1
|
Srivastav AL, Rani L, Sharda P, Patel A, Patel N, Chaudhary VK. Sustainable biochar adsorbents for dye removal from water: present state of art and future directions. ADSORPTION 2024; 30:1791-1804. [DOI: 10.1007/s10450-024-00522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 01/05/2025]
|
2
|
Jothilingam S, Manickam N, Paramasivam R. Kinetic study for removal of cationic hexamethyl pararosaniline chloride dye using phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91292-91299. [PMID: 37474863 DOI: 10.1007/s11356-023-28774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
The present investigation provides a kinetic study for the removal of hexamethyl pararosaniline chloride, a hazardous dye, by phytoremediation using a water plant. It reveals Salvinia molesta has a phytoremediation tendency. The ability of Salvinia molesta to remove crystal violet (CV) dye is investigated with kinetic study in this research. Phytoremediation is done for different concentrations of hexamethyl pararosaniline chloride with varying pH and weight of Salvinia molesta Mitchell. About 88% of hexamethyl pararosaniline chloride has been decolourised from 50 mg L-1 solution at pH of 6 with 4 g of Salvinia molesta Mitchell. The results obtained for hexamethyl pararosaniline chloride removal at pH of 6 are studied for pseudo-first order, pseudo-second order and Elovich kinetics. The resulting curve for removal of hexamethyl pararosaniline chloride indicates that phytoremediation process follows pseudo-second order kinetics with correlation value R2 ≥ 0.985. The Salvinia molesta used at pH 6 has been reused and the decolourisation has been achieved at about 84% for 50 mg L-1 solution of CV dye. The FTIR results reveal the phytoextraction of CV in the roots by interaction of functional groups. From the experimental results, Salvinia molesta Mitchell can be used to treat textile wastewater and wet land.
Collapse
Affiliation(s)
- Sivapriya Jothilingam
- Department of Chemistry, St. Joseph's Institute of Technology, 600 119, Chennai, India.
| | - Naveenkumar Manickam
- Department of Civil Engineering, Easwari Engineering College, Chennai, 600 089, India
| | - Ravichandran Paramasivam
- Department of Chemistry, St. Joseph's Institute of Technology, 600 119, Chennai, India
- Department of Chemical Engineering, St.Joseph's Institute of Technology, 600 119, Chennai, India
| |
Collapse
|
3
|
Kaur N, Kaushal J, Mahajan P. Degradation of Diazo Dye and its Kinetic and Equilibrium Studies Using the Potential of Bryophyllum fedtschenkoiin Aqueous System. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:98. [PMID: 37219700 DOI: 10.1007/s00128-023-03735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Phytoremediation is emerging as an eco-friendly, innovative, and cost-effective approach for the removal of textile dyes from wastewater from the previous decade. The current research work aims to explore the potential of a terrestrial ornamental plant, Bryophyllum fedtschenkoi (Raym.-Hamet & H. Perrier) Lauz.-March. for remediating the diazo dye as Congo red (CR) in aqueous form. B. fedtschenkoi was grown hydroponically before treatment with 100 mL of a different concentration of CR dye solution. A maximum decolorization potential of 90% was obtained for 10 mg L- 1 after 40 h of equilibrium. The kinetic studies have revealed that the experimental results for the removal of CR dye using the B .fedtschenkoi plant are suitable for Pseudo-first order with R2 ≥ 0.92, while the equilibrium studies agreed with the Freundlich adsorption isotherm with R2 ≥ 0.909. The dye removal by the plant was confirmed with the help of analytical techniques Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). Gas Chromatography-Mass Spectrometry (GC-MS) and High-Performance Liquid Chromatography (HPLC) were also performed on dye-degraded metabolites to explore the mechanism of dye degradation.
Collapse
Affiliation(s)
- Navjeet Kaur
- Center for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Jyotsna Kaushal
- Center for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Pooja Mahajan
- Center for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
4
|
Potential of low-cost TiO 2-PVC composite in photoelectrocatalytic degradation of reactive orange 16 under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47144-47157. [PMID: 36732455 DOI: 10.1007/s11356-023-25623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
In recent years, previously reported studies revealed a high efficiency of pollutant degradation by coupling photocatalysis and electrochemical processes (PECs) using titanium dioxide (TiO2) photoelectrode rather than using photocatalysis or electrocatalysis alone. However, some of the TiO2 photoelectrodes that have been reported were not cost-effective. This is due to the use of expensive chemicals and certain expensive equipment in the fabrication process, other than involving complicated preparation steps. Therefore, this study is aimed at investigating the PEC performance and stability of low-cost TiO2-polyvinyl chloride (TiO2-PVC) composite photoelectrode for Reactive Orange 16 (RO16) degradation. The materials characterisation using the ATR-FTIR, XRD and UV-Vis DRS proved that TiO2 and TiO2-PVC were successfully synthesised. The micrograph obtained for the surface characterisation using the FESEM showed that the smooth surface of freshly prepared photoelectrodes turned slightly rough with tiny pits formation after five continuous PEC processes. Nevertheless, the photoelectrode retained its original shape in good condition for further PEC processes. By PEC process, the fabricated photoelectrode showed 99.4% and 51.1% of colour and total organic carbon (TOC) removal, respectively, at optimised PEC parameters (1.0 mol L-1 NaCl concentration, 10 V applied voltage, 120 min degradation time and initial pH 2). Moreover, the fabricated photoelectrode demonstrated sufficient reusability potential (~ 96.3%) after five cycles of PEC processes. In summary, a low-cost and stable composite photoelectrode with high efficiency in RO16 degradation was successfully fabricated and could be potentially applied for other emerging pollutants degradation via the PEC degradation technique.
Collapse
|
5
|
Biju LM, K VG, Senthil Kumar P, Kavitha R, Rajagopal R, Rangasamy G. Application of Salvinia sps. in remediation of reactive mixed azo dyes and Cr (VI) - Its pathway elucidation. ENVIRONMENTAL RESEARCH 2023; 216:114635. [PMID: 36309215 DOI: 10.1016/j.envres.2022.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The emerging industrialization has resulted in the rapid growth of textile industries across the globe. The presence of xenobiotic pollutants in textile wastewater threatens the ecosystem. Applying different microbes (bacteria, fungi & algae) has paved the way for phytoremediation - the eco-friendly, cost-effective method. The present study focuses on the phytoremediation of reactive dyes - Reactive red, Reactive Brown & Reactive Black and Cr (VI) in synthetic textile wastewater using Salvinia sps. The mixed azo dyes of each 100 mg/L showed decolourization of 75 ± 0.5% and 82 ± 0.5% of removal of 20 mg/L of Cr (VI) after eight days of incubation in a phytoreactor setup. Chlorophyll analysis revealed the gradual decrease in the photosynthetic pigments during the remediation. The degraded metabolites were analyzed using FT-IR and showed the presence of aromatic amines on day zero, which were converted to aliphatic amines on day four. The GC-MS analysis revealed the disruption of -NN- bond, rupture of -CN- bond, scission of -N-N-bond, and loss of -SO3H from the Reactive Black dye leading to the formation of an intermediate p-Hydroxy phenylhydrazinyl. The rupture of Reactive red dye resulted in the formation of p-Hydrazinyl toluene sulphonic acid, Naphthyl amine -3,6-disulphonic acid and 8-Hydroxy Naphthyl amine -3,6-disulphonic acid. Decarboxylation, desulphonation, deoxygenation and deamination of Reactive Brown dye showed the presence of different metabolites and metabolic pathways were proposed for the reactive azo dyes which were phytoremediated.
Collapse
Affiliation(s)
- Leena Merlin Biju
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India; Department of Microbiology, Kumararani Meena Muthiah College of Arts & Science, India
| | - Veena Gayathri K
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - R Kavitha
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, India; Department of Chemistry, Madras Christian College, Chennai, India
| | - Revathy Rajagopal
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, India
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
6
|
Kaushal J, Mahajan P, Kaur N. A review on application of phytoremediation technique for eradication of synthetic dyes by using ornamental plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67970-67989. [PMID: 34636019 DOI: 10.1007/s11356-021-16672-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation emerges as an innovative and eco-friendly technique to remediate textile dyes with the use of various categories of plants. In recent years, ornamental plants emerge as more attractive and effective substitute in comparison to edible plants for phytoremediation. Regardless of aesthetic value, some ornamental plants can be grown to remediate the sites contaminated with dyes, heavy metals, pesticides, or other organic compounds. In this review, we focus on pioneer research on synthetic dye removal using ornamental plants and evaluate the phytoremediation capability of ornamental plants for treatment of textile effluent. This paper also emphasized specific ornamental plants having high accumulation and tolerance ability for removal of dyes. The mechanisms explored for the phytoremediation of dyes by ornamental plants have also been explained. This review will also be helpful for researchers for exploring more new ornamental plants in phytoremediation technique.
Collapse
Affiliation(s)
- Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Pooja Mahajan
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Navjeet Kaur
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|