1
|
Lin F, Liu Y, Rudeski-Rohr T, Dahir N, Calder A, Gilbertson TA. Adiponectin Enhances Fatty Acid Signaling in Human Taste Cells by Increasing Surface Expression of CD36. Int J Mol Sci 2023; 24:ijms24065801. [PMID: 36982874 PMCID: PMC10059208 DOI: 10.3390/ijms24065801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Adiponectin, a key metabolic hormone, is secreted into the circulation by fat cells where it enhances insulin sensitivity and stimulates glucose and fatty acid metabolism. Adiponectin receptors are highly expressed in the taste system; however, their effects and mechanisms of action in the modulation of gustatory function remain unclear. We utilized an immortalized human fungiform taste cell line (HuFF) to investigate the effect of AdipoRon, an adiponectin receptor agonist, on fatty acid-induced calcium responses. We showed that the fat taste receptors (CD36 and GPR120) and taste signaling molecules (Gα-gust, PLCβ2, and TRPM5) were expressed in HuFF cells. Calcium imaging studies showed that linoleic acid induced a dose-dependent calcium response in HuFF cells, and it was significantly reduced by the antagonists of CD36, GPR120, PLCβ2, and TRPM5. AdipoRon administration enhanced HuFF cell responses to fatty acids but not to a mixture of sweet, bitter, and umami tastants. This enhancement was inhibited by an irreversible CD36 antagonist and by an AMPK inhibitor but was not affected by a GPR120 antagonist. AdipoRon increased the phosphorylation of AMPK and the translocation of CD36 to the cell surface, which was eliminated by blocking AMPK. These results indicate that AdipoRon acts to increase cell surface CD36 in HuFF cells to selectively enhance their responses to fatty acids. This, in turn, is consistent with the ability of adiponectin receptor activity to alter taste cues associated with dietary fat intake.
Collapse
Affiliation(s)
- Fangjun Lin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Yan Liu
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Trina Rudeski-Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Naima Dahir
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Ashley Calder
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Timothy A Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
2
|
Assanga SBI, Luján LML, McCarty MF, Di Nicolantonio JJ. Nutraceutical and Dietary Resources for Breast Cancer Prevention – Highlighting Strategies for Suppressing Breast Aromatase Expression. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Skeletal muscle mitochondrial remodeling in heart failure: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2022; 155:113833. [DOI: 10.1016/j.biopha.2022.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
|
4
|
Vyas V, Guerra DD, Bok R, Powell T, Jansson T, Hurt KJ. Adiponectin links maternal metabolism to uterine contractility. FASEB J 2019; 33:14588-14601. [PMID: 31665924 PMCID: PMC6894045 DOI: 10.1096/fj.201901646r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022]
Abstract
Adiponectin is secreted by adipose tissue and promotes insulin sensitivity. Low circulating adiponectin is associated with increased risk for preterm labor, but the influence of adiponectin on uterine myometrial physiology is unknown. We hypothesized that adiponectin receptors (AdipoRs) decrease myometrial contractility via AMPK to promote uterine quiescence in pregnancy. Using quantitative RT-PCR, we found that nonpregnant or pregnant human and mouse myometrium express AdipoR1 and AdipoR2 mRNAs. We confirmed AdipoR2 protein expression in human and mouse myometrium, with increased abundance in late mouse pregnancy. Both recombinant adiponectin and a pharmacologic AdipoR agonist, AdipoRon, potently inhibited uterine myometrial strip contractions in physiologic organ bath. The relaxation was independent of contractile stimulus (oxytocin, KCl, U46619). AdipoR agonists increased AMPK phosphorylation in pregnant mouse myometrium, and the direct AMPK activator A769662 also relaxed myometrial strips. However, the AMPK inhibitor dorsomorphin (compound C) blocked AMPK phosphorylation but did not abolish relaxation with either AdipoRon or A769662. In summary, adiponectin inhibits myometrial contractility consistent with the possibility that it is a previously unrecognized link between maternal metabolism and pregnancy maintenance. We also identify a separate role for AMPK regulating myometrial contractions that may influence labor onset.-Vyas, V., Guerra, D. D., Bok, R., Powell, T., Jansson, T., Hurt, K. J. Adiponectin links maternal metabolism to uterine contractility.
Collapse
Affiliation(s)
- Vibhuti Vyas
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Damian D. Guerra
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachael Bok
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Theresa Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; and
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - K. Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
5
|
Sangüesa G, Roglans N, Montañés JC, Baena M, Velázquez AM, Sánchez RM, Alegret M, Laguna JC. Chronic Liquid Fructose, but not Glucose, Supplementation Selectively Induces Visceral Adipose Tissue Leptin Resistance and Hypertrophy in Female Sprague-Dawley Rats. Mol Nutr Food Res 2018; 62:e1800777. [DOI: 10.1002/mnfr.201800777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/17/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Gemma Sangüesa
- Department of Pharmacology; Toxicology and Therapeutic Chemistry; School of Pharmacy and Food Science; University of Barcelona; 08028 Barcelona Spain
- Institute of Biomedicine; University of Barcelona; 08028 Barcelona Spain
| | - Núria Roglans
- Department of Pharmacology; Toxicology and Therapeutic Chemistry; School of Pharmacy and Food Science; University of Barcelona; 08028 Barcelona Spain
- Institute of Biomedicine; University of Barcelona; 08028 Barcelona Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn); Madrid Spain
| | - José Carlos Montañés
- Department of Pharmacology; Toxicology and Therapeutic Chemistry; School of Pharmacy and Food Science; University of Barcelona; 08028 Barcelona Spain
| | - Miguel Baena
- Department of Pharmacology; Toxicology and Therapeutic Chemistry; School of Pharmacy and Food Science; University of Barcelona; 08028 Barcelona Spain
- Institute of Biomedicine; University of Barcelona; 08028 Barcelona Spain
| | - Ana Magdalena Velázquez
- Department of Pharmacology; Toxicology and Therapeutic Chemistry; School of Pharmacy and Food Science; University of Barcelona; 08028 Barcelona Spain
| | - Rosa María Sánchez
- Department of Pharmacology; Toxicology and Therapeutic Chemistry; School of Pharmacy and Food Science; University of Barcelona; 08028 Barcelona Spain
- Institute of Biomedicine; University of Barcelona; 08028 Barcelona Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn); Madrid Spain
| | - Marta Alegret
- Department of Pharmacology; Toxicology and Therapeutic Chemistry; School of Pharmacy and Food Science; University of Barcelona; 08028 Barcelona Spain
- Institute of Biomedicine; University of Barcelona; 08028 Barcelona Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn); Madrid Spain
| | - Juan Carlos Laguna
- Department of Pharmacology; Toxicology and Therapeutic Chemistry; School of Pharmacy and Food Science; University of Barcelona; 08028 Barcelona Spain
- Institute of Biomedicine; University of Barcelona; 08028 Barcelona Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn); Madrid Spain
| |
Collapse
|
6
|
Zhang N, Zhou Y, Yuan Q, Gao Y, Wang Y, Wang X, Cui X, Xu P, Ji C, Guo X, You L, Gu N, Zeng Y. Dynamic transcriptome profile in db/db skeletal muscle reveal critical roles for long noncoding RNA regulator. Int J Biochem Cell Biol 2018; 104:14-24. [PMID: 30179676 DOI: 10.1016/j.biocel.2018.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/04/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
T2DM is a global health problem that seriously lowers the quality of life and insulin resistance makes a considerable contribution to the pathophysiology of T2DM. Long noncoding RNAs (lncRNAs) have emerged as important regulators in glucose and lipid metabolism. However, comprehensive analysis of lncRNAs in db/db mice skeletal muscle and their potential roles involved in skeletal muscle insulin resistance (IR) remains poorly characterized. Here, we identified 331 lncRNAs, 172 upregulated and 159 downregulated (|fold change|>2, q<0.05), differentially expressed in db/db mice skeletal muscle. Gene Ontology analysis, Pathway analysis and Gene Set Enrichment Analysis of network gene expression revealed the potential functions of dysregulated lncRNAs may involve skeletal muscle function, fatty acid metabolism and the PPAR signaling pathway. In addition, differentially expressed lncRNAs were verified in skeletal muscle from the widely known IR mouse models (db/db and ob/ob mice). Further validation of lncRNAs in C2C12 myotubes exposed with various concentrations of palmitate uncovered that lncRNAs were responsive to palmitate exposure at the high concentrations (0.5mM and 0.75mM). Coexpression analysis revealed the key lncRNA-mRNA interactions and indicated a potential regulatory role of lncRNAs. Moreover, we characterized two candidate lncRNAs Gm15441 and 3110045C21Rik by a comprehensive examination of their genomic context and validated their expression with neighboring genes (Txnip and Ddr2) by the Spearman correlation analysis. Collectively, these findings improve our understanding of lncRNAs that mediate skeletal muscle insulin resistance in diabetes and represent potential molecular therapeutic targets to improve insulin sensitivity and associated metabolic diseases.
Collapse
Affiliation(s)
- Na Zhang
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China; The First People's Hospital of Lianyungang, Xu Zhou Medical University Affiliated Hospital of LianYun Gang, The First Affiliated Hospital of KangDa College of Nanjing Medical University, LianYun Gang, 222000, China
| | - Yahui Zhou
- Department ofPediatrics, Jingjiang People's Hospital, Yangzhou University, Jingjiang, 214500, China
| | - Qingxin Yuan
- Department of Endocrinology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Gao
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Yan Wang
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Xingyun Wang
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Xianwei Cui
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Pengfei Xu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Chenbo Ji
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Xirong Guo
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Lianghui You
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| | - Nan Gu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| | - Yu Zeng
- Department of Clinical Laboratory, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| |
Collapse
|
7
|
Nicholson T, Church C, Baker DJ, Jones SW. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. JOURNAL OF INFLAMMATION-LONDON 2018; 15:9. [PMID: 29760587 PMCID: PMC5944154 DOI: 10.1186/s12950-018-0185-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
Abstract
Background There is currently an unmet clinical need to develop better pharmacological treatments to improve glucose handling in Type II Diabetes patients with obesity. To this end, determining the effect of obesity-associated adipokines on skeletal muscle insulin sensitivity has emerged as an important area of drug discovery research. This review draws together the data on the functional role of adipokines on skeletal muscle insulin signalling, highlights several understudied novel adipokines and provides a perspective on the direction of future research. Main body The adipokines leptin, resistin, visfatin and adiponectin have all been shown to affect skeletal muscle insulin sensitivity by impacting on the activity of components within insulin signalling pathways, affecting GLUT4 translocation and modulating insulin-mediated skeletal muscle glucose uptake. Furthermore, proteomic analysis of the adipose tissue secretome has recently identified several novel adipokines including vaspin, chemerin and pref-1 that are associated with obesity and insulin resistance in humans and functionally impact on insulin signalling pathways. However, predominantly, these functional findings are the result of studies in rodents, with in vitro studies utilising either rat L6 or murine C2C12 myoblasts and/or myotubes. Despite the methodology to isolate and culture human myoblasts and to differentiate them into myotubes being established, the use of human muscle in vitro models for the functional validation of adipokines on skeletal muscle insulin sensitivity is limited. Conclusion Understanding the mechanism of action and function of adipokines in mediating insulin sensitivity in skeletal muscle may lead to the development of novel therapeutics for patients with type 2 diabetes. However, to date, studies conducted in human skeletal muscle cells and tissues are limited. Such human in vitro studies should be prioritised in order to reduce the risk of candidate drugs failing in the clinic due to the assumption that rodent skeletal muscle target validation studies will to translate to human.
Collapse
Affiliation(s)
- Thomas Nicholson
- 1MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham, Birmingham, B15 2WB UK
| | - Chris Church
- 2MedImmune, Cardiovascular and Metabolic Disease (CVMD), Milstein Building, Granta Park, Cambridge, CB21 6GH UK
| | - David J Baker
- 2MedImmune, Cardiovascular and Metabolic Disease (CVMD), Milstein Building, Granta Park, Cambridge, CB21 6GH UK
| | - Simon W Jones
- 1MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham, Birmingham, B15 2WB UK.,3Institute of Inflammation and Ageing, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
8
|
Wang L, Xue K, Wang Y, Niu L, Li L, Zhong T, Guo J, Feng J, Song T, Zhang H. Molecular and functional characterization of the adiponectin (AdipoQ) gene in goat skeletal muscle satellite cells. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1088-1097. [PMID: 29381891 PMCID: PMC6043445 DOI: 10.5713/ajas.17.0407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 01/30/2018] [Indexed: 01/21/2023]
Abstract
Objective It is commonly accepted that adiponectin binds to its two receptors to regulate fatty acid metabolism in adipocytes. To better understand their functions in the regulation of intramuscular adipogenesis in goats, we cloned the three genes (adiponectin [AdipoQ], adiponectin receptor 1 [AdipoR1], and AdipoR2) encoding these proteins and detected their mRNA distribution in different tissues. We also determined the role of AdipoQ in the adipogenic differentiation of goat skeletal muscle satellite cells (SMSCs). Methods SMSCs were isolated using 1 mg/mL Pronase E from the longissimus dorsi muscles of 3-day-old female Nanjiang brown goats. Adipogenic differentiation was induced in satellite cells by transferring the cells to Dulbecco’s modified Eagle’s medium supplemented with an isobutylmethylxanthine, dexamethasone and insulin cocktail. The pEGFP-N1-AD plasmid was transfected into SMSCs using Lipofectamine 2000. Expression of adiponectin in tissues and SMSCs was detected by quantitative polymerase chain reaction and immunocytochemical staining. Results The three genes were predominantly expressed in adipose and skeletal muscle tissues. According to fluorescence and immunocytochemical analyses, adiponectin protein expression was only observed in the cytoplasm, suggesting that adiponectin is localized to the cytoplasm of goat SMSCs. In SMSCs overexpressing the AdipoQ gene, adiponectin promoted SMSC differentiation into adipocytes and significantly (p<0.05) up-regulated expression of AdipoR2, acetyl-CoA carboxylase, fatty-acid synthase, and sterol regulatory element-binding protein-1, though expression of CCAAT/enhancer-binding protein-α, peroxisome proliferator-activated receptor γ, and AdipoR1 did not change significantly. Conclusion Adiponectin induced SMSC differentiation into adipocytes, indicating that adiponectin may promote intramuscular adipogenesis in goat SMSC.
Collapse
Affiliation(s)
- Linjie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ke Xue
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lili Niu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Li Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tao Zhong
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiazhong Guo
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Feng
- Institute of Animal Science, Tibet Academy of Agricultural & Animal Husbandry Science, Lhasa, China
| | - Tianzeng Song
- Institute of Animal Science, Tibet Academy of Agricultural & Animal Husbandry Science, Lhasa, China
| | - Hongping Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Abstract
Cardiovascular disease, including heart failure, is a principal cause of death in individuals with obesity and diabetes. However, the mechanisms of obesity- and diabetes-induced heart disease are multifaceted and remain to be clearly defined. Of relevance to this review, there is currently great research and clinical interest in the endocrine effects of adipokines on the myocardium and their role in heart failure. We will discuss the potential significance of adipokines in the pathogenesis of heart failure via their ability to regulate remodeling events including metabolism, hypertrophy, fibrosis, and cell death. As an excellent example, we will first focus on adiponectin which is best known to confer numerous cardioprotective effects. However, we comprehensively discuss the existing literature that highlights it would be naive to assume that this was always the case. We also focus on lipocalin-2 which mediates pro-inflammatory and pro-apoptotic effects. It is important when studying actions of adipokines to integrate cellular and mechanistic analyses and translate these to physiologically relevant in vivo models and clinical studies. However, assimilating studies on numerous cardiac remodeling events which ultimately dictate cardiac dysfunction into a unifying conclusion is challenging. Nevertheless, there is undoubted potential for the use of adipokines as robust biomarkers and appropriate therapeutic targets in heart failure.
Collapse
Affiliation(s)
- Min Park
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | | |
Collapse
|
10
|
Cheng KKY, Lam KSL, Wang B, Xu A. Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin. Best Pract Res Clin Endocrinol Metab 2014; 28:3-13. [PMID: 24417941 DOI: 10.1016/j.beem.2013.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adiponectin is an insulin-sensitizing adipokine with protective effects against a cluster of obesity-related metabolic and cardiovascular disorders. The adipokine exerts its insulin-sensitizing effects by alleviation of obesity-induced ectopic lipid accumulation, lipotoxicity and chronic inflammation, as well as by direct cross-talk with insulin signaling cascades. Adiponectin and insulin signaling pathways converge at the adaptor protein APPL1. On the one hand, APPL1 interacts with adiponectin receptors and mediates both metabolic and vascular actions of adiponectin through activation of AMP-activated protein kinase and p38 MAP kinase. On the other hand, APPL1 potentiates both the actions and secretion of insulin by fine-tuning the Akt activity in multiple insulin target tissues. In obese animals, reduced APPL1 expression contributes to both insulin resistance and defective insulin secretion. This review summarizes recent advances on the molecular mechanisms by which adiponectin sensitizes insulin actions, and discusses the roles of APPL1 in regulating both adiponectin and insulin signaling cascades.
Collapse
Affiliation(s)
- Kenneth K Y Cheng
- Department of Medicine, The University of Hong Kong, Hong Kong; Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong
| | - Karen S L Lam
- Department of Medicine, The University of Hong Kong, Hong Kong; Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong
| | - Baile Wang
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Aimin Xu
- Department of Medicine, The University of Hong Kong, Hong Kong; Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong; Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong.
| |
Collapse
|
11
|
Aurich AC, Niemann B, Pan R, Gruenler S, Issa H, Silber RE, Rohrbach S. Age-dependent effects of high fat-diet on murine left ventricles: role of palmitate. Basic Res Cardiol 2013; 108:369. [PMID: 23836256 DOI: 10.1007/s00395-013-0369-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
Obesity-associated heart disease results in myocardial lipid accumulation leading to lipotoxicity. However, recent studies are suggestive of protective effects of high-fat diets (HFD). To determine whether age results in differential changes in diet-induced obesity, we fed young and old (3 and 18 months) male C57Bl/6 mice control diet, low-fat diet (both 10 kcal% fat) or HFD (45 kcal% fat) for 16 weeks, after which we analyzed LV function, mitochondrial changes, and potential modifiers of myocardial structure. HFD or age did not change LV systolic function, although a mildly increased BNP was observed in all old mice. This was associated with increased myocardial collagen, triglyceride, diacylglycerol, and ceramide content as well as higher caspase 3 activation in old mice with highest levels in old HFD mice. Pyruvate-dependent respiration and mitochondrial biogenesis were reduced in all old mice and in young HFD mice. Activation of AMPK, a strong inducer of mitochondrial biogenesis, was reduced in both HFD groups and in old control or LFD mice. Cardiomyocytes from old rats demonstrated significantly reduced AMPK activation, impaired mitochondrial biogenesis, higher ceramide content, and reduced viability after palmitate (C16:0) in vitro, while no major deleterious effects were observed in young cardiomyocytes. Aged but not young cardiomyocytes were unable to respond to higher palmitate with increased fatty acid oxidation. Thus, HFD results in cardiac structural alterations and accumulation of lipid intermediates predominantly in old mice, possibly due to the inability of old cardiomyocytes to adapt to high-fatty acid load.
Collapse
Affiliation(s)
- Anne-Cathleen Aurich
- Institute of Pathophysiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Moon HS, Dalamaga M, Kim SY, Polyzos SA, Hamnvik OP, Magkos F, Paruthi J, Mantzoros CS. Leptin's role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr Rev 2013; 34:377-412. [PMID: 23475416 PMCID: PMC3660716 DOI: 10.1210/er.2012-1053] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Leptin is an adipocyte-secreted hormone that has been proposed to regulate energy homeostasis as well as metabolic, reproductive, neuroendocrine, and immune functions. In the context of open-label uncontrolled studies, leptin administration has demonstrated insulin-sensitizing effects in patients with congenital lipodystrophy associated with relative leptin deficiency. Leptin administration has also been shown to decrease central fat mass and improve insulin sensitivity and fasting insulin and glucose levels in HIV-infected patients with highly active antiretroviral therapy (HAART)-induced lipodystrophy, insulin resistance, and leptin deficiency. On the contrary, the effects of leptin treatment in leptin-replete or hyperleptinemic obese individuals with glucose intolerance and diabetes mellitus have been minimal or null, presumably due to leptin tolerance or resistance that impairs leptin action. Similarly, experimental evidence suggests a null or a possibly adverse role of leptin treatment in nonlipodystrophic patients with nonalcoholic fatty liver disease. In this review, we present a description of leptin biology and signaling; we summarize leptin's contribution to glucose metabolism in animals and humans in vitro, ex vivo, and in vivo; and we provide insights into the emerging clinical applications and therapeutic uses of leptin in humans with lipodystrophy and/or diabetes.
Collapse
Affiliation(s)
- Hyun-Seuk Moon
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Leptin and leucine synergistically regulate protein metabolism in C2C12 myotubes and mouse skeletal muscles. Br J Nutr 2012; 110:256-64. [PMID: 23211060 DOI: 10.1017/s0007114512004849] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leucine and leptin play important roles in regulating protein synthesis and degradation in skeletal muscles in vitro and in vivo. However, the objective of the present study was to determine whether leptin and leucine function synergistically in regulating protein metabolism of skeletal muscles. In the in vitro experiment, C2C12 myotubes were cultured for 2 h in the presence of 5 mm-leucine and/or 50 ng/ml of leptin. In the in vivo experiment, C57BL/6 and ob/ob mice were randomly assigned to be fed a non-purified diet supplemented with 3 % L-leucine or 2·04 % L-alanine (isonitrogenous control) for 14 d. Ob/ob mice were injected intraperitoneally with sterile PBS or recombinant mouse leptin (0·1 μg/g body weight) for 14 d. In C57BL/6 mice, dietary leucine supplementation increased (P< 0·05) plasma leptin, leptin receptor expression and protein synthesis in skeletal muscles, but reduced (P< 0·05) plasma urea and protein degradation in skeletal muscles. Dietary leucine supplementation and leptin injection increased the relative weight of the gastrocnemius and soleus muscles in ob/ob mice. Moreover, leucine and leptin treatments stimulated (P< 0·05) protein synthesis and inhibited (P< 0·05) protein degradation in C2C12 myotubes and skeletal muscles of ob/ob mice. There were interactions (P< 0·05) between the leucine and leptin treatments with regard to protein metabolism in C2C12 myotubes and soleus muscles of ob/ob mice but not in the gastrocnemius muscles of ob/ob mice. Collectively, these results suggest that leptin and leucine synergistically regulate protein metabolism in skeletal muscles both in vitro and in vivo.
Collapse
|
14
|
Taube A, Lambernd S, van Echten-Deckert G, Eckardt K, Eckel J. Adipokines promote lipotoxicity in human skeletal muscle cells. Arch Physiol Biochem 2012; 118:92-101. [PMID: 22691105 DOI: 10.3109/13813455.2012.688751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studies have shown the implication of specific adipokines or fatty acids (FA) in the pathogenesis of insulin resistance. However, the interplay of adipokines with FA remains poorly understood. This study aimed to investigate the combined effects of adipokines and low concentrations of palmitic acid (PA, 100 µmol/l) on skeletal muscle metabolism. Human skeletal muscle cells were incubated with adipocyte-conditioned medium (CM), PA or PA+CM, and FA transporter and FA metabolism were analysed. CM-incubation increased CD36 level (1.8 fold) and PA-uptake (1.4 fold). However, only co-application of PA+CM resulted in profound lipid accumulation (5.3 fold), 60% reduction of PA-oxidation and 3.5 fold increased diacylglycerol content. Our results support a novel role for adipokines in the pathogenesis of T2D by increasing the lipotoxic potential of PA, notably of low concentrations. This implies an increased lipotoxic risk already at an early stage of weight gain, when lipolysis has not yet contributed to increased plasma free FA levels.
Collapse
Affiliation(s)
- Annika Taube
- Paul-Langerhans-Group, Integrative Physiology, German Diabetes Center, Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Dadson K, Liu Y, Sweeney G. Adiponectin action: a combination of endocrine and autocrine/paracrine effects. Front Endocrinol (Lausanne) 2011; 2:62. [PMID: 22649379 PMCID: PMC3355882 DOI: 10.3389/fendo.2011.00062] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/10/2011] [Indexed: 12/15/2022] Open
Abstract
The widespread physiological actions of adiponectin have now been well characterized as clinical studies and works in animal models have established strong correlations between circulating adiponectin level and various disease-related outcomes. Thus, conventional thinking attributes many of adiponectin's beneficial effects to endocrine actions of adipose-derived adiponectin. However, it is now clear that several tissues can themselves produce adiponectin and there is growing evidence that locally produced adiponectin can mediate functionally important autocrine or paracrine effects. In this review article we discuss regulation of adiponectin production, its mechanism of action via receptor isoforms and signaling pathways, and its principal physiological effects (i.e., metabolic and cardiovascular). The role of endocrine actions of adiponectin and changes in local production of adiponectin or its receptors in whole body physiology is discussed.
Collapse
Affiliation(s)
- Keith Dadson
- Department of Biology, York UniversityToronto, ON, Canada
| | - Ying Liu
- Department of Biology, York UniversityToronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York UniversityToronto, ON, Canada
- Institut Pasteur KoreaSeoul, South Korea
| |
Collapse
|
17
|
Cleasby ME, Lau Q, Polkinghorne E, Patel SA, Leslie SJ, Turner N, Cooney GJ, Xu A, Kraegen EW. The adaptor protein APPL1 increases glycogen accumulation in rat skeletal muscle through activation of the PI3-kinase signalling pathway. J Endocrinol 2011; 210:81-92. [PMID: 21543456 PMCID: PMC3114475 DOI: 10.1530/joe-11-0039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 12/16/2022]
Abstract
APPL1 is an adaptor protein that binds to both AKT and adiponectin receptors and is hypothesised to mediate the effects of adiponectin in activating downstream effectors such as AMP-activated protein kinase (AMPK). We aimed to establish whether APPL1 plays a physiological role in mediating glycogen accumulation and insulin sensitivity in muscle and the signalling pathways involved. In vivo electrotransfer of cDNA- and shRNA-expressing constructs was used to over-express or silence APPL1 for 1 week in single tibialis cranialis muscles of rats. Resulting changes in glucose and lipid metabolism and signalling pathway activation were investigated under basal conditions and in high-fat diet (HFD)- or chow-fed rats under hyperinsulinaemic-euglycaemic clamp conditions. APPL1 over-expression (OE) caused an increase in glycogen storage and insulin-stimulated glycogen synthesis in muscle, accompanied by a modest increase in glucose uptake. Glycogen synthesis during the clamp was reduced by HFD but normalised by APPL1 OE. These effects are likely explained by APPL1 OE-induced increase in basal and insulin-stimulated phosphorylation of IRS1, AKT, GSK3β and TBC1D4. On the contrary, APPL1 OE, such as HFD, reduced AMPK and acetyl-CoA carboxylase phosphorylation and PPARγ coactivator-1α and uncoupling protein 3 expression. Furthermore, APPL1 silencing caused complementary changes in glycogen storage and phosphorylation of AMPK and PI3-kinase pathway intermediates. Thus, APPL1 may provide a means for crosstalk between adiponectin and insulin signalling pathways, mediating the insulin-sensitising effects of adiponectin on muscle glucose disposal. These effects do not appear to require AMPK. Activation of signalling mediated via APPL1 may be beneficial in overcoming muscle insulin resistance.
Collapse
Affiliation(s)
- M E Cleasby
- Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li L, Pan R, Li R, Niemann B, Aurich AC, Chen Y, Rohrbach S. Mitochondrial biogenesis and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) deacetylation by physical activity: intact adipocytokine signaling is required. Diabetes 2011; 60:157-67. [PMID: 20929977 PMCID: PMC3012167 DOI: 10.2337/db10-0331] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Transcriptional peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) plays a key role in mitochondrial biogenesis and energy metabolism and is suggested to be involved in the exercise-induced increase in mitochondrial content. PGC-1α activity is regulated by posttranslational modifications, among them acetylation or phosphorylation. Accordingly, the deacetylase SIRT1 and the kinase AMPK increase PGC-1α activity. RESEARCH DESIGN AND METHODS We tested whether chronic treadmill exercise or a single exercise session modifies PGC-1α activation and mitochondrial biogenesis differentially in obese ob/ob mice with dysregulated adiponectin/leptin-mediated AMPK activation compared with C57BL/6J wild-type mice. RESULTS Exercise training (12 weeks) induced adiponectin and lowered plasma insulin and glucose, suggesting improved insulin sensitivity in wild-type mice. It enhanced mitochondrial biogenesis in red gastrocnemius muscle, as indicated by increased mRNA expression of transcriptional regulators and primary mitochondrial transcripts, increased mtDNA content, and citrate synthase activity. Parallel to this, we observed AMPK activation, PGC-1α deacetylation, and SIRT1 induction in trained wild-type mice. Although none of these exercise-induced changes were detected in ob/ob mice, comparable effects on mitochondrial respiration were observed. A single exercise session resulted in comparable changes in wild-type mice. These changes remained detectable 6 h after the exercise session but had disappeared after 24 h. Treatment of C2C12 myoblasts with leptin or adiponectin resulted in increased AMPK phosphorylation and PGC-1α deacetylation. CONCLUSIONS Chronic exercise induces mitochondrial biogenesis in wild-type mice, which may require intact AMPK activation by adipocytokines and involve SIRT1-dependent PGC-1α deacetylation. Trained ob/ob mice appear to have partially adapted to reduced mitochondrial biogenesis by AMPK/SIRT1/PGC-1α-independent mechanisms without mtDNA replication.
Collapse
Affiliation(s)
- Ling Li
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Ruping Pan
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Rong Li
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Bernd Niemann
- Department of Cardiac and Vascular Surgery, Justus Liebig University Giessen, Giessen, Germany
| | | | - Ying Chen
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
- Institute of Pathophysiology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Corresponding author: Susanne Rohrbach,
| |
Collapse
|
19
|
Chial HJ, Lenart P, Chen YQ. APPL proteins FRET at the BAR: direct observation of APPL1 and APPL2 BAR domain-mediated interactions on cell membranes using FRET microscopy. PLoS One 2010; 5:e12471. [PMID: 20814572 PMCID: PMC2930004 DOI: 10.1371/journal.pone.0012471] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 07/25/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Amphiphysin/Rvs (BAR) domain, a central pleckstrin homology (PH) domain, and a C-terminal phosphotyrosine binding (PTB) domain. Previous structural and biochemical studies have shown that the APPL BAR domains mediate homotypic and heterotypic APPL-APPL interactions and that the APPL1 BAR domain forms crescent-shaped dimers. Although previous studies have shown that APPL minimal BAR domains associate with curved cell membranes, direct interaction between APPL BAR domains on cell membranes in vivo has not been reported. METHODOLOGY Herein, we used a laser-scanning confocal microscope equipped with a spectral detector to carry out fluorescence resonance energy transfer (FRET) experiments with cyan fluorescent protein/yellow fluorescent protein (CFP/YFP) FRET donor/acceptor pairs to examine interactions between APPL minimal BAR domains at the subcellular level. This comprehensive approach enabled us to evaluate FRET levels in a single cell using three methods: sensitized emission, standard acceptor photobleaching, and sequential acceptor photobleaching. We also analyzed emission spectra to address an outstanding controversy regarding the use of CFP donor/YFP acceptor pairs in FRET acceptor photobleaching experiments, based on reports that photobleaching of YFP converts it into a CFP-like species. CONCLUSIONS All three methods consistently showed significant FRET between APPL minimal BAR domain FRET pairs, indicating that they interact directly in a homotypic (i.e., APPL1-APPL1 and APPL2-APPL2) and heterotypic (i.e., APPL1-APPL2) manner on curved cell membranes. Furthermore, the results of our experiments did not show photoconversion of YFP into a CFP-like species following photobleaching, supporting the use of CFP donor/YFP acceptor FRET pairs in acceptor photobleaching studies.
Collapse
Affiliation(s)
- Heidi J Chial
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America.
| | | | | |
Collapse
|