1
|
El Wanny N, Le Roux Y, Fournier A, Baroudi M, Woignier T, Feidt C, Delannoy M. Organochlorine POPs sequestration strategy by carbonaceous amendments of contaminated soils: Toward a better understanding of the transfer reduction to laying hens. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128871. [PMID: 35430457 DOI: 10.1016/j.jhazmat.2022.128871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
PCBs, PCDD/Fs, and Chlordecone (CLD) are POPs found in soils and transferred to animals through involuntary soil ingestion. In this frame, the amendment of contaminated soil with porous matrices, like Biochars (BCs) and Activated Carbons (ACs), is a promising technique for reducing this transfer. In this study, the efficiency of 3 biochars and 3 activated carbons was assessed by amending 2% (by weight) of these matrices on (i) CLD or (ii) PCBs and PCDD/Fs contaminated artificial soils. Porosity of the carbon-based materials and molecules physico-chemical characteristics were then linked to the obtained results. The concentrations of pollutants were then measured in the egg yolks of laying hens (n = 3), which were fed on a daily basis pellets containing 10% of soil for 20 days. Overall, no significant transfer reduction was observed with the biochar and the granular AC amendments for all the compounds. However, significant reductions were obtained with the two efficient activated carbons for PCDD/Fs and DL-PCB up to 79-82% (TEQ basis), whereas only a slight reduction of concentrations was obtained with these activated carbons for CLD and NDL-PCBs. Thus, (i) biochars were not proven efficient to reduce halogenated pollutants transfer to animals, (ii) powdered AC amendments resulted in reducing the bioavailability of soil POPs, and (iii) the effectiveness of such strategy depended on both characteristics of the matrix and of the pollutants.
Collapse
Affiliation(s)
- Nadine El Wanny
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France; Lebanese University - Faculty of Public Health-Section III, L.S.E.E., BP 246 Tripoli, Lebanon
| | - Yves Le Roux
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France
| | - Agnès Fournier
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France
| | - Moomen Baroudi
- Lebanese University - Faculty of Public Health-Section III, L.S.E.E., BP 246 Tripoli, Lebanon
| | - Thierry Woignier
- UMR IMBE - Aix Marseille Université, CNRS, IRD, Avignon Université Campus, Lebanon
| | - Cyril Feidt
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France
| | | |
Collapse
|
2
|
Li X, Wang Y, Luo T, Ma Y, Wang B, Huang Q. Remediation potential of immobilized bacterial strain with biochar as carrier in petroleum hydrocarbon and Ni co-contaminated soil. ENVIRONMENTAL TECHNOLOGY 2022; 43:1068-1081. [PMID: 32844719 DOI: 10.1080/09593330.2020.1815858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/18/2020] [Indexed: 05/22/2023]
Abstract
The remediation of organic pollutant-heavy metal co-contaminated soil is a great challenge. Immobilized microorganism technology (IMT) is a potential approach to remediate co-contaminated soil. In this study, we evaluated the feasibility of IMT for the remediation of petroleum hydrocarbon-heavy metal nickel (Ni) co-contaminated soil. The Ni resistant and hydrocarbon-degrading bacteria strain Citrobacter sp. was added to co-contaminated soil by immobilizing on corncob biochar. The potential performance in biodegradation of petroleum hydrocarbon and changing the mobility and speciation of nickel (Ni) in soil were determined, with consideration of the influences of the soil properties and dehydrogenase activity. The results demonstrated that the degradation rate of petroleum hydrocarbons by immobilized microorganisms group (IM) was 45.52%, significantly higher than that of the free bacteria (30.15%), biochar (25.92%) and blank group (18.47%) (P<0.05). At the same time, IM was more effective in immobilizing Ni in the soil by transforming available Ni to a stable fraction with a maximum residual concentration increasing by 101.50 mg·kg-1, and the carcinogenic nickel sulfide was not detected after remediation in IM. IM exhibited a higher level of soil dehydrogenase activity (0.3956 μg·mL-1·h-1·g-1) than that of free bacteria (0.2878 μg·mL-1·h-1·g-1). A linear correlation was found between the petroleum pollutants degradation rate and dehydrogenase activity (P<0.05). This study indicates the effectiveness and potential of IMT application in degrading petroleum hydrocarbon and immobilizing heavy metals in co-contaminated soil.
Collapse
Affiliation(s)
- Xi Li
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People's Republic of China
| | - Yaxuan Wang
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Ting Luo
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Yongsong Ma
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Bing Wang
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Qiuyu Huang
- Sichuan Bureau of Geology and Mineral Resources Chengdu Analytical & Testing Center for Mineral and Rocks, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Willis Chan DS, Raine NE. Population decline in a ground-nesting solitary squash bee (Eucera pruinosa) following exposure to a neonicotinoid insecticide treated crop (Cucurbita pepo). Sci Rep 2021; 11:4241. [PMID: 33608633 PMCID: PMC7896084 DOI: 10.1038/s41598-021-83341-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 11/29/2022] Open
Abstract
Insect pollinators are threatened by multiple environmental stressors, including pesticide exposure. Despite being important pollinators, solitary ground-nesting bees are inadequately represented by pesticide risk assessments reliant almost exclusively on honeybee ecotoxicology. Here we evaluate the effects of realistic exposure via squash crops treated with systemic insecticides (Admire-imidacloprid soil application, FarMore FI400-thiamethoxam seed-coating, or Coragen-chlorantraniliprole foliar spray) for a ground-nesting bee species (Hoary squash bee, Eucera pruinosa) in a 3-year semi-field experiment. Hoary squash bees provide essential pollination services to pumpkin and squash crops and commonly nest within cropping areas increasing their risk of pesticide exposure from soil, nectar, and pollen. When exposed to a crop treated at planting with soil-applied imidacloprid, these bees initiated 85% fewer nests, left 5.3 times more pollen unharvested, and produced 89% fewer offspring than untreated controls. No measurable impacts on bees from exposure to squash treated with thiamethoxam as a seed-coating or foliage sprayed with chlorantraniliprole were found. Our results demonstrate important sublethal effects of field-realistic exposure to a soil-applied neonicotinoid (imidacloprid) on bee behaviour and reproductive success. Soil must be considered a potential route of pesticide exposure in risk assessments, and restrictions on soil-applied insecticides may be justified, to mitigate impacts on ground-nesting solitary bee populations and the crop pollination services they provide.
Collapse
Affiliation(s)
- D Susan Willis Chan
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
4
|
El-Aswad AF, Aly MI, Fouad MR, Badawy MEI. Adsorption and thermodynamic parameters of chlorantraniliprole and dinotefuran on clay loam soil with difference in particle size and pH. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:475-488. [PMID: 30931735 DOI: 10.1080/03601234.2019.1595893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The behavior of chlorantraniliprole (CAP) and dinotefuran (DNF) insecticides was investigated in clay loam soil, a common type of the Egyptian soil. Effect of temperature, pH and particle size of the soil on the adsorption process was studied. Adsorption isotherm by bulk soil and its constituents; humic acid (HA), clay, silt and sand fractions was measured using batch equilibration technique. The results showed that the adsorption of the insecticides tested was significantly affected by the temperature and was a spontaneous interfacial process in the soil. Freundlich model accurately predicted the adsorption behavior of both insecticides. The interaction between soil and insecticides was endothermic and the highest adsorption for CAP and DNF was obtained at pH 9. However, the effect of pH on the adsorption of DNF was lower than that of CAP. Sorption of CAP and DNF on HA fraction was significantly greater than on clay fraction and bulk soil. In addition, the adsorption was significantly increased with particle size decrease. It could be inferred that the adsorption of CAP and DNF on clay loam soil was physical in nature and greatly influenced by the soil components, pH and temperature.
Collapse
Affiliation(s)
- Ahmed F El-Aswad
- a Department of Pesticide Chemistry and Technology, Faculty of Agriculture , Alexandria University , Alexandria , Egypt
| | - Maher I Aly
- a Department of Pesticide Chemistry and Technology, Faculty of Agriculture , Alexandria University , Alexandria , Egypt
| | - Mohamed R Fouad
- a Department of Pesticide Chemistry and Technology, Faculty of Agriculture , Alexandria University , Alexandria , Egypt
| | - Mohamed E I Badawy
- a Department of Pesticide Chemistry and Technology, Faculty of Agriculture , Alexandria University , Alexandria , Egypt
| |
Collapse
|
5
|
Adsorption of Cadmium on Degraded Soils Amended with Maize-Stalk-Derived Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112331. [PMID: 30360479 PMCID: PMC6266441 DOI: 10.3390/ijerph15112331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/19/2022]
Abstract
Biochar has been extensively proven to distinctively enhance the sorption capacity of both heavy metal and organic pollutants and reduce the related environmental risks. Soil pollution and degradation widely coexist, and the effect of biochar addition on adsorption behavior by degraded soils is not well understood. Four degraded soils with different degrees of degradation were amended with maize-stalk-derived biochar to investigate the adsorption of cadmium using batch methods. The maximum adsorption capacity (Qm) of degraded soil remarkably decreased in comparison with undegraded soil (5361 mg·kg−1→170 mg·kg−1), and the Qm of biochar increased with increasing pyrolysis temperature (22987 mg·kg−1→49016 mg·kg−1) which was much higher than that of soil. The addition of biochar can effectively improve the cadmium adsorption capacity of degraded soil (36–328%). The improving effect is stronger when increasing either the degradation level or the amount of added biochar, or the pyrolysis temperature of biochar. Contrary to the general soil–biochar system, adsorption of Cd was not enhanced but slightly suppressed (7.1–36.6%) when biochar was incorporated with degraded soils, and the adsorptivity attenuation degree was found to be negatively linear with SOM content in the degraded soil–biochar system. The results of the present study suggest that more attention on the adsorption inhibition and acceleration effect difference between the soil–biochar system and the degraded soil–biochar system is needed.
Collapse
|
6
|
Redman ZC, Tjeerdema RS. Impact of Simulated California Rice-Growing Conditions on Chlorantraniliprole Partitioning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1765-1772. [PMID: 29437391 DOI: 10.1021/acs.jafc.7b05775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chlorantraniliprole (3-bromo-N-[4-chloro-2-methyl-6-(methylcarbamoyl)phenyl]-1-(3-chloro-2-pyridine-2-yl)-1H-pyrazole-5-carboxamide, CAP; water solubility 1.023 mg·L-1) was recently registered for application on California rice fields. Air- and soil-water partitioning of CAP were investigated under simulated California rice field conditions through calculation of KH and ΔawH and a batch equilibrium method following OECD 106 guidelines, respectively. KH and ΔawH were determined to be 1.69 × 10-16 - 2.81 × 10-15 atm·m3·mol-1 (15-35 °C) and 103.68 kJ·mol-1, respectively. Log(Koc) ranged from 2.59 to 2.96 across all soil and temperature treatments. Log(KF) ranged from 0.61 to 1.14 across all soil, temperature, and salinity treatments. Temperature and salinity increased sorption significantly at 35 °C (P < 0.05) and 0.2 M (P < 0.0001), respectively, while soil properties impacted sorption across all treatments. Overall results, corroborated using the Pesticides in Flooded Applications Model, indicate that volatilization of CAP is not a major route of dissipation and sorption of CAP to California rice field soils is moderately weak and reversible.
Collapse
Affiliation(s)
- Zachary C Redman
- Department of Environmental Toxicology, College of Agricultural and Environmental Sciences, University of California , One Shields Avenue, Davis, California 95616-8588, United States
| | - Ronald S Tjeerdema
- Department of Environmental Toxicology, College of Agricultural and Environmental Sciences, University of California , One Shields Avenue, Davis, California 95616-8588, United States
| |
Collapse
|