0.033), while none of the Jnk2 (-/-) recipients had diabetes reversal (0% vs 71% in WT, p = 0.0003). Co-culture of WT islets with macrophages from each strain revealed a discordant cytokine production. CONCLUSIONS/INTERPRETATION We have shown a deleterious effect of JNK2 deficiency on islet graft outcome, most likely related to JNK1 activation, suggesting that specific JNK1 blockade may be superior to general JNK inhibition, particularly when administered to transplant recipients.
Collapse
Affiliation(s)
- J L Varona-Santos
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ueda M, Matsumoto S, Hayashi S, Kobayashi N, Noguchi H. Cell surface heparan sulfate proteoglycans mediate the internalization of PDX-1 protein. Cell Transplant 2008; 17:91-7. [PMID: 18468239 DOI: 10.3727/000000008783906892] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although islet transplantation is a promising therapeutic option for the treatment of type 1 diabetes, the shortage of suitable donor tissues remains a major obstacle. Pancreatic stem/progenitor cells residing within the ductal epithelium have been used to generate human islet-like clusters, but there is no efficient strategy for facilitating differentiation of progenitor cells into insulin-producing cells. A previous study reported that exogenous PDX-1 protein can be transduced into pancreatic stem/progenitor cells and induce differentiation of the cells into insulin-producing cells without requiring gene transfer technology. This study provides genetic and biochemical evidence that cell membrane heparan sulfate proteoglycans are required for extracellular PDX-1 internalization. Heparin, one of the soluble glycosaminoglycans (GAGs), inhibited PDX-1 internalization, while chondroitin sulfate A, B, and C caused only very limited inhibition. Cell treatment with heparinase-III demonstrated impaired PDX-1 internalization, while treatment with chondroitinase ABC, or with chondroitinase AC, was completely ineffective in inhibiting PDX-1 internalization. Different mutant cell lines originating from CHO K1 cells and defective in GAG biosynthesis were also examined. PDX-1 internalization was significantly reduced in both pgs A-745 mutant cells, which are defective in a enzyme that initiates GAG synthesis, and pgs B-618 cells, which produce about 15% of the amount of GAGs synthesized by wild-type cells. These data indicate that cell-surface heparan sulfate proteoglycans are required for PDX-1 internalization and that PDX-1 protein transduction could be a valuable strategy for inducing insulin expression in pancreatic stem/progenitor cells without requiring gene transfer technology.
Collapse
Affiliation(s)
- Michiko Ueda
- Fujita Health University, Second Department of Surgery, Aichi 470-1192, Japan
| | | | | | | | | |
Collapse
|
43
|
Noguchi H, Ueda M, Hayashi S, Kobayashi N, Okitsu T, Iwanaga Y, Nagata H, Nakai Y, Matsumoto S. Ductal injection of preservation solution increases islet yields in islet isolation and improves islet graft function. Cell Transplant 2008; 17:69-81. [PMID: 18468237 DOI: 10.3727/000000008783907062] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
For islet transplantation, it is important to obtain an available islet mass adequate for diabetes reversal from a single donor pancreas. A recent report demonstrated that the use of M-Kyoto solution instead of UW solution improved islet yields in the two-layer method for pancreas preservation. The present study investigated whether the ductal injection of a large volume of preservation solution (UW and M-Kyoto solution) before pancreas storage improves islet yields. Islet yield both before and after purification was significantly higher in the ductal injection (+) group compared with the ductal injection (-) group. TUNEL-positive cells in the ductal injection (+) group were significantly decreased in comparison to the ductal injection (-) group. The ductal injection of preservation solution increased the ATP level in the pancreas tissue and reduced trypsin activity during the digestion step. Annexin V and PI assays showed that the ductal injection prevents islet apoptosis. In a transplant model, the ductal injection improved islet graft function. These findings suggest that the ductal injection of preservation solution, especially the M-Kyoto solution, leads to improved outcomes for pancreatic islet transplantation. Based on these data, this technique is now used for clinical islet transplantation from non-heart-beating donor pancreata or living donor pancreas.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Transplantation Unit, Kyoto University Hospital, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
BACKGROUND The activation of p38 mitogen-activated protein kinases (MAPK) is implicated in cold ischemia-reperfusion injury of donor organs. The islet isolation process, from pancreas procurement through islet collection, may activate p38MAPK leading to cytokine release and islet damage. This damage may be prevented by treating pancreata with a p38MAPK inhibitor (p38IH) before cold preservation. METHODS Pancreata removed from Beagle dogs were infused with University of Wisconsin solution containing the p38IH, SB203580, and Pefabloc (n=6) or vehicle (dimethyl sulfoxide and Pefabloc) alone (n=7), through the pancreatic duct and preserved using the two-layer method. After 20 to 22 hr, islets were isolated and 3000 IEQ/kg were autotransplanted into the corresponding dog to monitor glucose metabolism. RESULTS p38IH-treated pancreata yielded significantly more islets than control pancreata (IEQ/g: 2134+/-297 vs. 1477+/-145 IEQ/g or 65,012+/-9385 vs. 45,700+/-5103 IEQ/pancreas; P<0.05). Apoptotic beta-cell percentages assessed by laser scanning cytometry were lower in p38IH-treated than the controls (44%+/-9.4% vs. 61.6%+/-4.8%, P<0.05). Tumor necrosis factor-alpha expression assessed by real-time reverse transcription polymerase chain reaction was significantly lower in the p38IH-treated group than controls. All dogs (3000 IEQ/kg) transplanted with p38IH-treated islets (n=5) became euglycemic versus four of five dogs that received untreated islets. Plasma C-peptide levels after glucagon challenge were higher in animals receiving p38IH-treated islets (n=5) versus untreated islets (n=4) (0.40+/-0.78 vs. 0.21+/-0.05 ng/mL, P<0.05). CONCLUSIONS Infusion of pancreata with University of Wisconsin solution containing p38IH through the duct before preservation suppresses cytokine release, prevents beta-cell apoptosis, and improves islet yield significantly with no adverse effect on islet function after transplantation. p38IH treatment of human pancreata may improve islet yield for use in clinical transplantation.
Collapse
|
45
|
Noguchi H, Matsumoto S, Ueda M, Hayashi S, Kobayashi N, Jackson A, Naziruddin B, Levy MF. Method for isolation of mouse pancreatic stem cells. Transplant Proc 2008; 40:422-3. [PMID: 18374088 DOI: 10.1016/j.transproceed.2008.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Replacement of beta-cell mass offers an alternative to standard insulin treatment for diabetes and may overcome the long-term side effects associated with current therapies. Pancreatic stem/progenitor cells could become a useful target for beta-cell replacement therapy in diabetic patients. We have established a method for isolating mouse pancreatic stem cells. In this study, pancreatic stem cells were isolated from 8-week-old mice. After purification on a density gradient, the density range of 1.062-1.11 contained pancreatic stem cells. The islets from the layers were deleted by dithizone staining and hand-picking under a dissecting microscope. The remnant cells were then cultured, inoculated into 96-well plates, and cloned by limiting dilution. One of the wells contained cells, named HN#5 cells, which expressed ductal cell markers, such as cytokeratin-19. HN#5 cells differentiated into insulin-producing cells and albumin-producing cells by induction medium. The isolation technique described here may be useful for identification and isolation of human pancreatic stem/progenitor cells.
Collapse
Affiliation(s)
- H Noguchi
- Baylor Institute for Immunology Research/Baylor All Saints Medical Center, Baylor Research Institute, Fort Worth, Texas 75204, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Inducible nitric oxide synthase-nitric oxide plays an important role in acute and severe hypoxic injury to pancreatic beta cells. Transplantation 2008; 85:323-30. [PMID: 18301327 DOI: 10.1097/tp.0b013e31816168f9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Islet transplantation is a potential strategy to cure type 1 diabetes mellitus. However, a substantial part of the islet graft becomes nonfunctional due to several factors including hypoxia. However, the precise mechanism of cell damage is largely unknown in hypoxic exposure to pancreatic beta cells. The aim of the present study was to investigate whether acute and severe hypoxic injury could involve inducible nitric oxide synthase (iNOS)-nitric oxide (NO) signaling in beta cells. METHODS The rat beta cell line (INS-1) and primary rat islets were incubated in an anoxic chamber. Cell viability was determined by propium iodide staining or cell counting kit. The expression of iNOS mRNA and protein was examined using reverse-transcription polymerase chain reaction and Western blot analysis. NO production was measured as nitrite accumulation by Griess reagent method. RESULTS After hypoxic exposure, marked cell death occurred in INS-1 cells and rat islets, accompanied by increase in activated caspase-3 expression. NO production was increased in the culture medium in a time-dependent manner. Increase in expression of iNOS mRNA and protein was found. Pretreatment with a selective iNOS inhibitor, 1400W, significantly prevented cell death during hypoxia. In addition, hypoxia activated c-Jun N-terminal kinase (JNK) significantly, but the addition of 1400W inhibited hypoxia-induced JNK phosphorylation. CONCLUSIONS Our data suggest that iNOS-NO plays an important role in acute and severe hypoxic injury to pancreatic beta cells. Therefore, iNOS-NO might be a potential therapeutic target for preserving beta cell survival in islet transplantation through prevention of hypoxia-mediated cell death.
Collapse
|
47
|
Noguchi H, Matsumoto S, Kobayashi N, Hayashi S, Iwanaga Y, Nagata H, Jackson A, Naziruddin B, Okitsu T, Levy M. Effect of JNK Inhibitor During Islet Isolation and Transplantation. Transplant Proc 2008; 40:379-81. [DOI: 10.1016/j.transproceed.2008.01.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Fornoni A, Pileggi A, Molano RD, Sanabria NY, Tejada T, Gonzalez-Quintana J, Ichii H, Inverardi L, Ricordi C, Pastori RL. Inhibition of c-jun N terminal kinase (JNK) improves functional beta cell mass in human islets and leads to AKT and glycogen synthase kinase-3 (GSK-3) phosphorylation. Diabetologia 2008; 51:298-308. [PMID: 18066521 DOI: 10.1007/s00125-007-0889-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 10/26/2007] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Activation of c-jun N-terminal kinase (JNK) has been described in islet isolation and engraftment, making JNK a key target in islet transplantation. The objective of this study was to investigate if JNK inhibition with a cell-permeable TAT peptide inhibitor (L-JNKI) protects functional beta cell mass in human islets and affects AKT and its substrates in islet cells. METHODS The effect of L-JNKI (10 micromol/l) on islet count, mitochondrial membrane potential, glucose-stimulated insulin release and phosphorylation of both AKT and its substrates, as well as on reversal of diabetes in immunodeficient diabetic Nu/Nu mice was studied. RESULTS In vitro, L-JNKI reduced the islet loss in culture and protected from cell death caused by acute cytokine exposure. In vivo, treatment of freshly isolated human islets and diabetic Nu/Nu mice recipients of such islets resulted in improved functional beta cell mass. We showed that L-JNKI activates AKT and downregulates glycogen synthase kinase-3 beta (GSK-3B) in human islets exposed to cytokines, while other AKT substrates were unaffected, suggesting that a specific AKT/GSK-3B regulation by L-JNKI may represent one of its mechanisms of cytoprotection. CONCLUSIONS/INTERPRETATION In conclusion, we have demonstrated that targeting JNK in human pancreatic islets results in improved functional beta cell mass and in the regulation of AKT/GSK3B activity.
Collapse
Affiliation(s)
- A Fornoni
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Noguchi H, Matsumoto S. Islet transplantation at the Diabetes Research Institute Japan. JOURNAL OF HEPATO-BILIARY-PANCREATIC SURGERY 2008; 15:278-83. [PMID: 18535765 DOI: 10.1007/s00534-007-1263-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 08/15/2007] [Indexed: 01/29/2023]
Abstract
Since the Edmonton Protocol was announced, more than 600 patients with type 1 diabetes at more than 50 institutions have received islet transplantation to treat their disease. We recently established a new islet isolation protocol, called the Kyoto Islet Isolation Method, based on the Ricordi method. It includes an in-situ cooling system for pancreas procurement, pancreatic ductal protection, a modified two-layer (M-Kyoto /perfluorochemical [PFC]) method of pancreas preservation, and a new islet purification solution (Iodixanol-based solution). Using this islet isolation method, we isolated islets from 19 human pancreata of non-heart-beating donors and transplanted 16 preparations into seven patients with type 1 diabetes between April 7, 2004 and November 18, 2005. The percentage of those meeting the release criteria of the Edmonton Protocol was more than 80%. We also performed living-donor transplantation of islets for unstable diabetes on January 19, 2005. Establishment of this method enables us to make diabetic patients insulin-independent, using islets not only from two or three pancreata of non-heart-beating donors but also using islets from half a pancreas from a living donor.
Collapse
|
50
|
Noguchi H, Yamada Y, Okitsu T, Iwanaga Y, Nagata H, Kobayashi N, Hayashi S, Matsumoto S. Secretory unit of islet in transplantation (SUIT) and engrafted islet rate (EIR) indexes are useful for evaluating single islet transplantation. Cell Transplant 2008; 17:121-8. [PMID: 18468242 DOI: 10.3727/000000008783906991] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The evaluation of engraftment is important to assess the success of islet transplantation, but it is complex because islet transplantation usually requires two or more donors to achieve euglycemia. Islet transplantation from NHBDs was evaluated using new assessment forms for the secretory unit of islet in transplantation (SUIT) and engrafted islet rate (EIR) indexes. Insulin independence was obtained when the SUIT index was more than 28, which might indicate that 28% of the beta-cell mass of a normal subject is required for insulin independence. Because the average EIR for a single transplantation is about 30, the percentage of engrafted islets following one transplantation is about 30%, assuming that a normal subject has 1 million islet equivalents. Although few cultured islet transplants have been performed, the increase of the SUIT and EIR indexes in patients who received cultured islets was significantly lower than in patients who received fresh islets, suggesting that fresh islets may be more effective than cultured islets. The SUIT and EIR indexes are thus considered to be useful values for evaluating islet transplantation, especially for single islet transplantation.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Transplantation Unit, Kyoto University Hospital, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|