1
|
Yang N, Hu J, Yin D, He T, Tian X, Ran S, Zhou X. Mercury and methylmercury in Hg-contaminated paddy soil and their uptake in rice as regulated by DOM from different agricultural sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27712-9. [PMID: 37249779 DOI: 10.1007/s11356-023-27712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/13/2023] [Indexed: 05/31/2023]
Abstract
In this study, from the perspectives of structural and compositional variations of soil-dissolved organic matter (DOM), we explored the effects of agricultural DOM inputs on methylmercury (MeHg) accumulation in the soil and mercury (Hg) bioaccumulation in rice grains. Pot experiments with the addition of DOMs from maize straw (MaS), rape straw (RaS), rice straw (RiS), composted rice straw (CRiS), cow dung (CD), and composted cow dung (CCD) were then conducted. Results showed that, relative to the control, the DOM amendment from each agricultural source elevated MeHg concentrations in the soil, with an increase of 18-227%, but only parts of DOMs elevated total dissolved Hg (DHg) and MeHg (DMeHg) concentrations in pore water. Among all DOM species, RiS, CRiS, and CCD significantly increased total Hg (THg) and MeHg contents in rice grains by 34-64% and 32-118%, respectively. Compared with RiS, THg and MeHg contents in rice grains in the CRiS treatment decreased slightly, which was consistent with the distributions of DHg and DMeHg concentrations in pore water and the aromaticity variation of soil DOM. In contrast, the CCD input significantly enhanced the enrichment of THg and MeHg in rice grains relative to CD because it significantly reduced the humification of soil DOM at all rice-growing stages while increasing the low-molecular-weight fractions in soil DOM. The THg and MeHg contents in the rice grains were significantly lower treated by RaS than those by MaS and RiS, which may be related to the higher sulfur-containing compounds such as sulfate and cysteine in rape straw or its DOM solution. Overall, DOM amendment from different agricultural sources resulted in significantly discriminative effects on the MeHg accumulation in soil and Hg enrichment in rice in the Hg-contaminated paddy field by shaping soil DOM properties.
Collapse
Affiliation(s)
- Ningla Yang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- College of Resources and Environment, Guizhou University, Guiyang, 550025, China
| | - Jie Hu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- College of Resources and Environment, Guizhou University, Guiyang, 550025, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- College of Resources and Environment, Guizhou University, Guiyang, 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- College of Resources and Environment, Guizhou University, Guiyang, 550025, China.
| | - Xiang Tian
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Shu Ran
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xian Zhou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Zhang J, Li C, Tang W, Wu M, Chen M, He H, Lei P, Zhong H. Mercury in wetlands over 60 years: Research progress and emerging trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161862. [PMID: 36716881 DOI: 10.1016/j.scitotenv.2023.161862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Wetlands are considered the hotspots for mercury (Hg) biogeochemistry, garnering global attention. Therefore, it is important to review the research progress in this field and predict future frontiers. To achieve that, we conducted a literature analysis by collecting 15,813 publications about Hg in wetlands from the Web of Science Core Collection. The focus of wetland Hg research has changed dramatically over time: 1) In the initial stage (i.e., 1959-1990), research mainly focused on investigating the sources and contents of Hg in wetland environments and fish. 2) For the next 20 years (i.e., 1991-2010), Hg transformation (e.g., Hg reduction and methylation) and environmental factors that affect Hg bioaccumulation have attracted extensive attention. 3) In the recent years of 2011-2022, hot topics in Hg study include microbial Hg methylators, Hg bioavailability, methylmercury (MeHg) demethylation, Hg stable isotope, and Hg cycling in paddy fields. Finally, we put forward future research priorities, i.e., 1) clarifying the primary factors controlling MeHg production, 2) uncovering the MeHg demethylation process, 3) elucidating MeHg bioaccumulation process to better predict its risk, and 4) recognizing the role of wetlands in Hg circulation. This research shows a comprehensive knowledge map for wetland Hg research and suggests avenues for future studies.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenli Tang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mingying Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Pei Lei
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Science Program (EnLS), Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
3
|
Hu H, Gao Y, Yu H, Xiao H, Chen S, Tan W, Tang J, Xi B. Mechanisms and biological effects of organic amendments on mercury speciation in soil-rice systems: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114516. [PMID: 36628877 DOI: 10.1016/j.ecoenv.2023.114516] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) pollution is a well-recognized global environmental and health issue and exhibits distinctive persistence, neurotoxicity, bioaccumulation, and biomagnification effects. As the largest global Hg reservoir, the Hg cumulatively stored in soils has reached as high as 250-1000 Gg. Even more concerning is that global soil-rice systems distributed in many countries have become central to the global Hg cycle because they are both a major food source for more than 3 billion people worldwide and the central bridge linking atmospheric and soil Hg circulation. In this review, we discuss the form distribution, transformation, and bioavailability of Hg in soil-rice systems by focusing on the Hg methylation and demethylation pathways and distribution, uptake, and accumulation in rice plants and the effects of Hg on the community structure and ecological functions of microorganisms in soil-rice systems. In addition, we clarify the mechanisms through which commonly used humus and biochar organic amendments influence Hg and its environmental effects in soil-rice systems. The review also elaborates on the advantages of sulfur-modified biochars and their critical role in controlling Hg migration and bioavailability in soils. Finally, we provide key information about Hg pollution in soil-rice systems, which is of great significance for developing appropriate strategies and mitigation planning to limit Hg bioconcentration in rice crops and achieving key global sustainable development goals, such as the guarantee of food security and the promotion of sustainable agriculture.
Collapse
Affiliation(s)
- Hualing Hu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hanxia Yu
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Haoyan Xiao
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Shuhe Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jun Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
4
|
Cheng Z, He T, Yin D, Tian X, Ran S, Zhou X. Effects of Composted Agricultural Organic Materials on Mercury Methylation in Paddy Soil and Mercury Enrichment in Rice. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:38. [PMID: 36607425 DOI: 10.1007/s00128-022-03671-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Many studies have shown that returning fresh straw to the field can promote mercury accumulation in crops; therefore, it is necessary to find an appropriate way to use agricultural organic materials in mercury-contaminated farmlands. In this study, pot experiments were conducted to study the effects of composted agricultural organic materials on mercury bioaccumulation in the paddy field ecosystem by adding fresh rice straw (RS), composted rice straw (CRS), cow dung (CD) and composted cow dung (CCD) to the soils. Compared with RS and CD, the CRS and CCD amendments reduced dissolved organic matter (DOM) contents in soil, but increased the aromaticity and small molecule proportion of DOM, and also increased the tartaric acid contents in soil, as well as the methylation and release of mercury in soil. However, the increased available mercury and methylmercury in the soils in the CRS and CCD treatments were not effectively absorbed by rice plants. Overall, compared with fresh organic materials, composted organic materials amendments could reduce mercury accumulation in rice to a certain extent.
Collapse
Affiliation(s)
- Zongfu Cheng
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, 550025, Guiyang, China.
- College of Resources and Environment, Guizhou University, 550025, Guiyang, China.
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, 550025, Guiyang, China
- College of Resources and Environment, Guizhou University, 550025, Guiyang, China
| | - Xiang Tian
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Shu Ran
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Xian Zhou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, 550025, Guiyang, China
| |
Collapse
|
5
|
Yin D, Zhou X, He T, Wu P, Ran S. Remediation of Mercury-Polluted Farmland Soils: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:661-670. [PMID: 35690951 DOI: 10.1007/s00128-022-03544-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) bioaccumulation in Hg-polluted farmlands poses high health risk for humans and wildlife, and remediation work is urgently needed. Here, we first summarize some specific findings related to the environmental process of Hg in Hg-polluted farmlands, and distinguish the main achievements and deficiencies of available remediation strategies in recent studies. Results demonstrate that farmland is a sensitive area with vibrant Hg biogeochemistry. Current remediation methods are relatively hysteretic whether in mechanism understanding or field application, and deficient for large-scale Hg-polluted farmlands in view of safety, efficiency, sustainability, and cost-effectiveness. New perspectives including environment-friendly functional materials, assisted phytoremediation and agronomic regulations are worthy of further study as their key roles in reducing Hg exposure risk and protecting agricultural sustainability.
Collapse
Affiliation(s)
- Deliang Yin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Xian Zhou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
| | - Shu Ran
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
6
|
Su Y, Kwong RWM, Tang W, Yang Y, Zhong H. Straw return enhances the risks of metals in soil? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111201. [PMID: 32905933 DOI: 10.1016/j.ecoenv.2020.111201] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Interactions between organic matter (OM) and metals in soils are important natural mechanisms that can mitigate metal bioaccumulation in terrestrial environments. A primary source of OM in soils is straw return, accounting for more than 65% of OM input. Straw-OM has long been believed to reduce metal bioaccumulation, e.g., by immobilizing metals in soils. However, there is growing evidence that straw return could possibly enhance bioavailability and thus risks (i.e., food safety) of some metals in crops, including Cd, Hg, and As. Poor understanding of straw return-induced increases in metal bioavailability would add uncertainty in assessing or mitigating risks of metals in contaminated farming soils. Here, 863 pieces of literature (2000-2019) that reported the effects of straw return on metal bioavailability and bioaccumulation were reviewed. Mechanisms responsible for the increased metal mobility and bioavailability under straw return are summarized, including the effects of dissolution, complexation, and methylation. Effects of straw return on the physiology and the absorption of metals in plants is also discussed (i.e., physiological effect). These mechanisms are then used to explain the observed increases in the mobility, bioavailability, and bioaccumulation of Cd, Hg, and As under straw amendment. Information summarized in this study highlights the importance to re-consider the current straw return policy, particularly in metal-contaminated farmlands.
Collapse
Affiliation(s)
- Yao Su
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China
| | - Yanan Yang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
7
|
Zhao L, Meng B, Feng X. Mercury methylation in rice paddy and accumulation in rice plant: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110462. [PMID: 32179234 DOI: 10.1016/j.ecoenv.2020.110462] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
The bioavailability and toxicity of mercury (Hg) are dependent on its chemical speciation, in which methylmercury (MeHg) is the most toxic compound. Inorganic Hg can be transformed into MeHg in anaerobic conditions. Subsequent accumulation and biomagnification in the food chain pose a potential threat to human health. Previous studies have confirmed that paddy soil is an important site for MeHg production, and rice fields are an important source of MeHg in terrestrial ecosystems. Rice (Oryza sativa L.) is recently confirmed as a potential bioaccumulator plant of MeHg. Understanding the behaviour of Hg in rice paddies is important, particularly the mechanisms involved in Hg sources, uptake, toxicity, detoxification, and accumulation in crops. This review highlights the issue of MeHg-contaminated rice, and presents the current understanding of the Hg cycling in the rice paddy ecosystem, including the mechanism and processes of Hg species accumulation in rice plants and Hg methylation/demethylation processes in rice paddies and the primary controlling factors. The review also identified various research gaps in previous studies and proposes future research objectives to reduce the impact of Hg-contamination in rice crops.
Collapse
Affiliation(s)
- Lei Zhao
- School of Management Science, Guizhou University of Finance and Economics, Guiyang, 550025, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, PR China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, PR China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, PR China.
| |
Collapse
|
8
|
Turull M, Fontàs C, Díez S. Conventional and novel techniques for the determination of Hg uptake by lettuce in amended agricultural peri-urban soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:40-46. [PMID: 30851683 DOI: 10.1016/j.scitotenv.2019.02.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Peri-urban agriculture provides environmental benefits to the nearby urban areas. However, domestic and industrial infrastructures can be sources of pollution that can affect agricultural production. In this work, the diffusive gradient in thin film (DGT) technique was used to assess the bioavailability of mercury (Hg) in organic-amended agricultural soils, and uptake by lettuce. Two different amendments were studied individually in three different sets using a wood-based biochar at two rates (3% and 6%, w/w), and compost at one rate (30% w/w). The effect of the amendments on Hg bioavailability, mobility and uptake was investigated by means of both DGT analyses and accumulation of Hg by lettuce. DGT manufactured in-house devices with polyacrylamide gel using both open and restricted diffusive layers (ODL and RDL, respectively) were used to determine organic and inorganic Hg labile species in soils, respectively. The Hg concentration in lettuce leaves and roots were analyzed and compared with DGT measurements to predict the uptake of Hg from the different organic-amended soils and the non-amended soils. Results show that the application of biochar reduces the bioavailability of Hg in soil and, in consequence, the Hg uptake by lettuce. Inorganic Hg species were predominant in all the different sets of the experiment (62-97%), although the addition of the different amendments reduced the free ionic species in soil.
Collapse
Affiliation(s)
- Marta Turull
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034 Barcelona, Spain
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69,17003 Girona, Spain
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034 Barcelona, Spain.
| |
Collapse
|
9
|
Sheng F, Ling J, Hong R, Jin X, Wang C, Zhong H, Gu X, Gu C. A new pathway of monomethylmercury photodegradation mediated by singlet oxygen on the interface of sediment soil and water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:667-675. [PMID: 30849584 DOI: 10.1016/j.envpol.2019.02.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Photodegradation is an important pathway for monomethylmercury (MeHg) degradation in aquatic ecosystems. In this process, dissolved organic matter (DOM) plays an essential role. However, little information is available regarding the photo-transformation of MeHg in shallow aquatic environments, where a significant portion of MeHg is associated with soil suspensions. In this study, 14 soils sampled from different sites in China were used to simulate these conditions. Our results clearly demonstrated that soil organic matter (SOM) was the most important factor controlling the MeHg photodegradation in suspension. Degradation in this heterogeneous aqueous system was shown to be mediated by the 1O2 produced by organic matter on the surface of the soil particles rather than by DOM. This was confirmed by the strong correlation between the kinetics rate constant of MeHg degradation and steady state concentrations of 1O2 (R2 = 0.81). Our results propose a new pathway of MeHg induced by sediment soils under sunlight irradiation. Identification of this pathway may improve the estimates of potential ecological risk of Hg in shallow field ecosystems.
Collapse
Affiliation(s)
- Feng Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Jingyi Ling
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Ran Hong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
10
|
He M, Tian L, Braaten HFV, Wu Q, Luo J, Cai LM, Meng JH, Lin Y. Mercury-Organic Matter Interactions in Soils and Sediments: Angel or Devil? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:621-627. [PMID: 30600387 DOI: 10.1007/s00128-018-2523-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Many studies have suggested that organic matter (OM) substantially reduces the bioavailability and risks of mercury (Hg) in soils and sediments; however, recent reports have supported that OM greatly accelerates Hg methylation and increases the risks of Hg exposure. This study aims to summarize the interactions between Hg and OM in soils and sediments and improve our understanding of the effects of OM on Hg methylation. The results show that OM characteristics, promotion of the activity of Hg-methylating microbial communities, and the microbial availability of Hg accounted for the acceleration of Hg methylation which increases the risk of Hg exposure. These three key aspects were driven by multiple factors, including the types and content of OM, Hg speciation, desorption and dissolution kinetics and environmental conditions.
Collapse
Affiliation(s)
- Mei He
- School of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Lei Tian
- School of Petroleum Engineering, Yangtze University, Wuhan, 430100, People's Republic of China
| | | | - Qingru Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jie Luo
- School of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Li-Mei Cai
- School of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Jiang-Hui Meng
- Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Yan Lin
- School of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China.
- Norwegian Institute for Water Research, 0349, Oslo, Norway.
| |
Collapse
|
11
|
Tang W, Su Y, Gao Y, Zhong H. Effects of Farming Activities on the Biogeochemistry of Mercury in Rice-Paddy Soil Systems. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:635-642. [PMID: 31053868 DOI: 10.1007/s00128-019-02627-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
The biogeochemistry of mercury (Hg) in rice-paddy soil systems raises concerns, given that (1) the redox potential in paddy soil favors Hg methylation and (2) rice plants have a strong ability to accumulate methylmercury (MeHg), making rice an important source for MeHg exposure to humans. Therefore, all factors affecting the behavior of Hg in rice-paddy soils might impact Hg accumulation in rice, with its subsequent potential risks. As a typical wetland, paddy soils are managed by humans and affected by anthropogenic activities, such as agronomic measures, which would impact soil properties and thus Hg biogeochemistry. In this paper, we reviewed recent advances in the effects of farming activities including water management, fertilizer application and rotation on Hg biogeochemistry, trying to elucidate the factors controlling Hg behavior and thus the ecological risks in rice-paddy soil systems. This review might provide new thoughts on Hg remediation and suggest avenues for further studies.
Collapse
Affiliation(s)
- Wenli Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Yao Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Yuxi Gao
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control, Laboratory of Metallomics and Nanometallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China.
- Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, ON, Canada.
| |
Collapse
|
12
|
Shu R, Wang Y, Zhong H. Biochar amendment reduced methylmercury accumulation in rice plants. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:1-8. [PMID: 27045620 DOI: 10.1016/j.jhazmat.2016.03.080] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
There is growing concern about methylmercury (MeHg) accumulation in rice grains and thus enhanced dietary exposure to MeHg in Asian countries. Here, we explored the possibility of reducing grain MeHg levels by biochar amendment, and the underlying mechanisms. Pot (i.e., rice cultivation in biochar amended soils) and batch experiments (i.e., incubation of amended soils under laboratory conditions) were carried out, to investigate MeHg dynamics (i.e., MeHg production, partitioning and phytoavailability in paddy soils, and MeHg uptake by rice) under biochar amendment (1-4% of soil mass). We demonstrate for the first time that biochar amendment could evidently reduce grain MeHg levels (49-92%). The declines could be attributed to the combined effects of: (1) increased soil MeHg concentrations, probably explained by the release of sulfate from biochar and thus enhanced microbial production of MeHg (e.g., by sulfate-reducing bacteria), (2) MeHg immobilization in soils, facilitated by the large surface areas and high organosulfur content of biochar, and (3) biodilution of MeHg in rice grains, due to the increased grain biomass under biochar amendment (35-79%). These observations together with mechanistic explanations improve understanding of MeHg dynamics in soil-rice systems, and support the possibility of reducing MeHg phytoaccumulation under biochar amendment.
Collapse
Affiliation(s)
- Rui Shu
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, People's Republic of China, People's Republic of China
| | - Yongjie Wang
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, People's Republic of China, People's Republic of China
| | - Huan Zhong
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, People's Republic of China, People's Republic of China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|