1
|
Tokumoto S, Yabe D, Tatsuoka H, Usui R, Fauzi M, Botagarova A, Goto H, Herrera PL, Ogura M, Inagaki N. Generation and Characterization of a Novel Mouse Model That Allows Spatiotemporal Quantification of Pancreatic β-Cell Proliferation. Diabetes 2020; 69:2340-2351. [PMID: 32769118 PMCID: PMC7576556 DOI: 10.2337/db20-0290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/02/2020] [Indexed: 11/13/2022]
Abstract
Pancreatic β-cell proliferation has been gaining much attention as a therapeutic target for the prevention and treatment of diabetes. In order to evaluate potential β-cell mitogens, accurate and reliable methods for the detection and quantification of the β-cell proliferation rate are indispensable. In this study, we developed a novel tool that specifically labels replicating β-cells as mVenus+ cells by using RIP-Cre; R26Fucci2aR mice expressing the fluorescent ubiquitination-based cell cycle indicator Fucci2a in β-cells. In response to β-cell proliferation stimuli, such as insulin receptor antagonist S961 and diet-induced obesity (DIO), the number of 5-ethynyl-2'-deoxyuridine-positive insulin+ cells per insulin+ cells and the number of mVenus+ cells per mCherry+ mVenus- cells + mCherry- mVenus+ cells were similarly increased in these mice. Three-dimensional imaging of optically cleared pancreas tissue from these mice enabled quantification of replicating β-cells in the islets and morphometric analysis of the islets after known mitogenic interventions such as S961, DIO, pregnancy, and partial pancreatectomy. Thus, this novel mouse line is a powerful tool for spatiotemporal analysis and quantification of β-cell proliferation in response to mitogenic stimulation.
Collapse
Affiliation(s)
- Shinsuke Tokumoto
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hisato Tatsuoka
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryota Usui
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Muhammad Fauzi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ainur Botagarova
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hisanori Goto
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Masahito Ogura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Purification of replicating pancreatic β-cells for gene expression studies. Sci Rep 2017; 7:17515. [PMID: 29235543 PMCID: PMC5727529 DOI: 10.1038/s41598-017-17776-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/30/2017] [Indexed: 11/23/2022] Open
Abstract
β-cell proliferation is a rare event in adult pancreatic islets. To study the replication-related β-cell biology we designed a replicating β-cells sorting system for gene expression experiments. Replicating β-cells were identified by EdU incorporation and purified by flow cytometry. For β-cell separation islet cells were sorted by size, granularity and Newport Green fluorescence emission that was combined with emitted fluorescence for EdU-labelled replicating cells sorting. The purity of the resulting sorted populations was evaluated by insulin staining and EdU for β-cell identification and for replicating cells, respectively. Total RNA was isolated from purified cell-sorted populations for gene expression analysis. Cell sorting of dispersed islet cells resulted in 96.2% purity for insulin positivity in the collected β-cell fraction and 100% efficiency of the EdU-based cell separation. RNA integrity was similar between FACS-sorted replicating and quiescent β-cells. Global transcriptome analysis of replicating vs quiescent β-cells showed the expected enrichment of categories related to cell division and DNA replication. Indeed, key genes in the spindle check-point were the most upregulated genes in replicating β-cells. This work provides a method that allows for the isolation of replicating β-cells, a very scarce population in adult pancreatic islets.
Collapse
|
3
|
Cox AR, Barrandon O, Cai EP, Rios JS, Chavez J, Bonnyman CW, Lam CJ, Yi P, Melton DA, Kushner JA. Resolving Discrepant Findings on ANGPTL8 in β-Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS One 2016; 11:e0159276. [PMID: 27410263 PMCID: PMC4943640 DOI: 10.1371/journal.pone.0159276] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/29/2016] [Indexed: 12/21/2022] Open
Abstract
The β-cell mitogenic effects of ANGPTL8 have been subjected to substantial debate. The original findings suggested that ANGPTL8 overexpression in mice induced a 17-fold increase in β-cell proliferation. Subsequent studies in mice contested this claim, but a more recent report in rats supported the original observations. These conflicting results might be explained by variable ANGPTL8 expression and differing methods of β-cell quantification. To resolve the controversy, three independent labs collaborated on a blinded study to test the effects of ANGPTL8 upon β-cell proliferation. Recombinant human betatrophin (hBT) fused to maltose binding protein (MBP) was delivered to mice by intravenous injection. The results demonstrate that ANGPTL8 does not stimulate significant β-cell proliferation. Each lab employed different methods for β-cell identification, resulting in variable quantification of β-cell proliferation and suggests a need for standardizing practices for β-cell quantification. We also observed a new action of ANGPTL8 in stimulating CD45+ hematopoietic-derived cell proliferation which may explain, in part, published discrepancies. Overall, the hypothesis that ANGPTL8 induces dramatic and specific β-cell proliferation can no longer be supported. However, while ANGPTL8 does not stimulate robust β-cell proliferation, the original experimental model using drug-induced (S961) insulin resistance was validated in subsequent studies, and thus still represents a robust system for studying signals that are either necessary or sufficient for β-cell expansion. As an added note, we would like to commend collaborative group efforts, with repetition of results and procedures in multiple laboratories, as an effective method to resolve discrepancies in the literature.
Collapse
Affiliation(s)
- Aaron R. Cox
- McNair Medical Institute, Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Ornella Barrandon
- Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Erica P. Cai
- Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jacqueline S. Rios
- McNair Medical Institute, Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Julia Chavez
- McNair Medical Institute, Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Claire W. Bonnyman
- McNair Medical Institute, Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Carol J. Lam
- McNair Medical Institute, Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Peng Yi
- Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Douglas A. Melton
- Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jake A. Kushner
- McNair Medical Institute, Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
4
|
Combining MK626, a novel DPP-4 inhibitor, and low-dose monoclonal CD3 antibody for stable remission of new-onset diabetes in mice. PLoS One 2014; 9:e107935. [PMID: 25268801 PMCID: PMC4182446 DOI: 10.1371/journal.pone.0107935] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/17/2014] [Indexed: 12/17/2022] Open
Abstract
Combining immune intervention with therapies that directly influence the functional state of the β-cells is an interesting strategy in type 1 diabetes cure. Dipeptidyl peptidase-4 (DPP-4) inhibitors elevate circulating levels of active incretins, which have been reported to enhance insulin secretion and synthesis, can support β-cell survival and possibly stimulate β-cell proliferation and neogenesis. In the current study, we demonstrate that the DPP-4 inhibitor MK626, which has appropriate pharmacokinetics in mice, preceded by a short-course of low-dose anti-CD3 generated durable diabetes remission in new-onset diabetic non-obese diabetic (NOD) mice. Induction of remission involved recovery of β-cell secretory function with resolution of destructive insulitis and preservation of β-cell volume/mass, along with repair of the islet angioarchitecture via SDF-1- and VEGF-dependent actions. Combination therapy temporarily reduced the CD4-to-CD8 distribution in spleen although not in pancreatic draining lymph nodes (PLN) and increased the proportion of effector/memory T cells as did anti-CD3 alone. In contrast, only combination therapy amplified Foxp3+ regulatory T cells in PLN and locally in pancreas. These findings open new opportunities for the treatment of new-onset type 1 diabetes by introducing DPP-4 inhibitors in human CD3-directed clinical trials.
Collapse
|
5
|
Van de Casteele M, Leuckx G, Cai Y, Yuchi Y, Coppens V, De Groef S, Van Gassen N, Baeyens L, Heremans Y, Wright CVE, Heimberg H. Partial duct ligation: β-cell proliferation and beyond. Diabetes 2014; 63:2567-77. [PMID: 25060885 DOI: 10.2337/db13-0831] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Gunter Leuckx
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ying Cai
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yixing Yuchi
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Violette Coppens
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sofie De Groef
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Naomi Van Gassen
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc Baeyens
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yves Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Therapies that increase functional β-cell mass may be the best long-term treatment for diabetes. Significant resources are devoted toward this goal, and progress is occurring at a rapid pace. Here, we summarize recent advances relevant to human β-cell regeneration. RECENT FINDINGS New β-cells arise from proliferation of pre-existing β-cells or transdifferentiation from other cell types. In addition, dedifferentiated β-cells may populate islets in diabetes, possibly representing a pool of cells that could redifferentiate into functional β-cells. Advances in finding strategies to drive β-cell proliferation include new insight into proproliferative factors, both circulating and local, and elements intrinsic to the β-cell, such as cell cycle machinery and regulation of gene expression through epigenetic modification and noncoding RNAs. Controversy continues in the arena of generation of β-cells by transdifferentiation from exocrine, ductal, and alpha cells, with studies producing both supporting and opposing data. Progress has been made in redifferentiation of β-cells that have lost expression of β-cell markers. SUMMARY Although significant progress has been made, and promising avenues exist, more work is needed to achieve the goal of β-cell regeneration as a treatment for diabetes.
Collapse
Affiliation(s)
- Agata Jurczyk
- University of Massachusetts Medical School, Diabetes Center of Excellence, Worcester, Massachusetts, USA
| | | | | |
Collapse
|