1
|
Cardiometabolic Traits in Adult Twins: Heritability and BMI Impact with Age. Nutrients 2022; 15:nu15010164. [PMID: 36615821 PMCID: PMC9824881 DOI: 10.3390/nu15010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Background: The prevalence of obesity and cardiometabolic diseases continues to rise globally and obesity is a significant risk factor for cardiometabolic diseases. However, to our knowledge, evidence of the relative roles of genes and the environment underlying obesity and cardiometabolic disease traits and the correlations between them are still lacking, as is how they change with age. Method: Data were obtained from the Chinese National Twin Registry (CNTR). A total of 1421 twin pairs were included. Univariate structural equation models (SEMs) were performed to evaluate the heritability of BMI and cardiometabolic traits, which included blood hemoglobin A1c (HbA1c), fasting blood glucose (FBG), systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (TC), triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). Bivariate SEMs were used to assess the genetic/environmental correlations between them. The study population was divided into three groups for analysis: ≤50, 51−60, and >60 years old to assess the changes in heritability and genetic/environmental correlations with ageing. Results: Univariate SEMs showed a high heritability of BMI (72%) and cardiometabolic traits, which ranged from 30% (HbA1c) to 69% (HDL-C). With age increasing, the heritability of all phenotypes has different degrees of declining trends. Among these, BMI, SBP, and DBP presented significant monotonous declining trends. The bivariate SEMs indicated that BMI correlated with all cardiometabolic traits. The genetic correlations were estimated to range from 0.14 (BMI and LDL-C) to 0.39 (BMI and DBP), while the environmental correlations ranged from 0.13 (BMI and TC/LDL-C) to 0.31 (BMI and TG). The genetic contributions underlying the correlations between BMI and SBP and DBP, TC, TG, and HDL-C showed a progressive decrease as age groups increased. In contrast, environmental correlations displayed a significant increasing trend for HbA1c, SBP, and DBP. Conclusions: The findings suggest that genetic and environmental factors have essential effects on BMI and all cardiometabolic traits. However, as age groups increased, genetic influences presented varying degrees of decrement for BMI and most cardiometabolic traits, suggesting the increasing importance of environments. Genetic factors played a consistently larger role than environmental factors in the phenotypic correlations between BMI and cardiometabolic traits. Nevertheless, the relative magnitudes of genetic and environmental factors may change over time.
Collapse
|
2
|
Exploring the Genetic Association between Obesity and Serum Lipid Levels Using Bivariate Methods. Twin Res Hum Genet 2022; 25:234-244. [PMID: 36606461 DOI: 10.1017/thg.2022.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is crucial to understand the genetic mechanisms and biological pathways underlying the relationship between obesity and serum lipid levels. Structural equation models (SEMs) were constructed to calculate heritability for body mass index (BMI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and the genetic connections between BMI and the four classes of lipids using 1197 pairs of twins from the Chinese National Twin Registry (CNTR). Bivariate genomewide association studies (GWAS) were performed to identify genetic variants associated with BMI and lipids using the records of 457 individuals, and the results were further validated in 289 individuals. The genetic background affecting BMI may differ by gender, and the heritability of males and females was 71% (95% CI [.66, .75]) and 39% (95% CI [.15, .71]) respectively. BMI was positively correlated with TC, TG and LDL-C in phenotypic and genetic correlation, while negatively correlated with HDL-C. There were gender differences in the correlation between BMI and lipids. Bivariate GWAS analysis and validation stage found 7 genes (LOC105378740, LINC02506, CSMD1, MELK, FAM81A, ERAL1 and MIR144) that were possibly related to BMI and lipid levels. The significant biological pathways were the regulation of cholesterol reverse transport and the regulation of high-density lipoprotein particle clearance (p < .001). BMI and blood lipid levels were affected by genetic factors, and they were genetically correlated. There might be gender differences in their genetic correlation. Bivariate GWAS analysis found MIR144 gene and its related biological pathways may influence obesity and lipid levels.
Collapse
|
3
|
Yilmaz Y, Byrne CD, Musso G. A single-letter change in an acronym: signals, reasons, promises, challenges, and steps ahead for moving from NAFLD to MAFLD. Expert Rev Gastroenterol Hepatol 2021; 15:345-352. [PMID: 33270482 DOI: 10.1080/17474124.2021.1860019] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: We are currently at the dawn of a revolution in the field of fatty liver diseases. Recently, a consensus recommended 'metabolic (dysfunction) associated fatty liver disease' (MAFLD) as a more appropriate name to describe fatty liver disease associated with metabolic dysfunction, ultimately suggesting that the old acronym nonalcoholic fatty liver disease (NAFLD) should be abandoned.Areas covered: In this viewpoint, we discuss the reasons and relevance of this semantic modification through five different conceptual domains, i.e., 1) signals, 2) reasons, 2) promises, 4) challenges and 5) steps ahead.Expert opinion: The road ahead will not be traveled without major challenges. Further research to evaluate the positive and negative impacts of the nomenclature change is warranted. However, this modification should encourage increased disease awareness among policymakers and stimulate public and private investments leading to more effective therapy development.
Collapse
Affiliation(s)
- Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey.,Liver Research Unit, Institute of Gastroenterology, Marmara University, Istanbul, Turkey
| | - Christopher D Byrne
- National Institute for Health Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Giovanni Musso
- HUMANITAS Gradenigo Hospital; Laboratory of Diabetology and Metabolism, Department of Medical Sciences, Città della Salute, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Bermingham KM, Brennan L, Segurado R, Barron RE, Gibney ER, Ryan MF, Gibney MJ, O’Sullivan AM. Exploring Covariation between Traditional Markers of Metabolic Health and the Plasma Metabolomic Profile: A Classic Twin Design. J Proteome Res 2019; 18:2613-2623. [DOI: 10.1021/acs.jproteome.9b00126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kate M. Bermingham
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorraine Brennan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ricardo Segurado
- School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Rebecca E. Barron
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eileen R. Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Miriam F. Ryan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael J. Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aifric M. O’Sullivan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Bogl LH, Kaye SM, Rämö JT, Kangas AJ, Soininen P, Hakkarainen A, Lundbom J, Lundbom N, Ortega-Alonso A, Rissanen A, Ala-Korpela M, Kaprio J, Pietiläinen KH. Abdominal obesity and circulating metabolites: A twin study approach. Metabolism 2016; 65:111-21. [PMID: 26892522 DOI: 10.1016/j.metabol.2015.10.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/23/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate how obesity, insulin resistance and low-grade inflammation link to circulating metabolites, and whether the connections are due to genetic or environmental factors. SUBJECTS AND METHODS Circulating serum metabolites were determined by proton NMR spectroscopy. Data from 1368 (531 monozygotic (MZ) and 837 dizygotic (DZ)) twins were used for bivariate twin modeling to derive the genetic (rg) and environmental (re) correlations between waist circumference (WC) and serum metabolites. Detailed examination of the associations between fat distribution (DEXA) and metabolic health (HOMA-IR, CRP) was performed among 286 twins including 33 BMI-discordant MZ pairs (intrapair BMI difference ≥3 kg/m(2)). RESULTS Fat, especially in the abdominal area (i.e. WC, android fat % and android to gynoid fat ratio), together with HOMA-IR and CRP correlated significantly with an atherogenic lipoprotein profile, higher levels of branched-chain (BCAA) and aromatic amino acids, higher levels of glycoprotein, and a more saturated fatty acid profile. In contrast, a higher proportion of gynoid to total fat associated with a favorable metabolite profile. There was a significant genetic overlap between WC and several metabolites, most strongly with phenylalanine (rg=0.40), glycoprotein (rg=0.37), serum triglycerides (rg=0.36), BCAAs (rg=0.30-0.40), HDL particle diameter (rg=-0.33) and HDL cholesterol (rg=-0.30). The effect of acquired obesity within the discordant MZ pairs was particularly strong for atherogenic lipoproteins. CONCLUSIONS A wide range of unfavorable alterations in the serum metabolome was associated with abdominal obesity, insulin resistance and low-grade inflammation. Twin modeling and obesity-discordant twin analysis suggest that these associations are partly explained by shared genes but also reflect mechanisms independent of genetic liability.
Collapse
Affiliation(s)
- Leonie H Bogl
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland.
| | - Sanna M Kaye
- Obesity Research Unit, Research programs unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Joel T Rämö
- Obesity Research Unit, Research programs unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland; Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Antti J Kangas
- Computational Medicine, Institute of Health Sciences, University of Oulu, Finland; NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Pasi Soininen
- Computational Medicine, Institute of Health Sciences, University of Oulu, Finland; NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Antti Hakkarainen
- Helsinki Medical Imaging Center, University of Helsinki, Helsinki, Finland
| | - Jesper Lundbom
- Helsinki Medical Imaging Center, University of Helsinki, Helsinki, Finland
| | - Nina Lundbom
- Helsinki Medical Imaging Center, University of Helsinki, Helsinki, Finland
| | | | - Aila Rissanen
- Obesity Research Unit, Research programs unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland; Department of Psychiatry, Helsinki University Central Hospital, Helsinki, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Institute of Health Sciences, University of Oulu, Finland; NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland; Oulu University Hospital, Oulu, Finland; Computational Medicine, School of Social and Community Medicine and the Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Jaakko Kaprio
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland; Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland; Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research programs unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland; Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland; Department of Medicine, Division of Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
6
|
The Genetic Basis for Cognitive Ability, Memory, and Depression Symptomatology in Middle-Aged and Elderly Chinese Twins. Twin Res Hum Genet 2015; 18:79-85. [DOI: 10.1017/thg.2014.76] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The genetic influences on aging-related phenotypes, including cognition and depression, have been well confirmed in the Western populations. We performed the first twin-based analysis on cognitive performance, memory and depression status in middle-aged and elderly Chinese twins, representing the world's largest and most rapidly aging population. The sample consisted of 384 twin pairs with a median age of 50 years. Cognitive function was measured using the Montreal Cognitive Assessment (MoCA) scale; memory was assessed using the revised Wechsler Adult Intelligence scale; depression symptomatology was evaluated by the self-reported 30-item Geriatric Depression (GDS-30)scale. Both univariate and multivariate twin models were fitted to the three phenotypes with full and nested models and compared to select the best fitting models. Univariate analysis showed moderate-to-high genetic influences with heritability 0.44 for cognition and 0.56 for memory. Multivariate analysis by the reduced Cholesky model estimated significant genetic (rG = 0.69) and unique environmental (rE = 0.25) correlation between cognitive ability and memory. The model also estimated weak but significant inverse genetic correlation for depression with cognition (-0.31) and memory (-0.28). No significant unique environmental correlation was found for depression with other two phenotypes. In conclusion, there can be a common genetic architecture for cognitive ability and memory that weakly correlates with depression symptomatology, but in the opposite direction.
Collapse
|
7
|
Familial aggregation of metabolic syndrome indicators in Portuguese families. BIOMED RESEARCH INTERNATIONAL 2013; 2013:314823. [PMID: 24171163 PMCID: PMC3793391 DOI: 10.1155/2013/314823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/28/2013] [Indexed: 11/26/2022]
Abstract
Background and Aims. Family studies are well suited to investigate the genetic architecture underlying the metabolic syndrome (MetS). The purposes of this paper were (i) to estimate heritabilities for each of the MetS indicators, and (ii) to test the significance of familial intratrait and cross-trait correlations in MetS markers. Methods and Results. This study included 1,363 individuals from 515 Portuguese families in which five MetS components, including waist circumference (WC), blood pressure (BP), HDL-cholesterol, triglycerides (TG), and glucose (GLU), were measured. Intratrait and cross-trait familial correlations of these five components were estimated using Generalized Estimating Equations. Each MetS component was significantly heritable (h2 ranged from 0.12 to 0.60) and exhibited strong familial resemblance with correlations between biological relatives of similar magnitude to those observed between spouses. With respect to cross-trait correlations, familial resemblance was very weak except for the HDL-TG pair. Conclusions. The present findings confirm the idea of familial aggregation in MetS traits. Spousal correlations were, in general, of the same magnitude as the biological relatives' correlations suggesting that most of the phenotypic variance in MetS traits could be explained by shared environment.
Collapse
|
8
|
Li S, Duan H, Pang Z, Zhang D, Duan H, Hjelmborg JVB, Tan Q, Kruse TA, Kyvik KO. Heritability of eleven metabolic phenotypes in Danish and Chinese twins: a cross-population comparison. Obesity (Silver Spring) 2013; 21:1908-14. [PMID: 23686756 DOI: 10.1002/oby.20217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/16/2012] [Indexed: 01/26/2023]
Abstract
OBJECTIVES A twin-based comparative study on the genetic influences in metabolic endophenotypes in two populations of substantial ethnic, environmental, and cultural differences was performed. DESIGN AND METHODS Data on 11 metabolic phenotypes including anthropometric measures, blood glucose, and lipids levels as well as blood pressure were available from 756 pairs of Danish twins (309 monozygotic and 447 dizygotic twin pairs) with a mean age of 38 years (range: 18-67) and from 325 pairs of Chinese twins (183 monozygotic and 142 dizygotic twin pairs) with a mean age of 40.5 years (range: 18-69). Twin modeling was performed on full and nested models with the best fitting models selected. RESULTS Heritability estimates were compared between Danish and Chinese samples to identify differential genetic influences on each of the phenotypes. Except for hip circumference, all other body measures exhibited similar heritability patterns in the two samples with body weight showing only a slight difference. Higher genetic influences were estimated for fasting blood glucose level in Chinese twins, whereas the Danish twins showed more genetic regulation over most lipids phenotypes. Systolic blood pressure was more genetically controlled in Danish than in Chinese twins. CONCLUSIONS Metabolic endophenotypes show disparity in their genetic determinants in populations under distinct environmental conditions.
Collapse
Affiliation(s)
- Shuxia Li
- Unit of Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
In 1998, the Qingdao Twin Registry was initiated as the main part of the Chinese National Twin Registry. By 2005, a total of 10,655 twin pairs had been recruited. Since then new twin cohorts have been sampled, with one longitudinal cohort of adolescent twins selected to explore determinants of metabolic disorders and health behaviors during puberty and young adulthood. Adult twins have been sampled for studying heritability of multiple phenotypes associated with metabolic disorders. In addition, an elderly twin cohort has been recruited with a focus on genetic studies of aging-related phenotypes using twin modeling and genome-wide association analysis. Cross-cultural collaborative studies have been carried out between China, Denmark, Finland, and US cohorts. Ongoing data collection and analysis for the Qingdao Twin Registry will be discussed in this article.
Collapse
|
10
|
Povel CM, Boer JMA, Feskens EJM. Shared genetic variance between the features of the metabolic syndrome: heritability studies. Mol Genet Metab 2011; 104:666-9. [PMID: 21963081 DOI: 10.1016/j.ymgme.2011.08.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 12/27/2022]
Abstract
Heritability estimates of MetS range from approximately 10%-30%. The genetic variation that is shared among MetS features can be calculated by genetic correlation coefficients. The objective of this paper is to identify MetS feature as well as MetS related features which have much genetic variation in common, by reviewing the literature regarding genetic correlation coefficients. Identification of features, that have much genetic variation in common, may eventually facilitate the search for pleitropic genetic variants that may explain the clustering of MetS features. A PubMed search with the search terms "(metabolic syndrome OR insulin resistance syndrome) and (heritability OR genetic correlation OR pleiotropy)" was performed. Studies published before 7th July 2011, which presented genetic correlation coefficients between the different MetS features and genetic correlation coefficients of MetS and its features with adipose tissue-, pro-inflammatory and pro-thrombotic biomarkers were included. Nine twin and 19 family studies were included in the review. Genetic correlations varied, but were strongest between waist circumference and HOMA-IR (r(2): 0.36 to 0.79, median: 0.50), HDL cholesterol and triglycerides (r(2): -0.05 to -0.59, median -0.45), adiponectin and MetS (r(2): -0.32 to -0.43; median -0.38), adiponectin and insulin (r(2): -0.10 to -0.60; median -0.30) and between adiponectin and HDL-cholesterol (r(2): -0.22 to -0.51, median -0.29). In conclusion, heritability studies suggest that genetic pleiotropy exist especially between certain MetS features, as well as between MetS and adiponectin. Further research on actual genetic variants responsible for the genetic pleiotropy of these combinations will provide more insight into the etiology of MetS.
Collapse
Affiliation(s)
- C M Povel
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.
| | | | | |
Collapse
|