1
|
Khan TJ, Semenkovich CF, Zayed MA. De novo lipid synthesis in cardiovascular tissue and disease. Atherosclerosis 2025; 400:119066. [PMID: 39616863 DOI: 10.1016/j.atherosclerosis.2024.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Most tissues have the capacity for endogenous lipid synthesis. A crucial foundational pathway for lipid synthesis is de novo lipid synthesis (DNL), a ubiquitous and complex metabolic process that occurs at high levels in the liver, adipose and brain tissue. Under normal physiological conditions, DNL is vital in converting excess carbohydrates into fatty acids. DNL is linked to other pathways, including the endogenous synthesis of phospholipids and sphingolipids. However, abnormal lipid synthesis can contribute to various pathologies and clinical conditions. Experimental studies involving dietary restriction and in vivo genetic modifications provide compelling evidence demonstrating the significance of lipid synthesis in maintaining normal cardiovascular tissue function. Similarly, clinical investigations suggest altered lipid synthesis can harm cardiac and arterial tissues, thereby influencing cardiovascular disease (CVD) development and progression. Consequently, there is increased interest in exploring pharmacological interventions that target lipid synthesis metabolic pathways as potential strategies to alleviate CVD. Here we review the physiological and pathological impact of endogenous lipid synthesis and its implications for CVD. Since lipid synthesis can be targeted pharmacologically, enhancing our understanding of the molecular and biochemical mechanisms underlying lipid generation and cardiovascular function may prompt new insights into CVD and its treatment.
Collapse
Affiliation(s)
- Tariq J Khan
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Clay F Semenkovich
- Washington University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, St. Louis, MO, USA; Washington University School of Medicine, Department of Cell Biology and Physiology, St. Louis, MO, USA
| | - Mohamed A Zayed
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA; Washington University School of Medicine, Department of Surgery, Division of Surgical Sciences, St. Louis, MO, USA; Washington University School of Medicine, Department of Radiology, St. Louis, MO, USA; Washington University School of Medicine, Division of Molecular Cell Biology, St. Louis, MO, USA; Washington University, McKelvey School of Engineering, Department of Biomedical Engineering, St. Louis, MO, USA; Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
| |
Collapse
|
2
|
Zhu J, Huang L, Zhang W, Li H, Yang Y, Lin Y, Zhang C, Du Z, Xiang H, Wang Y. Single-nucleus transcriptional profiling reveals TCF7L2 as a key regulator in adipogenesis in goat skeletal muscle development. Int J Biol Macromol 2024; 281:136326. [PMID: 39389483 DOI: 10.1016/j.ijbiomac.2024.136326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Intramuscular adipogenesis plays an important role in muscle development, which determines the quality of goat meat. However, its underlying cellular and molecular mechanisms remain poorly understood. In this study, we provided detailed cellular atlases of goat longissimus dorsi during muscle development at single-nucleus resolution, and identified the subpopulations of fibroblasts/fibro-adipogenic progenitors (FAPs) and muscle satellite cell (MuSC), as well as the differentiation trajectory of FAPs subpopulations. Cellular ligand-receptor interaction analysis revealed enriched BMP and IGF pathways implicated in within-tissue crosstalk centered around FAPs. Through single-nucleus gene regulatory network analysis and in vitro interference verification, we found that TCF7L2 was a critical transcriptional factor (TF) in early adipogenesis in skeletal muscle. Overall, our work reveals the cellular intricacies and diversity of goat longissimus dorsi during muscle development, implementing insights into the critical roles of BMP, IGF pathways and TCF7L2 TF in intramuscular adipogenesis.
Collapse
Affiliation(s)
- Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Wenyang Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Haiyang Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yuling Yang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Changhui Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Zhanyu Du
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China; Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
3
|
Tang L, Xu S, Wei R, Fan G, Zhou J, Wei X, Xu X. Transcription factor 7 like 2 promotes metastasis in hepatocellular carcinoma via NEDD9-mediated activation of AKT/mTOR signaling pathway. Mol Med 2024; 30:108. [PMID: 39060928 PMCID: PMC11282612 DOI: 10.1186/s10020-024-00878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of the digestive system, and the exact mechanism of HCC is still unclear. Transcription factor 7 like 2 (TCF7L2) plays a pivotal role in cell proliferation and stemness maintenance. However, the exact mechanism of TCF7L2 in HCC remains unclear. METHODS Clinical samples and public databases were used to analyze the expression and prognosis of TCF7L2 in HCC. The function of TCF7L2 in HCC was studied in vitro and in vivo. ChIP and luciferase assays were used to explore the molecular mechanism of TCF7L2. The relationship between TCF7L2 and NEDD9 was verified in HCC clinical samples by tissue microarrays. RESULTS The expression of TCF7L2 was upregulated in HCC, and high expression of TCF7L2 was associated with poor prognosis of HCC patients. Overexpression of TCF7L2 promoted the metastasis of HCC in vitro and in vivo, while Knockdown of TCF7L2 showed the opposite effect. Mechanically, TCF7L2 activated neural precursor cell expressed developmentally downregulated protein 9 (NEDD9) transcription by binding to the -1522/-1509 site of the NEDD9 promoter region, thereby increasing the phosphorylation levels of AKT and mTOR. The combination of TCF7L2 and NEDD9 could distinguish the survival of HCC patients. CONCLUSIONS This study demonstrated that TCF7L2 promotes HCC metastasis by activating AKT/mTOR pathway in a NEDD9-dependent manner, suggesting that potential of TCF7L2 and NEDD9 as prognostic markers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Linsong Tang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Shengjun Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Rongli Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Guanghan Fan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Xiao Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Mononen J, Taipale M, Malinen M, Velidendla B, Niskanen E, Levonen AL, Ruotsalainen AK, Heikkinen S. Genetic variation is a key determinant of chromatin accessibility and drives differences in the regulatory landscape of C57BL/6J and 129S1/SvImJ mice. Nucleic Acids Res 2024; 52:2904-2923. [PMID: 38153160 PMCID: PMC11014276 DOI: 10.1093/nar/gkad1225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/09/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Most common genetic variants associated with disease are located in non-coding regions of the genome. One mechanism by which they function is through altering transcription factor (TF) binding. In this study, we explore how genetic variation is connected to differences in the regulatory landscape of livers from C57BL/6J and 129S1/SvImJ mice fed either chow or a high-fat diet. To identify sites where regulatory variation affects TF binding and nearby gene expression, we employed an integrative analysis of H3K27ac ChIP-seq (active enhancers), ATAC-seq (chromatin accessibility) and RNA-seq (gene expression). We show that, across all these assays, the genetically driven (i.e. strain-specific) differences in the regulatory landscape are more pronounced than those modified by diet. Most notably, our analysis revealed that differentially accessible regions (DARs, N = 29635, FDR < 0.01 and fold change > 50%) are almost always strain-specific and enriched with genetic variation. Moreover, proximal DARs are highly correlated with differentially expressed genes. We also show that TF binding is affected by genetic variation, which we validate experimentally using ChIP-seq for TCF7L2 and CTCF. This study provides detailed insights into how non-coding genetic variation alters the gene regulatory landscape, and demonstrates how this can be used to study the regulatory variation influencing TF binding.
Collapse
Affiliation(s)
- Juho Mononen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Mari Taipale
- A.I. Virtanen Institute, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Marjo Malinen
- Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu FI- 80101, Finland
- Department of Forestry and Environmental Engineering, South-Eastern Finland University of Applied Sciences, Kouvola FI-45100, Finland
| | - Bharadwaja Velidendla
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Einari Niskanen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Anna-Kaisa Ruotsalainen
- A.I. Virtanen Institute, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
5
|
Suthon S, Tangjittipokin W. Mechanisms and Physiological Roles of Polymorphisms in Gestational Diabetes Mellitus. Int J Mol Sci 2024; 25:2039. [PMID: 38396716 PMCID: PMC10888615 DOI: 10.3390/ijms25042039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a significant pregnancy complication linked to perinatal complications and an elevated risk of future metabolic disorders for both mothers and their children. GDM is diagnosed when women without prior diabetes develop chronic hyperglycemia due to β-cell dysfunction during gestation. Global research focuses on the association between GDM and single nucleotide polymorphisms (SNPs) and aims to enhance our understanding of GDM's pathogenesis, predict its risk, and guide patient management. This review offers a summary of various SNPs linked to a heightened risk of GDM and explores their biological mechanisms within the tissues implicated in the development of the condition.
Collapse
Affiliation(s)
- Sarocha Suthon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence Management, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
6
|
Wang S, Lin X, Zhu C, Dong Y, Guo Y, Xie Z, He X, Ju W, Chen M. Association between nonalcoholic fatty liver disease and increased glucose-to-albumin ratio in adults without diabetes. Front Endocrinol (Lausanne) 2024; 14:1287916. [PMID: 38264288 PMCID: PMC10804880 DOI: 10.3389/fendo.2023.1287916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/22/2023] [Indexed: 01/25/2024] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) affects approximately 30% of individuals globally. Both serum glucose and albumin were demonstrated to be potential markers for the development of NAFLD. We hypothesized that the risk of NAFLD may be proportional to the glucose-to-albumin ratio (GAR). Methods Based on information from the National Health and Nutrition Examination Survey (NHANES) 1999-2018, it was determined that GAR was associated with an increased risk of NAFLD and liver fibrosis utilizing weighted multivariable logistic regression. Participants with a fatty liver index (FLI) over 60 were identified with NAFLD, and those with an NAFLD fibrosis score (NFS) >0.676 with evidence of NAFLD were labeled with advanced hepatic fibrosis (AHF). The liver biopsy was utilized to verify the relationship between GAR and FLD in our center cohort. Mendelian randomization analysis investigated the genetic relationship between GAR and NAFLD. Results Of 15,534 eligible participants, 36.4% of participants were identified as NAFLD without AHF. GAR was positively correlated with the probability of NAFLD following full adjustment for possible variables (OR = 1.53, 95% CI: 1.39-1.67). It was confirmed that patients with NAFLD and AHF had an inferior prognosis. The relationship between GAR and NFS was favorable (R = 0.46, P< 0.0001), and NAFLD patients with a higher GAR tended to develop poor survival. In our center cohort, the association between GAR and NAFLD was verified. Conclusion Among participants without diabetes, greater GAR was linked to higher risks of NAFLD. In addition, NAFLD patients with higher GAR tended to develop liver fibrosis and adverse outcomes.
Collapse
Affiliation(s)
- Shuai Wang
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaohong Lin
- Department of Breast and Thyroid Surgery, Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuchen Zhu
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yuqi Dong
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yiwen Guo
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhonghao Xie
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
7
|
Park HJ, Choi J, Kim H, Yang DY, An TH, Lee EW, Han BS, Lee SC, Kim WK, Bae KH, Oh KJ. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023; 10:1221669. [PMID: 37635938 PMCID: PMC10450943 DOI: 10.3389/fmolb.2023.1221669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.
Collapse
Affiliation(s)
- Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juyong Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Yeon Yang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|