1
|
Abdollahi-Najafabadi M, Farhadian S, Shareghi B, Asgharzadeh S. The investigation of the interaction determination between carbendazim and elastase, using both in vitro and in silico methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124586. [PMID: 38833886 DOI: 10.1016/j.saa.2024.124586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
Pesticides, including fungicides, are one of the important groups of environmental toxins that affect human and animal health. Studies have shown that these compounds are considered chemical pollutants. Carbendazim is a systemic fungicide. Unfortunately, excessive use of carbendazim has caused environmental pollution all over the world. In this study, the effect of carbendazim on the enzyme elastase (secreted from the endocrine gland of the pancreas) has been investigated. In a study, the performance and reaction of carbendazim with elastase were investigated using spectroscopic techniques. The stability and structure of elastase enzymes were studied under the influence of carbendazim. The results of fluorescence emission and UV-visible absorption spectrum showed that in the presence of carbendazim, there is an increase in UV-Vis absorption and a decrease in the intensity of the intrinsic fluorescence emission in the protein spectrum. Additionally, a decrease in the thermal stability of elastase was observed in the presence of carbendazim. The stability and structure of elastase enzyme were investigated in the presence of carbendazim. The results revealed that the UV-Vis absorption increased due to the presence of carbendazim, as indicated by the hyperchromic spectrum at 220 and 280 nm peaks. Additionally, the intrinsic fluorescence emission in the protein spectrum decreased with increasing carbendazim concentration at three different temperatures (298, 303, and 313 K). Moreover, the study demonstrated that the TM decreased from 2.59 to 4.58 with the increase of carbendazim, suggesting a decrease in the stability of the elastase structure in response to the elevated carbendazim concentration. According to the results of the research, the interaction between elastase and carbendazim has occurred, and changes have been made in the enzyme under the influence of carbendazim. The formation of the complex between elastase and carbendazim was consistent with the results obtained from molecular simulation and confirmed the thermodynamic data.
Collapse
Affiliation(s)
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
2
|
Asrafali SP, Periyasamy T, Kim SC, Lee J. Advanced Electrochemical Monitoring of Carbendazim Fungicide in Foods Using Interfacial Superassembly of NRPC/NiMn Frameworks. BIOSENSORS 2024; 14:474. [PMID: 39451687 PMCID: PMC11505953 DOI: 10.3390/bios14100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
A simple, sensitive and reliable sensing system based on nitrogen-rich porous carbon (NRPC) and transition metals, NRPC/Ni, NRPC/Mn and NRPC/NiMn was developed and successfully applied as electrode materials for the quantitative determination of carbendazim (CBZ). The synergistic effect of NRPC and bimetals with acceptable pore structure together with flower-like morphology resulted in producing a highly conductive and interconnected network in NRPC/NiMn@GCE, which significantly enhanced the detection performance of CBZ. The electrochemical behavior investigated by cyclic voltammetry (CV) showed improved CBZ detection for NRPC/NiMn, due to the controlled adsorption/diffusion process of CBZ by the NRPC/NiMn@GCE electrode. The influences of various factors such as pH, NRPC/NiMn concentration, CBZ concentration and scan rate were studied. Under optimal conditions, 0.1 M phosphate-buffered saline (PBS) with a pH of 7.0 containing 30 µg/mL NRPC/NiMn, a favourable linear range detection of CBZ from 5 to 50 µM was obtained. Moreover, a chronoamperometric analysis showed excellent repeatability, reproducibility and anti-interfering ability of the fabricated NRPC/NiMn@GCE sensor. Furthermore, the sensor showed satisfactory results for CBZ detection in real samples with acceptable recoveries of 96.40-104.98% and low RSD values of 0.25-3.45%.
Collapse
Affiliation(s)
- Shakila Parveen Asrafali
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.P.A.)
| | - Thirukumaran Periyasamy
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.P.A.)
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jaewoong Lee
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.P.A.)
| |
Collapse
|
3
|
Jardim GOC, Oliveira GLDS. Mancozeb induces cytogenotoxicity in meristematic cells of Allium cepa L. Drug Chem Toxicol 2024:1-8. [PMID: 38984405 DOI: 10.1080/01480545.2024.2370938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/16/2024] [Indexed: 07/11/2024]
Abstract
Mancozeb is a fungicide of the dithiocarbamate functional group, and it is widely used in agriculture to control various fungal diseases. Thus, studies detailing its toxicological characteristics are necessary, as the population may be exposed through the consumption of food or water contaminated with mancozeb. The aim of this study was to evaluate the cytotoxic, genotoxic, and mutagenic potentials of this dithiocarbamate using the Allium cepa L. test system as well as its cytotoxicity in erythrocytes of female rats (Rattus norvegicus). The meristematic roots of A. cepa bulbs were exposed to various concentrations of mancozeb (62.5, 125, 250, and 500 mg/L) for 24, 48, and 72 h to determine cytotoxicity by evaluating the mitotic index (MI), chromosomal aberrations (CA), and nuclear anomalies (NA) for genotoxicity analysis and micronuclei (MN) for mutagenicity analysis. Distilled water and copper sulfate (0.0006 mg/L) were used as the negative control (NC) and positive control (PC), respectively. The MI and the sum of CA and NA of all the mancozeb concentrations showed a significant difference (p ≤ 0.05) in relation to the NC, indicating possible cytotoxicity and genotoxicity induced by mancozeb. Additionally, MN significantly increased with mancozeb concentration from 250 mg/L to 500 mg/L in 24 h when compared to NC. In another study model, mancozeb showed to be cytolytic at concentrations starting from 125 mg/L. Therefore, these results indicate that mancozeb causes cytogenetic alterations and mutagenicity at lower concentrations than those used in agriculture, which emphasizes the need for more care when managing this fungicide.
Collapse
Affiliation(s)
- Gabriel Osvair Costa Jardim
- Department of Biology, Federal Institute of Mato Grosso, Laboratory of Education and Research in Toxicology and Pharmacology (LEPTOX-F), Jaciara, MT, Brazil
| | - George Laylson da Silva Oliveira
- Department of Biology, Federal Institute of Mato Grosso, Laboratory of Education and Research in Toxicology and Pharmacology (LEPTOX-F), Jaciara, MT, Brazil
| |
Collapse
|
4
|
Rasool S, Rasool T, Gani KM. Understanding the carbendazim adsorption from water using biochar derived from apple pomace and industrial wastewater sludge: experimental and DFT approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47818-47835. [PMID: 39007980 DOI: 10.1007/s11356-024-34305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Biochars derived from apple pomace (AP-BC) and industrial wastewater sludge (IS-BC) were used to investigate adsorption performance and mechanism for removing carbendazim from water and compare its performance with commercial biochar (commercial BC). The results showed that the adsorption capacity of AP-BC and IS-BC were 76 mg g-1 and 82 mg g-1 respectively that was comparable with the commercial BC (80 mg g-1). The adsorption kinetics and isotherms were best described by the Pseudo-second-order and Langmuir models. Thermodynamic analysis suggested that higher temperatures can enhance the mobility of molecules, increased mobility facilitates more frequent and stronger interactions between the adsorbate molecules and the surface of the adsorbent material, leading to greater adsorption capacity. Density functional theory (DFT) calculations confirmed carbendazim's weak electrophilic nature, supporting the primary physisorption mechanism. Even after five cycles of recycling, both biochars maintained a consistent carbendazim removal efficiency of around 82%, highlighting their high reusability. In this study, the examination of waste-derived biochar's economic feasibility revealed that using biochars derived from waste biomass for large-scale wastewater treatment applications is an economically viable choice.
Collapse
Affiliation(s)
- Saheem Rasool
- Department of Chemical Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India
| | - Tanveer Rasool
- Department of Chemical Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India.
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
5
|
Álvarez-Herrera C, Maisanaba S, Llana Ruíz-Cabello M, Rojas R, Repetto G. A strategy for the investigation of toxic mechanisms and protection by efflux pumps using Schizosaccharomyces pombe strains: Application to rotenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171253. [PMID: 38408667 DOI: 10.1016/j.scitotenv.2024.171253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Effects not related with the inhibition of complex I of the mitochondrial electron transport chain are studied in S. pombe, which lacks it. This study aims: First, the use of a strategy with S. pombe strains to investigate the toxicity, mechanisms of action, interactions and detoxication by efflux pumps. Second, to investigate the mechanisms of toxic action of rotenone. In the dose-response assessment, the yeast presented a good correlation with the toxicity in Daphnia magna for 15 chemicals. In the mechanistic study, the mph1Δ strain presented marked specificity to the interaction with microtubules by carbendazim. DNA damage caused by hydroxyurea, an inhibitor of deoxynucleotide synthesis, was identified with marked specificity with the rad3Δ strain. The sty1Δ strain was very sensitive to the oxidative and osmotic stress induced by hydrogen peroxide and potassium chloride, respectively, being more sensitive to oxidative stress than the pap1Δ strain. The protection by exclusion pumps was also evaluated. Rotenone presented low toxicity in S. pombe due to the lack of its main target, and the marked protection by the exclusion transporters Bfr1, Pmd1, Caf5 and Mfs1. Marked cellular stress was detected. Finally, the toxicity of rotenone could be potentiated by the fungicide carbendazim and the antimetabolite hydroxyurea. In conclusion, the use of S. pombe strains is a valid strategy to: a) assess global toxicity; b) investigate the main mechanisms of toxic action, particularly spindle and DNA interferences, and osmotic and oxidative stress not related to complex I inhibition; c) explore the detoxication by efflux pumps; and d) evaluate possible chemical interactions. Therefore, it should be useful for the investigation of adverse outcome pathways.
Collapse
Affiliation(s)
| | - Sara Maisanaba
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | | | - Raquel Rojas
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Guillermo Repetto
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
6
|
Meng Z, Liu D, Li S, Xu Z, Deng Q, Liu Y. A fast multi-residue analysis of twenty-four classes of pesticide in sesame (Sesamum indicum L.) and their migration into processed products. Food Res Int 2023; 173:113322. [PMID: 37803633 DOI: 10.1016/j.foodres.2023.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 10/08/2023]
Abstract
Sesame is widely used as a nutritional supplement or condiment because of its nutritious properties and palatable flavor. However, the extensive use of pesticides in sesame fields has paradoxically decreased the nutritional vantage. The current study used QuEChERS with a low-temperature freezing method to develop a multi-residue analytical approach to detect target analytes (pesticides) in sesame seed, sesame oil, sesame paste, and sesame meal. The migration ability of target pesticides during oil processing was investigated using HPLC-MS/MS and GC-MS: 35% of pesticides decreased, with processing factors (PFs) lower than 0.98, whereas 65% migrated from the seed to the oil during processing. The migration success of methoxyfenozide was the highest, while clothianidin and pymetrozine demonstrated a significantly lower rate of transfer. The results provide insight into the types of pesticides that should be used in farming practices of sesame to decrease the impact on human health.
Collapse
Affiliation(s)
- Ziwei Meng
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Dan Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Shuhui Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Zhiyi Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Qianqian Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| | - Yang Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
7
|
Qian M, Zhou M, Li Y, Wang D, Yao L, Wu H, Yang G. The Dissipation Behavior and Risk Assessment of Carbendazim Under Individual and Joint Applications on Peach (Amygdalus persica L.). J Food Prot 2023; 86:100145. [PMID: 37604252 DOI: 10.1016/j.jfp.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Dissipation, residue levels, and ingestion risks of carbendazim in peach (Amygdalus persica L.) were investigated with individual and joint applications in the present study. The dissipation kinetics of carbendazim, chlorpyrifos, prochloraz, and imidacloprid were evaluated by the first-order kinetics. When carbendazim was individually applied, the final residual concentration was 2.97 mg kg-1 and the half-life was 17.4 d. In the joint application of carbendazim with chlorpyrifos, prochloraz, and imidacloprid, the residual concentrations at 35 d after spraying were 7.16, 7.50, and 4.26 mg kg-1 and the half-lives were 30.8, 23.7, and 23.2 d, respectively, which showed an increase of 1.3-1.8 times compared with the single application of carbendazim. In addition, the effects of household processing of rinsing and peeling were investigated, and a high removal rate of 54.6% and 76.5% were found. Furthermore, the carbendazim ingestion risk assessment was conducted, which indicated that the acute health risk (aHI) and hazard quotient (HQ) of carbendazim were all within acceptable levels ranging from 21.7% to 40.9%. However, a higher ingestion risk of carbendazim was found under the joint application. This study provides some preliminary guidance for the joint application and risk assessment of carbendazim in peach, which is worth further investigation.
Collapse
Affiliation(s)
- Mingrong Qian
- key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, PR China
| | - Min Zhou
- Hangzhou Puyu Technology Development Co., Ltd., Hangzhou, PR China
| | - Yue Li
- College of Chemical Engineering, Zhejiang Shuren University, Hangzhou, PR China
| | - Dou Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Liping Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Huizhen Wu
- College of Chemical Engineering, Zhejiang Shuren University, Hangzhou, PR China.
| | - Guiling Yang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China.
| |
Collapse
|
8
|
Liang X, Li Y, Zheng Z, Tian F, Du Y, Yang Y, Wang M, Zhang Y. Effects of mixed application of avermectin, imidacloprid and carbendazim on soil degradation and toxicity toward earthworms. Sci Rep 2023; 13:14115. [PMID: 37644051 PMCID: PMC10465560 DOI: 10.1038/s41598-023-41206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
The application of pesticides in mixtures often exerts multiple pressures on agricultural soils in the short term. Therefore, it is necessary to assess the effects of mixed application on the environmental behavior and ecotoxicity of pesticides in soil. In this study, we assessed the effects of three common pesticides through mixed application on soil degradation and toxicity toward the earthworm Eisenia fetida. Compared with the degradation half-lives (DT50) the single pesticide, the DT50 values of avermectin, imidacloprid and carbendazim in the binary mixtures were similar. However, their DT50 values in the ternary mixtures were approximately 1.5 times longer than those in the individual applications, enhancing their stable in soil after two or three applications. The ternary mixtures of the pesticides showed significantly synergistic toxicity toward E. fetida, while their binary mixtures exhibited a changing interaction throughout the entire effect level range. The ternary mixtures activated higher SOD and CAT activities in E. fetida than the individual treatments, confirming their synergistic effects. By conducting avoidance tests with E. fetida, ternary toxic interactions were effectively assessed within a relatively short testing period. In summary, the three pesticides in ternary mixtures exhibited longer degradation half-lives and synergistic toxicity toward earthworms compared to individual or binary mixtures.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China
| | - Yufei Li
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China
| | - Zhao Zheng
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China
| | - Fang Tian
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China
| | - Yannan Du
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China
| | - Ye Yang
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China
| | - Meng Wang
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China.
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China.
| | - Yu Zhang
- Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, Sanya, China.
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China.
| |
Collapse
|
9
|
Jin Y, Qi Y, Fan M, Zhang J, Kong B, Shao B. Biotransformation of carbendazim in cowpea pickling process. Food Chem 2023; 415:135766. [PMID: 36868064 DOI: 10.1016/j.foodchem.2023.135766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023]
Abstract
Carbendazim, a systemic fungicide, is one of the most commonly detected pesticides in cowpeas. Pickled cowpea is a fermented vegetable product with unique flavor favored in China. The dissipation and degradation of carbendazim were investigated in the pickled process. The degradation rate constant of carbendazim in pickled cowpeas was 0.9945 and the half-life of the carbendazim was 14.06 ± 0.82 d. Seven transformation products (TPs) were identified in the pickled process. Furthermore, the toxicity of some TPs show more harmful to three aquatic organisms (TP134) and rats (all the identified TPs) than carbendazim. And most of the TPs posed more development toxicity and mutagenicity than carbendazim. 4 out of 7 TPs were discovered in the real pickled cowpea samples. These results shed light on the degradation and biotransformation of the carbendazim in the pickled process, to better understand the potential health risk of pickled food and evaluate the environmental pollution.
Collapse
Affiliation(s)
- Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing 100013, China
| | - Yan Qi
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengdie Fan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing 100013, China
| | - Biao Kong
- School of Food and Biological Engineering, Xihua University, Chengdu 610039, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing 100013, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, China.
| |
Collapse
|
10
|
Xue Y, Li Z, Liu C, Liu D, Wang J, Liu C, Xia X. Effect of different exposure times and doses of cyantraniliprole on oxidative stress and genotoxicity in earthworms (Eisenia fetida). CHEMOSPHERE 2023; 319:138023. [PMID: 36731673 DOI: 10.1016/j.chemosphere.2023.138023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Cyantraniliprole, the second generation of diamide insecticides, is widely used to control various pests, which will certainly result in adverse effects on earthworms in soil. In this study, after exposure with six doses of cyantraniliprole (0, 0.5, 1, 2.5, 5, and 10 mg kg-1) by artificial soil method, six biomarkers, four functional genes, and histopathological changes of Eisenia fetida were measured on the 7th, 14th, 21st, and 28th days. The comprehensive toxicity was assessed by the IBR version 2 (IBRv2) method. The results showed that the reactive oxygen species (ROS) level was induced significantly. The superoxide dismutase (SOD) activity was activated in 7-28 days. The catalase (CAT) and glutathione S-transferases (GST) activities were also activated in the initial 14 days. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) contents in the high treatment increased until the late stage of exposure. On the 28th day, the metallothionein (MT) and calreticulin (CRT) genes were up-regulated, the transcriptionally controlled tumor protein (TCTP) gene was down-regulated. The SOD gene showed a good correlation with SOD activity. Extensive histopathological damage was found in the endoderm and ectoderm of E. fetida. The 5 and 10 mg kg-1 treatments showed higher comprehensive toxicity than the 0.5, 1, and 2.5 mg kg-1 treatments on the 28th day. These results suggest that cyantraniliprole exerted certain subchronic toxic effects of oxidative stress, DNA damage, and histopathological changes to E. fetida, which provided theoretical basis for rational use of cyantraniliprole and evaluation of its safety to soil environment.
Collapse
Affiliation(s)
- Yannan Xue
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Zhaoge Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Chao Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Dongmei Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Chang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
11
|
Zhang Q, Zhang Z, Xu S, Liu A, Da L, Lin D, Jiang C. Photoinduced Electron Transfer-Triggered g-C 3N 4\Rhodamine B Sensing System for the Ratiometric Fluorescence Quantitation of Carbendazim. Anal Chem 2023; 95:4536-4542. [PMID: 36826375 DOI: 10.1021/acs.analchem.2c05691] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Assays for carbendazim (Car) with high sensitivity and on-site screening have been urgently required to protect the ecosystem and prevent disease. In this work, a simple, sensitive, and reliable sensing system based on photoinduced electron transfer was established to detect carbendazim utilizing ultrathin graphitic carbon nitride (g-C3N4) nanosheets and rhodamine B (RB). Carbendazim reacts with g-C3N4 by electrostatic interactions to form π-π stacking, and the quenching of the blue fluorescence is caused by electron transfer. While RB works as a reference fluorescence sensor without any fluorescence change, leading to obvious ratiometric fluorescence variation from blue to purple. Under optimal conditions, a favorable linear range from 20 to 180 nM was obtained, with a low detection limit of 5.89 nM. In addition, a portable smartphone sensing platform was successfully used for carbendazim detection in real samples with excellent anti-interference capability, demonstrating the potential applications of carbendazim monitoring.
Collapse
Affiliation(s)
- Qianru Zhang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.,School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Zhong Zhang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Anqi Liu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Liangguo Da
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Dan Lin
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
12
|
Wang J, Xing C, Xia J, Chen H, Zhang J, Yan W. Degradation of carbendazim in aqueous solution by dielectric barrier discharge cold plasma: Identification and toxicity of degradation products. Food Chem 2023; 403:134329. [DOI: 10.1016/j.foodchem.2022.134329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
|
13
|
Costa RM, Matos E Chaib VR, Domingues AG, Rubio KTS, Martucci MEP. Untargeted Metabolomics Reveals Lipid Impairment in the Liver of Adult Zebrafish (Danio rerio) Exposed to Carbendazim. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:437-448. [PMID: 36484755 DOI: 10.1002/etc.5534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Carbendazim is a systemic fungicide used in several countries, particularly in Brazil. However, studies suggest that it is related to the promotion of tumors, endocrine disruption, and toxicity to organisms, among other effects. As a result, carbendazim is not allowed in the United States, Australia, and some European Union countries. Therefore, further studies are necessary to evaluate its effects, and zebrafish is a model routinely used to provide relevant information regarding the acute and long-term effects of xenobiotics. In this way, zebrafish water tank samples (water samples from aquari containing zebrafish) and liver samples from animals exposed to carbendazim at a concentration of 120 μg/L were analyzed by liquid chromatography coupled to high-resolution mass spectrometry, followed by multivariate and univariate statistical analyses, using the metabolomics approach. Our results suggest impairment of lipid metabolism with a consequent increase in intrahepatic lipids and endocrine disruption. Furthermore, the results suggest two endogenous metabolites as potential biomarkers to determine carbendazim exposure. Finally, the present study showed that it is possible to use zebrafish water tank samples to assess the dysregulation of endogenous metabolites to understand biological effects. Environ Toxicol Chem 2023;42:437-448. © 2022 SETAC.
Collapse
Affiliation(s)
- Raíssa M Costa
- Postgraduate Program in Environmental Engineering-ProAmb, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Victória R Matos E Chaib
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Anderson G Domingues
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Karina T S Rubio
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Maria Elvira Poleti Martucci
- Postgraduate Program in Environmental Engineering-ProAmb, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
14
|
Zhou T, Guo T, Wang Y, Wang A, Zhang M. Carbendazim: Ecological risks, toxicities, degradation pathways and potential risks to human health. CHEMOSPHERE 2023; 314:137723. [PMID: 36592835 DOI: 10.1016/j.chemosphere.2022.137723] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Carbendazim is a highly effective benzimidazole fungicide and is widely used throughout the world. The effects of carbendazim contamination on the biology and environment should be paid more attention. We reviewed the published papers to evaluate the biological and environmental risks of carbendazim residues. The carbendazim has been frequently detected in the soil, water, air, and food samples and disrupted the soil and water ecosystem balances and functions. The carbendazim could induce embryonic, reproductive, developmental and hematological toxicities to different model animals. The carbendazim contamination can be remediated by photodegradation and chemical and microbial degradation. The carbendazim could enter into human body through food, drinking water and skin contact. Most of the existing studies were completed in the laboratory, and further studies should be conducted to reveal the effects of successive carbendazim applications in the field.
Collapse
Affiliation(s)
- Tangrong Zhou
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Tao Guo
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Yan Wang
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Andong Wang
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Manyun Zhang
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia.
| |
Collapse
|
15
|
Zhou HX, Chen MH, Gu WJ, Hu MF, Liu XY, Zhou J, Song YQ, Zha HG. Identification and quantitation of the novel insecticide sulfoxaflor and its metabolites in floral nectar from Salvia splendens Ker Gawl. (Lamiaceae). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1310-1320. [PMID: 36149570 DOI: 10.1007/s10646-022-02590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Sulfoxaflor is a new systemic insecticide developed as a replacement for older neonicotinoids which are known to be toxic to pollinators. However, its metabolism in nectar and effect on nectar biosynthesis have not been investigated. After soil and foliar application, sulfoxaflor and its main metabolites in soil, leaf and Salvia splendens nectar, were measured by liquid chromatography coupled with triple quadrupole mass spectrometer (LC-MS/MS). The chemical composition between the clean and sulfoxaflor spiked nectar were also compared. The activities of two possible sulfoxaflor detoxifying enzymes in S. splendens nectar, nitrile hydratase and glutathione-s-transferase, were measured by LC-MS and spectrophotometry. S. splendens nectar proteome was investigated by high-resolution orbitrap-based MS/MS to screen for sulfoxaflor detoxifying relevant proteins. S. splendens could absorb sulfoxaflor through root or leaf surface and secrete a proportion of sulfoxaflor along with its metabolites into the nectar. After soil application, sulfoxaflor's low toxic metabolite X11719474 was dominant in the nectar and reached an average concentration of 8905 ppb. However, after foliar application, sulfoxaflor was dominant over its metabolites in the nectar. S. splendens nectar has no nitrile hydratase and glutathione-s-transferase activity and none of the 106 proteins identified in the nectar were predicted to function in detoxifying sulfoxaflor. Soil and foliar sulfoxaflor application can result in different profiles of sulfoxaflor and its metabolites presented in the nectar. However, sulfoxaflor had no effects on S. splendens nectar secretion and chemical composition and cannot be directly detoxified by components in the nectar.
Collapse
Affiliation(s)
- Hong-Xia Zhou
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China
| | - Mang-Huang Chen
- Instrumental Analysis Centre, Huangshan University, Huangshan, 245041, China
| | - Wen-Jing Gu
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China
| | - Meng-Fang Hu
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China
| | - Xin-Yue Liu
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China
| | - Jia Zhou
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China
| | - Yue-Qin Song
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China
| | - Hong-Guang Zha
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China.
| |
Collapse
|
16
|
Ebedy YA, Hassanen EI, Hussien AM, Ibrahim MA, Elshazly MO. Neurobehavioral Toxicity Induced by Carbendazim in Rats and the Role of iNOS, Cox-2, and NF-κB Signalling Pathway. Neurochem Res 2022; 47:1956-1971. [PMID: 35312909 DOI: 10.1007/s11064-022-03581-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022]
Abstract
Carbendazim (CBZ) is one of the most common fungicides used to fight plant fungal diseases, otherwise, it leaves residue on fruits, vegetables, and soil that contaminate the environment, water, animal, and human causing serious health problems. Several studies have reported the reproductive and endocrine pathological disorders induced by CBZ in several animal models, but little is known about its neurotoxicity. So that, the present study aimed to explain the possible mechanisms of CBZ induced neurotoxicity in rats. Sixty male Wistar rats were divided into 4 groups (n = 15). Group (1) received normal saline and was kept as the negative control group, whereas groups (2, 3, 4) received CBZ at 100, 300, 600 mg/kg b.wt respectively. All rats received the aforementioned materials daily via oral gavage. Brain tissue samples were collected at 7, 14, 28 days from the beginning of the experiment. CBZ induced oxidative stress damage manifested by increasing MDA levels and reducing the levels of TAC, GSH, CAT in some brain areas at 14 and 28 days. There were extensive neuropathological alterations in the cerebrum, hippocampus, and cerebellum with strong caspase-3, iNOS, Cox-2 protein expressions mainly in rats receiving 600 mg/kg CBZ at each time point. Moreover, upregulation of mRNA levels of NF-κB, TNF-α, IL-1B genes and downregulation of the transcript levels of both AchE and MAO genes were recorded in all CBZ receiving groups at 14 and 28 days especially those receiving 600 mg/kg CBZ. Our results concluded that CBZ induced dose- and time-dependent neurotoxicity via disturbance of oxidant/antioxidant balance and activation of NF-κB signaling pathway. We recommend reducing the uses of CBZ in agricultural and veterinary fields or finding other novel formulations to reduce its toxicity on non-target organisms and enhance its efficacy on the target organisms.
Collapse
Affiliation(s)
- Yasmin A Ebedy
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - M O Elshazly
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| |
Collapse
|
17
|
Song X, Ren X, Tang D, Li X. Specific iodide effect on surface-enhanced Raman scattering for ultra-sensitive detection of organic contaminants in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120950. [PMID: 35151171 DOI: 10.1016/j.saa.2022.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/27/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Ultra-sensitive detection of target molecules by surface-enhanced Raman scattering (SERS) is crucial in a wide range of fields but remains a great challenge. In this work, we report a simple and effective protocol for obtaining highly SERS-sensitive probe by mixing iodide with silver sol. The specific iodide effect on the SERS sensitivity is systematically investigated. It is found that, iodide can effectively promote the SERS enhancement of anionic and cationic analytes, and I- ion has a higher activating effect on SERS than that of Cl- ion. The as-prepared SERS-active substrate demonstrates excellent enhancement for rhodamine 6G with a high Raman enhancement factor of 1.8 × 108, which allows the detection limit of 1.0 × 10-13 M. Our findings in this work should be important for the developing of SERS theory and ultra-sensitive detection applications.
Collapse
Affiliation(s)
- Xinyue Song
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaohui Ren
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Dongyan Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
18
|
Shi J, Zhao M, Li K, Zhao Y, Li W, Peng Y, Zheng J. Metabolic Activation and Cytotoxicity of Fungicide Carbendazim Mediated by CYP1A2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4092-4101. [PMID: 35316061 DOI: 10.1021/acs.jafc.1c08144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbendazim (CBZ) is a broad-spectrum fungicide widely used in many nations for foliar spray as well as seed and soil treatment. The resulting contamination and environmental pollution have been drawing public attention. In particular, CBZ was reported to cause liver damage in rats and zebrafish, and the mechanisms of its toxicity have not been clarified. The purposes of this study were to investigate the metabolic activation of CBZ and to determine a possible role of the reactive metabolites in CBZ-induced liver injury reported. One oxidative metabolite (M1), one glutathione conjugate (M2), and one N-acetyl cysteine conjugate (M3) were detected in human and rat liver microsomal incubations fortified with glutathione or N-acetyl cysteine after exposure to CBZ. CYP1A2 was the major enzyme responsible for the metabolic activation of CBZ. Biliary M2 and urinary M3 were detected in rats treated with CBZ. CBZ-derived protein adduction was found in cultured rat primary hepatocytes treated with CBZ. The increase of administration concentration intensified not only the cytotoxicity but also protein adduction induced by CBZ, suggesting a correlation of the cytotoxicity with the observed protein modification. The findings facilitate the understanding of the mechanisms of toxic action of CBZ.
Collapse
Affiliation(s)
- Junzu Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Min Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Kaixuan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yanjia Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| |
Collapse
|
19
|
Chiu CI, Chuang YH, Liang WR, Yeh HT, Yang HY, Tsai MJ, Spomer NA, Li HF. Area-population control of fungus-growing termite, Odontotermes formosanus, using hexaflumuron durable baits. PEST MANAGEMENT SCIENCE 2022; 78:104-115. [PMID: 34453384 DOI: 10.1002/ps.6612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Fungus-growing termites (Termitidae: Macrotermitinae) are common forest and agriculture pests. To evaluate the efficacy of termite baiting in suppressing field population of fungus-growing termites, a durable termite bait with hexaflumuron was evenly installed in a one-hectare forest area dominated by a fungus-growing termite, Odontotermes formosanus (Shiraki). Monthly monitoring of termite foraging activity on baits and wood stakes was conducted for 4 years to quantify efficacy of baits. To examine whether the hexaflumuron led to colony death, pesticides in fungus gardens of active and deceased nests were quantified using a LC-QTOF/MS. RESULTS After baiting, 50% and 90% of baits were fed upon 10 and 24 months, respectively. After 2 years of baiting, the monthly number of wood stakes occupied by termites was reduced from 34.7 ± 1.8 to 17.6 ± 2.5 (-49.1%), and the number of wood stakes consumed was reduced from 17.7 ± 0.8 to 13.3 ± 1.2 (-25.7%). Hexaflumuron was detected in deceased colonies, including five of six fungus gardens and the fungal tissue of Xyleria grown on fungus gardens, with a concentration of 0.31-20.11 mg kg-1 dry weight. CONCLUSION This study demonstrated that durable hexaflumuron baits consumed by fungus-growing termites were further incorporated into fungus gardens, resulted in colony elimination and negative area-population effects, supporting that durable hexaflumuron baits are effective in suppressing field populations of fungus-growing termites. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chun-I Chiu
- Department of Entomology, National Chung-Hsing University, Taichung, Taiwan
| | - Ya-Hui Chuang
- Department of Soil and Environmental Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Wei-Ren Liang
- Department of Entomology, National Chung-Hsing University, Taichung, Taiwan
| | - Hsin-Ting Yeh
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Ying Yang
- Dongding Station, Tea Research and Extension Station, Council of Agriculture, Executive Yuan, Taoyuan, Taiwan
| | - Ming-Jer Tsai
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- School of Forestry and Resource Conservation, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | | | - Hou-Feng Li
- Department of Entomology, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
20
|
Perumal AB, Nambiar RB, Sellamuthu PS, Emmanuel RS. Use of modified atmosphere packaging combined with essential oils for prolonging post-harvest shelf life of mango (cv. Banganapalli and cv. Totapuri). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Imprinted polypyrrole recognition film @cobalt oxide/electrochemically reduced graphene oxide nanocomposite for carbendazim sensing. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01613-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Daam MA, Garcia MV, Scheffczyk A, Römbke J. Acute and chronic toxicity of the fungicide carbendazim to the earthworm Eisenia fetida under tropical versus temperate laboratory conditions. CHEMOSPHERE 2020; 255:126871. [PMID: 32413796 DOI: 10.1016/j.chemosphere.2020.126871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 05/21/2023]
Abstract
Research efforts into the potential side-effects of pesticides on beneficial organisms have focused on temperate test species and conditions. There is thus a need for studies into the ecotoxicity of a vaster range of pesticides under tropical conditions. The present study therefore aimed to compare the acute and chronic toxicity of the fungicide carbendazim to the earthworm Eisenia fetida under tropical and temperate conditions. To this end, laboratory toxicity tests were conducted with a tropical and European strain of E. fetida, using different artificial (OECD and TAS) and natural (LUFA and TNS) soils, and under different test temperatures (20 °C and 28 °C). In the acute lethality tests with artificial soils, the tropical strain of E. fetida was three to four order of magnitude less sensitive than the European strain, which is ascribed to the higher test temperature and (hence) higher microbial activity/pesticide degradation. The tropical strain was particularly sensitive in the tropical natural soil, which was attributed to the low pH (3.9) of this soil. The chronic toxicity tests overall also showed a lower sensitivity of the tropical strain on reproduction. These findings thus support the use of toxicity data generated under temperate conditions in tropical pesticide effect assessments. However, intensive agricultural practices in the tropics may dictate that exposure levels (and hence potentially also risks) are higher.
Collapse
Affiliation(s)
- Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, Caparica, 2829-516, Portugal
| | - Marcos V Garcia
- Embrapa Amazônia Ocidental, Rod. AM-10, Km 28, 69011-970, Manaus, AM, Brazil
| | - Adam Scheffczyk
- ECT Oekotoxikologie GmbH, Böttgerstr. 2-14, 65439, Flörsheim, Germany
| | - Jörg Römbke
- ECT Oekotoxikologie GmbH, Böttgerstr. 2-14, 65439, Flörsheim, Germany.
| |
Collapse
|
23
|
Lu G, Tan W, Li G, Yang M, Wang H. Effects of carbendazim on catalase activity and related mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24686-24691. [PMID: 31463747 DOI: 10.1007/s11356-019-06125-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The different techniques like spectroscopy and fluorescence quenching were used to study the interactive effect of carbendazim (CARB) and catalase (CAT) at the molecular level. The results showed that conditions were beneficial to the quenching mechanism at 25.0 °C, pH 7.0, while the binding constant k was 1.92 × 105 L mol-1 and the number of binding site was 1.0385. The thermodynamic parameters indicated that CARB could interact spontaneously with CAT to form a complex mainly by van der Waals' interactions and hydrogen bonds. The interaction mechanism between CARB and CAT was that the effects of CARB on CAT in soil were activated and then restore stability. However, the effects of CARB on simple CAT were activated and then inhibited.
Collapse
Affiliation(s)
- Guangqiu Lu
- College of Chemical Biology and Environment, Yuxi Normal University, Yuxi, 653100, China
| | - Wei Tan
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, China
| | - Guizhen Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, China
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, China
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
24
|
Rai B, Mercurio SD. Environmentally relevant exposures of male mice to carbendazim and thiram cause persistent genotoxicity in male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10629-10641. [PMID: 31940143 DOI: 10.1007/s11356-019-07088-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Carbendazim and thiram are fungicides used in combination to prevent mold destruction of crops. Studies have demonstrated genotoxicity by these agents, but have not used concentrations below their water solubility limits in drinking water to test for persistence of genotoxicity due to chronic exposure. Ten 8-week old male Swiss-Webster mice were exposed to tap water, or nominal concentrations of 20 μM carbendazim, 20 μM thiram or 20 μM of both fungicides for 90 days (total of 40 mice). Five mice from tap water controls, carbendazim, thiram and combination-treated groups (20 mice total) had genotoxicity detected by comet assay of lymphocytes at the termination of the exposure period. The other 20 mice (4 treatment groups) were all switched to tap water and allowed a 45-day recovery period to check for persistence of DNA damage. The damage was compared with commercial control cells exposed to increasingly harsh treatment by etopside. Comet assay (mean % tail DNA + SE) of control mice (9.8 + 0.9) was similar to commercial control (CC0) cells (8.5 + 0.9). Carbendazim, thiram or the combination treatment caused similar mean % tail DNA with 33.0 + 2.9, 30.1 + 3.3 and 29.1 + 1.8, respectively, comparable with commercial cells slightly damaged by etopside (CC1 with 31.4 + 2.9) with no statistical change in water or food intake, body weight or liver or kidney weights. The key result was that a 45-day recovery period had no observable difference in the DNA damage as assessed by DNA % in comet tail with tap water controls and CCO control cells at 7.0 + 0.7 and 9.7 + 1.2 versus 27.5 + 1.9, 29.3 + 2.2 and 32.0 + 1.8, respectively, for carbendazim, thiram and combination treatments. It is of concern that the use of these agents in developing countries with little training or regulation results in water pollution that may cause significant persistent DNA damage in animal or human populations that may not be subject to repair.
Collapse
Affiliation(s)
- Bina Rai
- Department of Biological Sciences, Minnesota State University, Mankato, MN, USA
| | - Steven Don Mercurio
- Department of Biological Sciences, Minnesota State University, Mankato, MN, USA.
| |
Collapse
|
25
|
Huang T, Ding T, Liu D, Li J. Degradation of Carbendazim in Soil: Effect of Sewage Sludge-Derived Biochars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3703-3710. [PMID: 32125839 DOI: 10.1021/acs.jafc.9b07244] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Application of biochar in soils can affect the soil properties and, in turn, the fate of pesticides. Batch experiments were conducted to investigate the effect of sewage sludge-derived biochars on the dissipation of a fungicide carbendazim in soil, and the transformation of carbendazim in soil was also studied. Results showed that the dissipation of carbendazim was fastest in a loamy soil SD with a half-life of 11.0 d among the three kinds of soils tested in this study. A dual effect (both acceleration and inhibition) of sewage sludge-derived biochars on carbendazim degradation in soil was reported. The addition of 10% biochars produced at 700 °C (BC 700) in soil could accelerate the carbendazim degradation, but an inhibitory effect was observed for 10% BC 300 or BC 500. Degradation of carbendazim was significantly inhibited when 0.5 or 5% BC 700 was added in soil but accelerated when the amendment ratio of BC 700 was increased to 10%. Such complex effects of the sewage sludge biochar should be taken into consideration in risk assessment of pesticides and the biochar effects on soil remediation. Eight metabolites of carbendazim were characterized, seven of which were reported in unamended soil for the first time. The metabolic pathways of carbendazim in soil are proposed.
Collapse
Affiliation(s)
- Tuo Huang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Lihe Technology (Hunan) Co., Ltd., Changsha 410205, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dehua Liu
- Lihe Technology (Hunan) Co., Ltd., Changsha 410205, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
26
|
Wang S, Su L, Wang L, Zhang D, Shen G, Ma Y. Colorimetric determination of carbendazim based on the specific recognition of aptamer and the poly-diallyldimethylammonium chloride aggregation of gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117809. [PMID: 31784220 DOI: 10.1016/j.saa.2019.117809] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
This paper proposes the idea of establishing carbendazim (CBZ) colorimetric determination in spiked water samples by specific aptamers of unlabeled carbendazim (CBZ), gold nanoparticles (AuNPs) and cationic polymer poly-diallyldimethylammonium chloride (PDDA). In the absence of CBZ, the CBZ aptamer will react with the cationic polymer PDDA by electrostatic interaction to form a complex structure. Therefore, the gold nanoparticles will remain dispersed due to the lack of PDDA. However, when CBZ is added into the sensory system, the CBZ-specific aptamer can selectively capture CBZ to form a stable complex structure. Due to the consumption of the aptamer, PDDA is unable to interact with the aptamer and begins to induce aggregation of AuNPs, thereby causing the color of the solution to change from red to blue. Colorimetric determination of CBZ based on the specific recognition of aptamer and the PDDA-induced aggregation of AuNPs has a detection limit of 2.2 nM, a linear range (R = 0.9960) from 2.2 to 500 nM. The method has good sensitivity and specificity, and the average recovery of CBZ is 94.9-104.8% in the application of actual water samples. This colorimetric method is simple, time-saving and low requirements for equipment, therefore, it holds great potential for CBZ detection in the environmental water samples.
Collapse
Affiliation(s)
- Song Wang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lantian Su
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lumei Wang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Dongwei Zhang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Guoqing Shen
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yun Ma
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
27
|
Su L, Wang S, Wang L, Yan Z, Yi H, Zhang D, Shen G, Ma Y. Fluorescent aptasensor for carbendazim detection in aqueous samples based on gold nanoparticles quenching Rhodamine B. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117511. [PMID: 31513979 DOI: 10.1016/j.saa.2019.117511] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
This paper proposes a fluorescent aptasensor for the detection of carbendazim (CBZ) in aqueous solution using CBZ-specific aptamer as sensing probe, gold nanoparticles (AuNPs) and Rhodamine B (RhoB) as indicator, respectively. In the absence of CBZ, CBZ aptamer could wrap AuNPs and maintained it dispersed in NaCl solution basically. Contrarily, the aptamer could specifically combine with CBZ and form a stable aptamer-CBZ complex, leaving AuNPs exposed to be aggregated by NaCl solution. The dispersed AuNPs could efficiently quench the fluorescence of RhoB, but those aggregated AuNPs have poor capability to impair the fluorescent indicator. Thus, the concentration of CBZ could be detected quantitatively through the distinction of the fluorescence intensity. This convenient fluorescent assay for CBZ had a wide linear range from 2.33 to 800 nM and a 2.33 nM limit of detection (LOD). Furthermore, it had high selectivity over pesticides, antibiotics, metal ions and other disrupting chemicals. As for application, the method could determine CBZ in water samples with recoveries in the range of 96.3-111.2%. This fluorescent aptasensor possessed great potential application for CBZ detection in actual aquatic environment.
Collapse
Affiliation(s)
- Lantian Su
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Song Wang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lumei Wang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Zhiyu Yan
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Haoyang Yi
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Dongwei Zhang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Guoqing Shen
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yun Ma
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
28
|
Salazar Mercado SA, Maldonado Bayona HA. Evaluation of cytotoxic potential of chlorpyrifos using Lens culinaris Med as efficient bioindicator. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109528. [PMID: 31404724 DOI: 10.1016/j.ecoenv.2019.109528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to evaluate the cytotoxic effect of different concentrations of chlorpyrifos (CPF), using L. culinaris apical cells as a biological indicator. L. culinaris seeds were exposed to different concentrations of chlorpyrifos (0, 1, 3, 5, 7, 8, 10 and 15 mg L-1) and a control solution based on distilled water. Subsequently, root growth was measured during 24, 48 and 72 h. Therefore, the mitotic index (MI) and the number of cellular abnormalities were determined at 72 h. According to the obtained results, a decrease in root size was observed in the concentrations of T5 (8 mg L-1) and T6 (10 mg L-1). On the other hand, it was evidenced that, through all the evaluated concentrations, the inhibition of mitosis in the concentrations of T5 (8 mg L-1), T6 (10 mg L-1) and T7 (15 mg L-1) was greater than 50%. Additionally, a variety of chromosomal abnormalities were reported, such as Micronuclei, sticky chromosomes in anaphase, chromosome disruption, irregular anaphase, nucleus absence, nuclear lesions, chromosomes grouped in metaphase, anaphase bridges, metaphase sticky chromosomes, present in all concentrations evaluated. Consequently, the presence of micronuclei in the concentrations of 8 mg L-1, 10 mg L-1 and 15 mg L-1 indicates that the CPF is a highly cytotoxic substance to L. culinaris. Therefore, L. culinaris is a plant species that offers a feasible experimental model to be implemented in laboratory studies with the purpose to evaluate the cytotoxic effect of pesticides.
Collapse
Affiliation(s)
- Seir Antonio Salazar Mercado
- Department of Biology, Universidad Francisco de Paula Santander. Avenida Gran Colombia No. 12E-96B Colsag. San José de Cúcuta, Colombia.
| | | |
Collapse
|
29
|
Aguiar Júnior CAS, Santos ALRD, Faria AMD. Disposable pipette extraction using a selective sorbent for carbendazim residues in orange juice. Food Chem 2019; 309:125756. [PMID: 31776048 DOI: 10.1016/j.foodchem.2019.125756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/09/2019] [Accepted: 10/19/2019] [Indexed: 10/25/2022]
Abstract
In this work, a selective sorbent for carbendazim was prepared by the thermal immobilization of the poly(glycidoxypropylmethyl-co-dimethylsiloxane), PGDMS, on silica. The lab-made Si(PGDMS) sorbent was physicochemically and morphologically characterized and was used into the pipette tip for the disposable pipette extraction (DPX) of carbendazim residues of orange juice. The DPX method was optimized from a central composite design and validated according to the SANTE/11813/2017 document recommended by the European Union. The proposed method presented recoveries between 93 and 110% with RSD <16% and the limit of quantification below the MRL for carbendazim in citrus. The whole sample preparation process was carried out at less than 3 min, with good accuracy and precision without the need of any cleanup step or electrical equipment, allowing its portability for the extraction of carbendazim residues in orange juice.
Collapse
Affiliation(s)
| | | | - Anizio Marcio de Faria
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, Ituiutaba, MG 38304-402, Brazil.
| |
Collapse
|
30
|
Wani AA, Dar AA, Jan I, Sofi KA, Sofi JA, Dar IH. Dissipation, risk assessment, half‐life period and method validation of carbendazim and triazophos in green pea by high‐performance liquid chromatography. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201800143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ashraf A. Wani
- Research Centre for Residue and Quality AnalysisSher‐e‐Kashmir University of Agricultural Sciences and Technology (SKUAST‐K)Shalimar Campus Srinagar J&K India
| | - Alamgir A. Dar
- Research Centre for Residue and Quality AnalysisSher‐e‐Kashmir University of Agricultural Sciences and Technology (SKUAST‐K)Shalimar Campus Srinagar J&K India
| | - Ishrat Jan
- Research Centre for Residue and Quality AnalysisSher‐e‐Kashmir University of Agricultural Sciences and Technology (SKUAST‐K)Shalimar Campus Srinagar J&K India
| | - Khurshid A. Sofi
- Research Centre for Residue and Quality AnalysisSher‐e‐Kashmir University of Agricultural Sciences and Technology (SKUAST‐K)Shalimar Campus Srinagar J&K India
| | - Javid A. Sofi
- Research Centre for Residue and Quality AnalysisSher‐e‐Kashmir University of Agricultural Sciences and Technology (SKUAST‐K)Shalimar Campus Srinagar J&K India
| | - Irshad H. Dar
- Research Centre for Residue and Quality AnalysisSher‐e‐Kashmir University of Agricultural Sciences and Technology (SKUAST‐K)Shalimar Campus Srinagar J&K India
| |
Collapse
|
31
|
Liu H, Yi X, Bi J, Wang P, Liu D, Zhou Z. The enantioselective environmental behavior and toxicological effects of pyriproxyfen in soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:97-106. [PMID: 30412812 DOI: 10.1016/j.jhazmat.2018.10.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 09/29/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
We synthesized nine pyriproxyfen (PYR) metabolites and developed a chiral residual analysis method for PYR with its metabolites in five soils using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Soil degradation research showed that higher organic matter content and bigger soil particle size were conducive to the degradation of PYR and metabolites. Metabolite A 4'-OH-PYR was mainly found in five soils. PYR and metabolite A performed enantioselective degradation in soil with half-lives ranging from 2.11 d to 9.69 d and 2.80 d to 13.30 d, respectively. The activity of dehydrogenase, sucrase was inhibited and catalase activity was promoted under the disturbance of PYR. Urease was more sensitive to PYR with uncertain influences. Most soil enzymes were not restored to their initial active state after 120 d. The toxicity of metabolites to earthworms was greater than that of the parent compound PYR. This study provides the basic degradation and toxicity data of chiral pesticide PYR and its main metabolites in soil ecosystem, which is of great significance for guiding safe use and comprehensive evaluation of PYR on environmental risk.
Collapse
Affiliation(s)
- Hui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, PR China
| | - Xiaotong Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, PR China
| | - Jiawei Bi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, PR China.
| |
Collapse
|
32
|
Huang L, Wu C, Xie L, Yuan X, Wei X, Huang Q, Chen Y, Lu Y. Silver-Nanocellulose Composite Used as SERS Substrate for Detecting Carbendazim. NANOMATERIALS 2019; 9:nano9030355. [PMID: 30836610 PMCID: PMC6474145 DOI: 10.3390/nano9030355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/02/2019] [Accepted: 02/27/2019] [Indexed: 11/16/2022]
Abstract
Nanocellulose is an abundant green resource that, owing to the larger surface area, length, and diameter of the fibers, can be used as a framework for loading Ag nanoparticles and serve as substrate for surface enhancement Raman scattering (SERS). These properties would cause the hydroxyl groups on the surface to adsorb the Ag ions and reduce them to Ag seed to form a load fulcrum. This paper presents a convenient and environmentally friendly method for the fabrication of silver-nanocellulose composites (NCF-Ag). A commonly used pesticide, carbendazim (CBZ), was used as a SERS probe to evaluate the properties of NCF-Ag. The results showed that NCF-Ag possesses good homogeneity, reproducibility, and stability. Additionally, CBZ was found to have a low limit of detection (LOD), i.e., 1.0 × 10−8 M, which indicates the possibility for trace analysis. Furthermore, it presents good linearity with R2 = 0.98 at 1007 and 1270 cm−1 in the range from 10−4~10−7 M CBZ.
Collapse
Affiliation(s)
- Luqiang Huang
- College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, China.
| | - Changji Wu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| | - Lijuan Xie
- College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, China.
| | - Xue Yuan
- College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, China.
| | - Xinyu Wei
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| | - Qun Huang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou 350002, China.
| | - Youqiang Chen
- College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, China.
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
33
|
Xu X, Chen J, Li B, Tang L. Carbendazim residues in vegetables in China between 2014 and 2016 and a chronic carbendazim exposure risk assessment. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Verma S, Srivastava A. Cyto-genotoxic consequences of carbendazim treatment monitored by cytogenetical analysis using Allium root tip bioassay. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:238. [PMID: 29564638 DOI: 10.1007/s10661-018-6616-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Environmental pollution is one of the major problems of these days. One of the reasons of environmental pollution is the indiscriminate use of agrochemicals in agriculture. Fungicides are being extensively used in agriculture for enhancing crop yield and growth by controlling fungal growth. Fungicide carbendazim is widely applied to soil and seeds of vegetable/cereal crops in India and is effective against a very broad spectrum of fungi. The present study was designed to monitor the cyto-genotoxic effects of carbendazim directly in treated soils by cytogenetical analysis using Allium cepa root tip bioassay. In a pot experiment, fungicide carbendazim was added to soil at the rates of 2.5, 5, 7.5, and 10 mg kg-1 soil and uniform size onion bulb was planted in each pot, and three replicates were maintained for each dose at 1, 7, 15, 30, and 45 days after application and roots from onion bulbs were fixed for cytogenetical analysis. Findings indicate that carbendazim treatment leads to a significant dose and duration-dependent decrease in percent mitotic index with related increase in mitotic inhibition. Statistical analysis showed a significant effect of carbendazim doses and duration of treatment on the percentage relative abnormality rate of A. cepa. Phase indices of our study showed high numbers of cells in prophase as compared to other phases at some doses of treatment. The different types of chromosomal abnormalities observed in our study serve as indicators of genotoxicity of carbendazim and we report for the first time the effect of its application directly in soil using a plant test system.
Collapse
Affiliation(s)
- Sonam Verma
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India.
| |
Collapse
|
35
|
Fatma F, Verma S, Kamal A, Srivastava A. Monitoring of morphotoxic, cytotoxic and genotoxic potential of mancozeb using Allium assay. CHEMOSPHERE 2018; 195:864-870. [PMID: 29273330 DOI: 10.1016/j.chemosphere.2017.12.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/07/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
The present experiment was designed to monitor the morphotoxic, cytotoxic and genotoxic potential of Mancozeb (fungicide) in non-target plants using bulbs of Allium cepa. Mancozeb is classified as a contact fungicide and is registered for use on a variety of crop plants. In the present monitoring, Allium cepa bulbs were exposed to different concentrations of mancozeb viz., 10, 30, 50, 70, 90, 110, 130 and 150 ppm for 24 and 48 h. The potential morphotoxic and cytotoxic effects of mancozeb were examined by determining the average root number, average root length, mitotic index, relative abnormality rate (%) and frequency of abnormalities (%). A progressive significant concentration and time dependent inhibition of the average root number, average root length indicated the morphotoxic nature. The cytotoxic effect was significantly increased for 48 h treatment as compared to 24 h treatment time, by reducing the mitotic index of meristematic cells. The results indicated an indirect genotoxic effect by inducing different types of chromosomal abnormalities, likely sticky, disoriented and fragmented chromosomes. Thus indicating that the investigated fungicide have genotoxic potential due to abnormal DNA condensation and chromosome coiling by spindle inactivation. The observations of cyto and genotoxic effects suggest that the fungicide mancozeb is clastogenic agent. Thus the different concentrations used in the field could be harmful for the end-receptors of food-chain and needs constant monitoring and management for the better development of crop plants.
Collapse
Affiliation(s)
- Firdos Fatma
- Department of Bioengineering, Integral University, Lucknow, India.
| | - Sonam Verma
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow 226007, U.P, India
| | - Aisha Kamal
- Department of Bioengineering, Integral University, Lucknow, India.
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow 226007, U.P, India.
| |
Collapse
|
36
|
Spitta LF, Diegeler S, Baumstark-Khan C, Hellweg CE. An in-vitro approach for water quality determination: activation of NF-κB as marker for cancer-related stress responses induced by anthropogenic pollutants of drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3985-3995. [PMID: 27878482 DOI: 10.1007/s11356-016-7901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Epidemiological studies show that there is a link between urban water pollution and increase in human morbidity and mortality. With the increase in number of new substances arising from the chemical, pharmaceutical, and agricultural industries, there is an urgent need to develop biological test systems for fast evaluation of potential risks to humans and the environmental ecosystems. Here, a combined cellular reporter assay based on the cellular survival and the stress-induced activation of the survival-promoting factor nuclear factor κB (NF-κB) and its use for the detection of cytotoxicity and cancer-related stress responses is presented. A total of 14 chemicals that may be found in trace-amounts in ground water levels are applied and tested with the presented assay. The project is embedded within the joint research project TOX-BOX which aims to develop a harmonized testing strategy for risk management of anthropogenic trace substances in potable water. The assay identified carbendazim as a NF-κB-activating agent in mammalian cells.
Collapse
Affiliation(s)
- Luis F Spitta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany.
| | - Sebastian Diegeler
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany
| | - Christa Baumstark-Khan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany
| | - Christine E Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany
| |
Collapse
|
37
|
Huan Z, Xu Z, Luo J, Xie D. Monitoring and exposure assessment of pesticide residues in cowpea (Vigna unguiculata L. Walp) from five provinces of southern China. Regul Toxicol Pharmacol 2016; 81:260-267. [DOI: 10.1016/j.yrtph.2016.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 02/04/2023]
|
38
|
Comet assay: an essential tool in toxicological research. Arch Toxicol 2016; 90:2315-36. [DOI: 10.1007/s00204-016-1767-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|