1
|
Müller-Wirtz LM, O'Gara B, Gama de Abreu M, Schultz MJ, Beitler JR, Jerath A, Meiser A. Volatile anesthetics for lung- and diaphragm-protective sedation. Crit Care 2024; 28:269. [PMID: 39217380 PMCID: PMC11366159 DOI: 10.1186/s13054-024-05049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
This review explores the complex interactions between sedation and invasive ventilation and examines the potential of volatile anesthetics for lung- and diaphragm-protective sedation. In the early stages of invasive ventilation, many critically ill patients experience insufficient respiratory drive and effort, leading to compromised diaphragm function. Compared with common intravenous agents, inhaled sedation with volatile anesthetics better preserves respiratory drive, potentially helping to maintain diaphragm function during prolonged periods of invasive ventilation. In turn, higher concentrations of volatile anesthetics reduce the size of spontaneously generated tidal volumes, potentially reducing lung stress and strain and with that the risk of self-inflicted lung injury. Taken together, inhaled sedation may allow titration of respiratory drive to maintain inspiratory efforts within lung- and diaphragm-protective ranges. Particularly in patients who are expected to require prolonged invasive ventilation, in whom the restoration of adequate but safe inspiratory effort is crucial for successful weaning, inhaled sedation represents an attractive option for lung- and diaphragm-protective sedation. A technical limitation is ventilatory dead space introduced by volatile anesthetic reflectors, although this impact is minimal and comparable to ventilation with heat and moisture exchangers. Further studies are imperative for a comprehensive understanding of the specific effects of inhaled sedation on respiratory drive and effort and, ultimately, how this translates into patient-centered outcomes in critically ill patients.
Collapse
Affiliation(s)
- Lukas M Müller-Wirtz
- Department of Anesthesiology, Outcomes Research Consortium, Cleveland Clinic, Cleveland, OH, USA
- Department of Anesthesiology, Intensive Care and Pain Therapy, Faculty of Medicine, Saarland University Medical Center and Saarland University, Homburg, Saarland, Germany
- Department of Anesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Brian O'Gara
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Marcelo Gama de Abreu
- Department of Anesthesiology, Outcomes Research Consortium, Cleveland Clinic, Cleveland, OH, USA
- Division of Intensive Care and Resuscitation, Department of Anesthesiology, Cleveland Clinic, Cleveland, OH, USA
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Cleveland Clinic, Cleveland, OH, USA
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Anesthesiology, Intensive Care Medicine and Pain Medicine, Division of Cardiac Thoracic Vascular Anesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Jeremy R Beitler
- Columbia Respiratory Critical Care Trials Group, New York-Presbyterian Hospital and Columbia University, New York, NY, USA
| | - Angela Jerath
- Department of Anesthesiology and Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Andreas Meiser
- Department of Anesthesiology, Intensive Care and Pain Therapy, Faculty of Medicine, Saarland University Medical Center and Saarland University, Homburg, Saarland, Germany.
| |
Collapse
|
2
|
Ille A, Nilsson C, Sjödin C, Daham S, Persson P, Svensson CJ. Airway pressure release ventilation (APRV) versus pressure support ventilation (PSV)-A prospective intervention trial comparing haemodynamic parameters in intensive care patients. Acta Anaesthesiol Scand 2024; 68:932-939. [PMID: 38764089 DOI: 10.1111/aas.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND AND AIM Assisted mechanical ventilation may alter the pressure profile in the thorax compared to normal breathing, which can affect the blood flow to and from the heart. Studies suggest that in patients with severe lung disease, airway pressure release ventilation (APRV) may be haemodynamically beneficial compared to other ventilator settings. The primary aim of this study was to investigate if APRV affects cardiac index in intubated intensive care patients without severe lung disease when compared to pressure support ventilation (PSV). The secondary aim comprised potential changes in other haemodynamic and ventilatory parameters. METHODS Twenty patients were enrolled in the intensive care unit (ICU) at Sahlgrenska University Hospital. Eligible patients met the inclusion criteria; 18 years of age or above, intubated and mechanically ventilated, triggering and stable on PSV mode, with indwelling haemodynamic monitoring via a pulse-induced continuous cardiac output (PiCCO) catheter. The study protocol started with a 30-min interval on PSV mode, followed by a 30-min interval on APRV mode, and finally a 30-min interval back on PSV mode. At the end of each interval, PiCCO outputs, ventilator outputs, arterial and venous blood gas analyses, heart rate and central venous pressure were recorded and compared between modes. RESULTS There was no significant difference in cardiac index (3.42 vs. 3.39 L/min/m2) between PSV and APRV, but a significant increase in central venous pressure (+1.0 mmHg, p = .027). Furthermore, we found a significant reduction in peak airway pressure (-3.16 cmH2O, p < .01) and an increase in mean airway pressure (+2.1 cmH2O, p < .01). No statistically significant change was found in oxygenation index (partial pressure of O2 [pO2]/fraction of inspired oxygen) nor in other secondary outcomes when comparing PSV and APRV. There was no significant association between global end-diastolic volume index and cardiac index (R2 = 0.0089) or central venous pressure (R2 = 0.278). All parameters returned to baseline after switching the ventilator mode back to PSV. CONCLUSION We could not detect any changes in cardiac index in ICU patients without severe lung disease during APRV compared to PSV mode, despite lower peak airway pressure and increased mean airway pressure.
Collapse
Affiliation(s)
- Alexandru Ille
- Department of Anaesthesiology and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Carl Nilsson
- Department of Anaesthesiology and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Carl Sjödin
- Department of Anaesthesiology and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Shanay Daham
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Per Persson
- Department of Anaesthesiology and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carl Johan Svensson
- Department of Anaesthesiology and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Ma A, Wang B, Cheng J, Dong M, Li Y, Wei C, Zhou Y, Xue Y, Gao H, Zhao L, Li S, Qin Y, Zhang M, Wu Q, Yang J, Kang Y. Effects of airway pressure release ventilation on multi-organ injuries in severe acute respiratory distress syndrome pig models. BMC Pulm Med 2022; 22:468. [PMID: 36476475 PMCID: PMC9730639 DOI: 10.1186/s12890-022-02238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Extra-pulmonary multi-organ failure in patients with severe acute respiratory distress syndrome (ARDS) is a major cause of high mortality. Our purpose is to assess whether airway pressure release ventilation (APRV) causes more multi-organ damage than low tidal volume ventilation (LTV). METHODS Twenty one pigs were randomized into control group (n = 3), ARDS group (n = 3), LTV group (n = 8) and APRV group (n = 7). Severe ARDS model was induced by repeated bronchial saline lavages. Pigs were ventilated and monitored continuously for 48 h. Respiratory data, hemodynamic data, serum inflammatory cytokines were collected throughout the study. Histological injury and apoptosis were assessed by two pathologists. RESULTS After severe ARDS modeling, pigs in ARDS, LTV and APRV groups experienced significant hypoxemia and reduced lung static compliance (Cstat). Oxygenation recovered progressively after 16 h mechanical ventilation (MV) in LTV and APRV group. The results of the repeated measures ANOVA showed no statistical difference in the PaO2/FiO2 ratio between the APRV and LTV groups (p = 0.54). The Cstat showed a considerable improvement in APRV group with statistical significance (p < 0.01), which was significantly higher than in the LTV group since 16 h (p = 0.04). Histological injury scores showed a significantly lower injury score in the middle and lower lobes of the right lung in the APRV group compared to LTV (pmiddle = 0.04, plower = 0.01), and no significant increase in injury scores for extra-pulmonary organs, including kidney (p = 0.10), small intestine (p = 1.0), liver (p = 0.14, p = 0.13) and heart (p = 0.20). There were no significant differences in serum inflammatory cytokines between the two groups. CONCLUSION In conclusion, in the experimental pig models of severe ARDS induced by repetitive saline lavage, APRV improved lung compliance with reduced lung injury of middle and lower lobes, and did not demonstrate more extra-pulmonary organ injuries as compared with LTV.
Collapse
Affiliation(s)
- Aijia Ma
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Bo Wang
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Jiangli Cheng
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Meiling Dong
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Yang Li
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Canzheng Wei
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Yongfang Zhou
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Yang Xue
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Hui Gao
- grid.412901.f0000 0004 1770 1022Department of Nursing, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Lican Zhao
- grid.412901.f0000 0004 1770 1022Department of Nursing, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Siyu Li
- grid.412901.f0000 0004 1770 1022Department of Nursing, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Yiwei Qin
- grid.414880.1Department of Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province China
| | - Mengni Zhang
- grid.412901.f0000 0004 1770 1022Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan Province China
| | - Qin Wu
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Jing Yang
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| | - Yan Kang
- grid.412901.f0000 0004 1770 1022Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan Province China
| |
Collapse
|
4
|
Comparison of Airway Pressure Release Ventilation to High-Frequency Oscillatory Ventilation in Neonates with Refractory Respiratory Failure. Int J Pediatr 2022; 2022:7864280. [PMID: 35546962 PMCID: PMC9085362 DOI: 10.1155/2022/7864280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 11/22/2022] Open
Abstract
Background Airway pressure release ventilation (APRV) is a relatively new mode of ventilation in neonates. We hypothesize that APRV is an effective rescue mode in infants failing conventional ventilation and it is comparable in survival rates to rescue with high-frequency oscillatory ventilation (HFOV). Methods This is a 6-year retrospective cohort study of infants that failed synchronized intermittent mandatory ventilation (SIMV) and were rescued with either APRV or HFOV. For comparison, we divided infants into two groups (28-37 and >37 weeks) based on their corrected gestational age (CGA) at failure of SIMV. Results Ninety infants were included in the study. Infants rescued with APRV (n = 46) had similar survival rates to those rescued with HFOV (n = 44)—28-37 weeks CGA (APRV 78% vs. HFOV 84%, p = 0.68) and >37 weeks CGA (APRV 76% vs. HFOV 72%, p = 0.74). Use of APRV was not associated with an increase in pneumothorax (APRV 0% and HFOV 10%, p = 0.31, in 28-37 weeks CGA, and APRV 0% and HFOV 4%, p = 0.22, in >37 weeks CGA). Conclusion APRV can be effectively used to rescue infants with refractory respiratory failure on SIMV. When compared to HFOV, rescue with APRV is not associated with an increase in mortality or pneumothorax.
Collapse
|
5
|
Cheng J, Ma A, Dong M, Zhou Y, Wang B, Xue Y, Wang P, Yang J, Kang Y. Does airway pressure release ventilation offer new hope for treating acute respiratory distress syndrome? JOURNAL OF INTENSIVE MEDICINE 2022; 2:241-248. [PMID: 36785647 PMCID: PMC8958099 DOI: 10.1016/j.jointm.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023]
Abstract
Mechanical ventilation (MV) is an essential life support method for patients with acute respiratory distress syndrome (ARDS), which is one of the most common critical illnesses with high mortality in the intensive care unit (ICU). A lung-protective ventilation strategy based on low tidal volume (LTV) has been recommended since a few years; however, as this did not result in a significant decrease of ARDS-related mortality, a more optimal ventilation mode was required. Airway pressure release ventilation (APRV) is an old method defined as a continuous positive airway pressure (CPAP) with a brief intermittent release phase based on the open lung concept; it also perfectly fits the ARDS treatment principle. Despite this, APRV has not been widely used in the past, rather only as a rescue measure for ARDS patients who are difficult to oxygenate. Over recent years, with an increased understanding of the pathophysiology of ARDS, APRV has been reproposed to improve patient prognosis. Nevertheless, this mode is still not routinely used in ARDS patients given its vague definition and complexity. Consequently, in this paper, we summarize the studies that used APRV in ARDS, including adults, children, and animals, to illustrate the settings of parameters, effectiveness in the population, safety (especially in children), incidence, and mechanism of ventilator-induced lung injury (VILI) and effects on extrapulmonary organs. Finally, we found that APRV is likely associated with improvement in ARDS outcomes, and does not increase injury to the lungs and other organs, thereby indicating that personalized APRV settings may be the new hope for ARDS treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Yang
- Corresponding authors: Yan Kang and Jing Yang, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yan Kang
- Corresponding authors: Yan Kang and Jing Yang, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
6
|
Müller‐Wirtz LM, Behne F, Kermad A, Wagenpfeil G, Schroeder M, Sessler DI, Volk T, Meiser A. Isoflurane promotes early spontaneous breathing in ventilated intensive care patients: A post hoc subgroup analysis of a randomized trial. Acta Anaesthesiol Scand 2022; 66:354-364. [PMID: 34870852 DOI: 10.1111/aas.14010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Spontaneous breathing is desirable in most ventilated patients. We therefore studied the influence of isoflurane versus propofol sedation on early spontaneous breathing in ventilated surgical intensive care patients and evaluated potential mediation by opioids and arterial carbon dioxide during the first 20 h of study sedation. METHODS We included a single-center subgroup of 66 patients, who participated in a large multi-center trial assessing efficacy and safety of isoflurane sedation, with 33 patients each randomized to isoflurane or propofol sedation. Both sedatives were titrated to a sedation depth of -4 to -1 on the Richmond Agitation Sedation Scale. The primary outcome was the fraction of time during which patients breathed spontaneously. RESULTS Baseline characteristics of isoflurane and propofol-sedated patients were well balanced. There were no substantive differences in management or treatment aside from sedation, and isoflurane and propofol provided nearly identical sedation depths. The mean fraction of time spent spontaneously breathing was 82% [95% CI: 69, 90] in patients sedated with isoflurane compared to 35% [95% CI: 22, 51] in those assigned to propofol: median difference: 61% [95% CI: 14, 89], p < .001. After adjustments for sufentanil dose and arterial carbon dioxide partial pressure, patients sedated with isoflurane were twice as likely to breathe spontaneously than those sedated with propofol: adjusted risk ratio: 2.2 [95%CI: 1.4, 3.3], p < .001. CONCLUSIONS Isoflurane compared to propofol sedation promotes early spontaneous breathing in deeply sedated ventilated intensive care patients. The benefit appears to be a direct effect isoflurane rather than being mediated by opioids or arterial carbon dioxide.
Collapse
Affiliation(s)
- Lukas M. Müller‐Wirtz
- Department of Anaesthesiology Intensive Care and Pain Therapy Saarland University Medical Center Saarland University Faculty of Medicine Homburg Germany
- Outcomes Research Consortium Cleveland Ohio USA
| | - Florian Behne
- Department of Anaesthesiology Intensive Care and Pain Therapy Saarland University Medical Center Saarland University Faculty of Medicine Homburg Germany
| | - Azzeddine Kermad
- Department of Anaesthesiology Intensive Care and Pain Therapy Saarland University Medical Center Saarland University Faculty of Medicine Homburg Germany
| | - Gudrun Wagenpfeil
- Institute for Medical Biometry Epidemiology and Medical Informatics (IMBEI) Saarland University Faculty of Medicine Homburg Germany
| | - Matthias Schroeder
- Department of Anaesthesiology Intensive Care and Pain Therapy Saarland University Medical Center Saarland University Faculty of Medicine Homburg Germany
| | - Daniel I. Sessler
- Outcomes Research Consortium Cleveland Ohio USA
- Department of Outcomes Research Anesthesiology Institute Cleveland Clinic Cleveland Ohio USA
| | - Thomas Volk
- Department of Anaesthesiology Intensive Care and Pain Therapy Saarland University Medical Center Saarland University Faculty of Medicine Homburg Germany
- Outcomes Research Consortium Cleveland Ohio USA
| | - Andreas Meiser
- Department of Anaesthesiology Intensive Care and Pain Therapy Saarland University Medical Center Saarland University Faculty of Medicine Homburg Germany
| |
Collapse
|
7
|
Miller AG, Bartle RM, Feldman A, Mallory P, Reyes E, Scott B, Rotta AT. A narrative review of advanced ventilator modes in the pediatric intensive care unit. Transl Pediatr 2021; 10:2700-2719. [PMID: 34765495 PMCID: PMC8578787 DOI: 10.21037/tp-20-332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/26/2020] [Indexed: 01/29/2023] Open
Abstract
Respiratory failure is a common reason for pediatric intensive care unit admission. The vast majority of children requiring mechanical ventilation can be supported with conventional mechanical ventilation (CMV) but certain cases with refractory hypoxemia or hypercapnia may require more advanced modes of ventilation. This paper discusses what we have learned about the use of advanced ventilator modes [e.g., high-frequency oscillatory ventilation (HFOV), high-frequency percussive ventilation (HFPV), high-frequency jet ventilation (HFJV) airway pressure release ventilation (APRV), and neurally adjusted ventilatory assist (NAVA)] from clinical, animal, and bench studies. The evidence supporting advanced ventilator modes is weak and consists of largely of single center case series, although a few RCTs have been performed. Animal and bench models illustrate the complexities of different modes and the challenges of applying these clinically. Some modes are proprietary to certain ventilators, are expensive, or may only be available at well-resourced centers. Future efforts should include large, multicenter observational, interventional, or adaptive design trials of different rescue modes (e.g., PROSpect trial), evaluate their use during ECMO, and should incorporate assessments through volumetric capnography, electric impedance tomography, and transpulmonary pressure measurements, along with precise reporting of ventilator parameters and physiologic variables.
Collapse
Affiliation(s)
- Andrew G Miller
- Duke University Medical Center, Durham, NC, USA.,Respiratory Care Services, Duke University Medical Center, Durham, NC, USA
| | - Renee M Bartle
- Duke University Medical Center, Durham, NC, USA.,Respiratory Care Services, Duke University Medical Center, Durham, NC, USA
| | - Alexandra Feldman
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Palen Mallory
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Edith Reyes
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Briana Scott
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Alexandre T Rotta
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
8
|
Garg R. Lung Protective Ventilation in Brain-Injured Patients: Low Tidal Volumes or Airway Pressure Release Ventilation? JOURNAL OF NEUROANAESTHESIOLOGY AND CRITICAL CARE 2020. [DOI: 10.1055/s-0040-1716800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractThe optimal mode of mechanical ventilation for lung protection is unknown in brain-injured patients as this population is excluded from large studies of lung protective mechanical ventilation. Survey results suggest that low tidal volume (LTV) ventilation is the favored mode likely due to the success of LTV in other patient populations. Airway pressure release ventilation (APRV) is an alternative mode of mechanical ventilation that may offer several benefits over LTV in this patient population. APRV is an inverse-ratio, pressure-controlled mode of mechanical ventilation that utilizes a higher mean airway pressure compared with LTV. This narrative review compares both modes of mechanical ventilation and their consequences in brain-injured patients. Fears that APRV may raise intracranial pressure by virtue of a higher mean airway pressure are not substantiated by the available evidence. Primarily by virtue of spontaneous breathing, APRV often results in improvement in systemic hemodynamics and thereby improvement in cerebral perfusion pressure. Compared with LTV, sedation requirements are lessened by APRV allowing for more accurate neuromonitoring. APRV also uses an open loop system supporting clearance of secretions throughout the respiratory cycle. Additionally, APRV avoids hypercapnic acidosis and oxygen toxicity that may be especially deleterious to the injured brain. Although high-level evidence is lacking that one mode of mechanical ventilation is superior to another in brain-injured patients, several aspects of APRV make it an appealing mode for select brain-injured patients.
Collapse
Affiliation(s)
- Ravi Garg
- Division of Neurocritical Care, Department of Neurology, Loyola University Medical Center, Maywood, Illinois, United States
| |
Collapse
|
9
|
Mallory P, Cheifetz I. A comprehensive review of the use and understanding of airway pressure release ventilation. Expert Rev Respir Med 2020; 14:307-315. [PMID: 31869259 DOI: 10.1080/17476348.2020.1708719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Airway pressure release ventilation (APRV) is a mode of ventilation typically utilized as a rescue or alternative mode for patients with acute respiratory distress syndrome (ARDS) and hypoxemia that is refractory to conventional mechanical ventilation. APRV's indication and efficacy continue to remain unclear given lack of consensus amongst practitioners, inconsistent methodology for its use, and scarcity of convincing evidence.Areas covered: This review discusses the history of APRV, how APRV works, rationales for its use, and its theoretical advantages and disadvantages. This is followed by a review of current available literature examining APRV's use in the intensive care unit, with further focus on its use in the pediatric intensive care unit.Expert opinion: APRV is a ventilation mode with theoretical risks and benefits. Appropriate study of APRV's clinical efficacy is difficult given a heterogeneous patient population and widely variable use of APRV between centers. Despite a paucity of definitive evidence in support of either mode, it is possible that the use of APRV will begin to outpace the use of high-frequency oscillatory ventilation (HFOV) for the management of refractory hypoxemia as more attention is paid to benefits of spontaneous breathing and minimizing sedation. Furthermore, APRV's role during ECMO deserves further investigation.
Collapse
Affiliation(s)
- Palen Mallory
- Division of Pediatric Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ira Cheifetz
- Division of Pediatric Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
10
|
Kollisch-Singule M, Andrews P, Satalin J, Gatto LA, Nieman GF, Habashi NM. The time-controlled adaptive ventilation protocol: mechanistic approach to reducing ventilator-induced lung injury. Eur Respir Rev 2019; 28:28/152/180126. [PMID: 30996041 DOI: 10.1183/16000617.0126-2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/16/2019] [Indexed: 11/05/2022] Open
Abstract
Airway pressure release ventilation (APRV) is a ventilator mode that has previously been considered a rescue mode, but has gained acceptance as a primary mode of ventilation. In clinical series and experimental animal models of extrapulmonary acute respiratory distress syndrome (ARDS), the early application of APRV was able to prevent the development of ARDS. Recent experimental evidence has suggested mechanisms by which APRV, using the time-controlled adaptive ventilation (TCAV) protocol, may reduce lung injury, including: 1) an improvement in alveolar recruitment and homogeneity; 2) reduction in alveolar and alveolar duct micro-strain and stress-risers; 3) reduction in alveolar tidal volumes; and 4) recruitment of the chest wall by combating increased intra-abdominal pressure. This review examines these studies and discusses our current understanding of the pleiotropic mechanisms by which TCAV protects the lung. APRV set according to the TCAV protocol has been misunderstood and this review serves to highlight the various protective physiological and mechanical effects it has on the lung, so that its clinical application may be broadened.
Collapse
Affiliation(s)
| | - Penny Andrews
- Dept of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Satalin
- Dept of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Louis A Gatto
- Dept of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA.,Dept of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| | - Gary F Nieman
- Dept of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Nader M Habashi
- Dept of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Neurally adjusted ventilatory assist for children on veno-venous ECMO. J Artif Organs 2019; 22:118-125. [DOI: 10.1007/s10047-018-01087-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/24/2018] [Indexed: 01/25/2023]
|
12
|
Zhang Z, Gu WJ, Chen K, Ni H. Mechanical Ventilation during Extracorporeal Membrane Oxygenation in Patients with Acute Severe Respiratory Failure. Can Respir J 2017; 2017:1783857. [PMID: 28127231 PMCID: PMC5239989 DOI: 10.1155/2017/1783857] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/28/2016] [Accepted: 12/18/2016] [Indexed: 02/07/2023] Open
Abstract
Conventionally, a substantial number of patients with acute respiratory failure require mechanical ventilation (MV) to avert catastrophe of hypoxemia and hypercapnia. However, mechanical ventilation per se can cause lung injury, accelerating the disease progression. Extracorporeal membrane oxygenation (ECMO) provides an alternative to rescue patients with severe respiratory failure that conventional mechanical ventilation fails to maintain adequate gas exchange. The physiology behind ECMO and its interaction with MV were reviewed. Next, we discussed the timing of ECMO initiation based on the risks and benefits of ECMO. During the running of ECMO, the protective ventilation strategy can be employed without worrying about catastrophic hypoxemia and carbon dioxide retention. There is a large body of evidence showing that protective ventilation with low tidal volume, high positive end-expiratory pressure, and prone positioning can provide benefits on mortality outcome. More recently, there is an increasing popularity on the use of awake and spontaneous breathing for patients undergoing ECMO, which is thought to be beneficial in terms of rehabilitation.
Collapse
Affiliation(s)
- Zhongheng Zhang
- 1Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- *Zhongheng Zhang:
| | - Wan-Jie Gu
- 2Department of Anesthesiology, Nanjing Drum Tower Hospital, Medical College of Nanjing University, Nanjing 210008, China
| | - Kun Chen
- 3Department of Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Zhejiang, China
| | - Hongying Ni
- 3Department of Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Zhejiang, China
| |
Collapse
|
13
|
Control of Respiratory Drive and Effort in Extracorporeal Membrane Oxygenation Patients Recovering from Severe Acute Respiratory Distress Syndrome. Anesthesiology 2016; 125:159-67. [DOI: 10.1097/aln.0000000000001103] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background
The amount of extracorporeal carbon dioxide removal may influence respiratory drive in acute respiratory distress syndrome (ARDS) patients undergoing extracorporeal membrane oxygenation (ECMO). The authors evaluated the effects of different levels of extracorporeal carbon dioxide removal in patients recovering from severe ARDS undergoing pressure support ventilation (PSV) and neurally adjusted ventilatory assist (NAVA).
Methods
The authors conducted a prospective, randomized, crossover study on eight spontaneously breathing ARDS patients undergoing venovenous ECMO since 28 ± 20 days. To modulate carbon dioxide extraction, ECMO gas flow (GF) was decreased from baseline resting protective conditions (i.e., GF100%, set to obtain pressure generated in the first 100 ms of inspiration against an occluded airway less than 2 cm H2O, respiratory rate less than or equal to 25 bpm, tidal volume less than 6 ml/kg, and peak airway pressure less than 25 cm H2O) to GF50%-GF25%-GF0% during both PSV and NAVA (random order for ventilation mode). Continuous recordings of airway pressure and flow and esophageal pressure were obtained and analyzed during all study phases.
Results
At higher levels of extracorporeal carbon dioxide extraction, pressure generated in the first 100 ms of inspiration against an occluded airway decreased from 2.8 ± 2.7 cm H2O (PSV, GF0%) and 3.0 ± 2.1 cm H2O (NAVA, GF0%) to 0.9 ± 0.5 cm H2O (PSV, GF100%) and 1.0 ± 0.8 cm H2O (NAVA, GF100%; P < 0.001) and patients’ inspiratory muscle pressure passed from 8.5 ± 6.3 and 6.5 ± 5.5 cm H2O to 4.5 ± 3.1 and 4.2 ± 3.7 cm H2O (P < 0.001). In time, decreased inspiratory drive and effort determined by higher carbon dioxide extraction led to reduction of tidal volume from 6.6 ± 0.9 and 7.5 ± 1.2 ml/kg to 4.9 ± 0.8 and 5.3 ± 1.3 ml/kg (P < 0.001) and of peak airway pressure from 21 ± 3 and 25 ± 4 cm H2O to 21 ± 3 and 21 ± 5 cm H2O (P < 0.001). Finally, transpulmonary pressure linearly decreased when the amount of carbon dioxide extracted by ECMO increased (R2 = 0.823, P < 0.001).
Conclusions
In patients recovering from ARDS undergoing ECMO, the amount of carbon dioxide removed by the artificial lung may influence spontaneous breathing. The effects of carbon dioxide removal on spontaneous breathing during the earlier acute phases of ARDS remain to be elucidated.
Collapse
|
14
|
Jain SV, Kollisch-Singule M, Sadowitz B, Dombert L, Satalin J, Andrews P, Gatto LA, Nieman GF, Habashi NM. The 30-year evolution of airway pressure release ventilation (APRV). Intensive Care Med Exp 2016; 4:11. [PMID: 27207149 PMCID: PMC4875584 DOI: 10.1186/s40635-016-0085-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023] Open
Abstract
Airway pressure release ventilation (APRV) was first described in 1987 and defined as continuous positive airway pressure (CPAP) with a brief release while allowing the patient to spontaneously breathe throughout the respiratory cycle. The current understanding of the optimal strategy to minimize ventilator-induced lung injury is to "open the lung and keep it open". APRV should be ideal for this strategy with the prolonged CPAP duration recruiting the lung and the minimal release duration preventing lung collapse. However, APRV is inconsistently defined with significant variation in the settings used in experimental studies and in clinical practice. The goal of this review was to analyze the published literature and determine APRV efficacy as a lung-protective strategy. We reviewed all original articles in which the authors stated that APRV was used. The primary analysis was to correlate APRV settings with physiologic and clinical outcomes. Results showed that there was tremendous variation in settings that were all defined as APRV, particularly CPAP and release phase duration and the parameters used to guide these settings. Thus, it was impossible to assess efficacy of a single strategy since almost none of the APRV settings were identical. Therefore, we divided all APRV studies divided into two basic categories: (1) fixed-setting APRV (F-APRV) in which the release phase is set and left constant; and (2) personalized-APRV (P-APRV) in which the release phase is set based on changes in lung mechanics using the slope of the expiratory flow curve. Results showed that in no study was there a statistically significant worse outcome with APRV, regardless of the settings (F-ARPV or P-APRV). Multiple studies demonstrated that P-APRV stabilizes alveoli and reduces the incidence of acute respiratory distress syndrome (ARDS) in clinically relevant animal models and in trauma patients. In conclusion, over the 30 years since the mode's inception there have been no strict criteria in defining a mechanical breath as being APRV. P-APRV has shown great promise as a highly lung-protective ventilation strategy.
Collapse
Affiliation(s)
- Sumeet V Jain
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | | | - Benjamin Sadowitz
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Luke Dombert
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Josh Satalin
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA.
| | - Penny Andrews
- Multi-trauma Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD, USA
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA.,Department of Biological Sciences, 10 SUNY Cortland, Cortland, NY, 13045, USA
| | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Nader M Habashi
- Multi-trauma Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD, USA
| |
Collapse
|
15
|
Abstract
BACKGROUND The effects of different modes of mechanical ventilation in the same ventilatory support level on ventilator-induced diaphragm dysfunction onset were assessed in healthy rabbits. METHODS Twenty New Zealand rabbits were randomly assigned to 4 groups (n = 5 in each group). Group 1: no mechanical ventilation; group 2: controlled mechanical ventilation (CMV) for 24 hours; group 3: assist/control ventilation (A/C) mode for 24 hours; group 4: high-level pressure support ventilation (PSV) mode for 24 hours. Heart rate, mean arterial blood pressure, PH, partial pressure of arterial oxygen/fraction of inspired oxygen and partial pressure of arterial carbon dioxide were monitored and diaphragm electrical activity was analyzed in the 4 groups. Caspase-3 was evaluated by protein analysis and diaphragm ultra structure was assessed by electron microscopy. RESULTS The centroid frequency and the ratio of high frequency to low frequency were significantly reduced in the CMV, A/C and PSV groups (P < 0.001). The percent change in centroid frequency was significantly lower in the PSV group than in the CMV and A/C groups (P = 0.001 and P = 0.028, respectively). Electromyography of diaphragm integral amplitude decreased by 90% ± 1.48%, 67.8% ± 3.13% and 70.2% ± 4.72% in the CMV, A/C and PSV groups, respectively (P < 0.001). Caspase-3 protein activation was attenuated in the PSV group compared with the CMV and A/C groups (P = 0.035 and P = 0.033, respectively). Irregular swelling of mitochondria along with fractured and fuzzy cristae was observed in the CMV group, whereas mitochondrial cristae were dense and rich in the PSV group. The mitochondrial injury scores (Flameng scores) in the PSV group were the lowest among the 3 ventilatory groups (0.93 ± 0.09 in PSV versus 2.69 ± 0.05 in the CMV [P < 0.01] and PSV versus A/C groups [2.02 ± 0.08, P < 0.01]). CONCLUSIONS The diaphragm myoelectric activity was reduced in the PSV group, although excessive oxidative stress and ultra-structural changes of diaphragm were found. However, partial diaphragm electrical activity was retained and diaphragm injury was minimized using the PSV mode.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Through shared anatomy, pressures, and endothelial connections, the respiratory and cardiovascular systems affect each other in complex but clinically important ways. RECENT FINDINGS Lung injury has clinically important circulatory effects, especially with regards to right ventricular function. Mechanical ventilation and PEEP produce a host of circulatory consequences, some beneficial, some life-threatening. At the same time, circulatory impairments and treatments can magnify the impact of lung failure. SUMMARY Cardiopulmonary interactions underpin current views of fluid management and mechanical ventilation. Understanding cardiopulmonary interactions and their physiological basis has direct clinical relevance.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Mechanical ventilation is a cornerstone of ICU treatment. Because of its interaction with blood flow and intra-abdominal pressure, mechanical ventilation has the potential to alter hepato-splanchnic perfusion, abdominal organ function and thereby outcome of the most critically ill patients. RECENT FINDINGS Mechanical ventilation can alter hepato-splanchnic perfusion, but the effects are minimal (with moderate inspiratory pressures, tidal volumes, and positive end-expiratory pressure levels) or variable (with high ones). Routine nursing procedures may cause repeated episodes of inadequate hepato-splanchnic perfusion in critically ill patients, but an association between perfusion and multiple organ dysfunction cannot yet be determined. Clinical research continues to be challenging as a result of difficulties in measuring hepato-splanchnic blood flow at the bedside. SUMMARY Mechanical ventilation and attempts to improve oxygenation such as intratracheal suctioning and recruitment maneuvers, may have harmful consequences in patients with already limited cardiovascular reserves or deteriorated intestinal perfusion. Due to difficulties in assessing hepato-splanchnic perfusion, such effects are often not detected.
Collapse
|
18
|
McMullen SM, Meade M, Rose L, Burns K, Mehta S, Doyle R, Henzler D. Partial ventilatory support modalities in acute lung injury and acute respiratory distress syndrome-a systematic review. PLoS One 2012; 7:e40190. [PMID: 22916094 PMCID: PMC3420868 DOI: 10.1371/journal.pone.0040190] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/02/2012] [Indexed: 01/21/2023] Open
Abstract
PURPOSE The efficacy of partial ventilatory support modes that allow spontaneous breathing in patients with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is unclear. The objective of this scoping review was to assess the effects of partial ventilatory support on mortality, duration of mechanical ventilation, and both hospital and intensive care unit (ICU) lengths of stay (LOS) for patients with ALI and ARDS; the secondary objective was to describe physiologic effects on hemodynamics, respiratory system and other organ function. METHODS MEDLINE (1966-2009), Cochrane, and EmBase (1980-2009) databases were searched using common ventilator modes as keywords and reference lists from retrieved manuscripts hand searched for additional studies. Two researchers independently reviewed and graded the studies using a modified Oxford Centre for Evidence-Based Medicine grading system. Studies in adult ALI/ARDS patients were included for primary objectives and pre-clinical studies for supporting evidence. RESULTS Two randomized controlled trials (RCTs) were identified, in addition to six prospective cohort studies, one retrospective cohort study, one case control study, 41 clinical physiologic studies and 28 pre-clinical studies. No study was powered to assess mortality, one RCT showed shorter ICU length of stay, and the other demonstrated more ventilator free days. Beneficial effects of preserved spontaneous breathing were mainly physiological effects demonstrated as improvement of gas exchange, hemodynamics and non-pulmonary organ perfusion and function. CONCLUSIONS The use of partial ventilatory support modalities is often feasible in patients with ALI/ARDS, and may be associated with short-term physiological benefits without appreciable impact on clinically important outcomes.
Collapse
Affiliation(s)
- Sarah M. McMullen
- Department of Anesthesiology and Critical Care Medicine, Dalhousie University, Halifax, Canada
| | - Maureen Meade
- Departments of Medicine and Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Canada
| | - Louise Rose
- Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, Canada
| | - Karen Burns
- Interdepartmental Division of Critical Care, University of Toronto and St Michael's Hospital, and Li Ka Shing Knowledge Institute, Toronto, Canada
| | - Sangeeta Mehta
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Robert Doyle
- Department of Anesthesiology and Critical Care Medicine, Dalhousie University, Halifax, Canada
| | - Dietrich Henzler
- Department of Anesthesiology and Critical Care Medicine, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW New developments in mechanical ventilation have focused on increasing the patient's control of the ventilator by implementing information on lung mechanics and respiratory drive. Effort-adapted modes of assisted breathing are presented and their potential advantages are discussed. RECENT FINDINGS Adaptive support ventilation, proportional assist ventilation with load adjustable gain factors and neurally adjusted ventilatory assist are ventilatory modes that follow the concept of adapting the assist to a defined target, instantaneous changes in respiratory drive or lung mechanics. Improved patient ventilator interaction, sufficient unloading of the respiratory muscles and increased comfort have been recently associated with these ventilator modalities. There are, however, scarce data with regard to outcome improvement, such as length of mechanical ventilation, ICU stay or mortality (commonly accepted targets to demonstrate clinical superiority). SUMMARY Within recent years, a major step forward in the evolution of assisted (effort-adapted) modes of mechanical ventilation was accomplished. There is growing evidence that supports the physiological concept of closed-loop effort-adapted assisted modes of mechanical ventilation. However, at present, the translation into a clear outcome benefit remains to be proven. In order to fill the knowledge gap that impedes the broader application, larger randomized controlled trials are urgently needed. However, with clearly proven drawbacks of conventional assisted modes such as pressure support ventilation, it is probably about time to leave these modes introduced decades ago behind.
Collapse
|
20
|
Bingold TM, Scheller B, Wolf T, Meier J, Koch A, Zacharowski K, Rosenberger P, Iber T. Superimposed high-frequency jet ventilation combined with continuous positive airway pressure/assisted spontaneous breathing improves oxygenation in patients with H1N1-associated ARDS. Ann Intensive Care 2012; 2:7. [PMID: 22394549 PMCID: PMC3309959 DOI: 10.1186/2110-5820-2-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/06/2012] [Indexed: 01/21/2023] Open
Abstract
Background Numerous cases of swine-origin 2009 H1N1 influenza A virus (H1N1)-associated acute respiratory distress syndrome (ARDS) bridged by extracorporeal membrane oxygenation (ECMO) therapy have been reported; however, complication rates are high. We present our experience with H1N1-associated ARDS and successful bridging of lung function using superimposed high-frequency jet ventilation (SHFJV) in combination with continuous positive airway pressure/assisted spontaneous breathing (CPAP/ASB). Methods We admitted five patients with H1N1 infection and ARDS to our intensive care unit. Although all patients required pure oxygen and controlled ventilation, oxygenation was insufficient. We applied SHFJV/CPAP/ASB to improve oxygenation. Results Initial PaO2/FiO2 ratio prior SHFJV was 58-79 mmHg. In all patients, successful oxygenation was achieved by SHFJV (PaO2/FiO2 ratio 105-306 mmHg within 24 h). Spontaneous breathing was set during first hours after admission. SHFJV could be stopped after 39, 40, 72, 100, or 240 h. Concomitant pulmonary herpes simplex virus (HSV) infection was observed in all patients. Two patients were successfully discharged. The other three patients relapsed and died within 7 weeks mainly due to combined HSV infection and in two cases reoccurring H1N1 infection. Conclusions SHFJV represents an alternative to bridge lung function successfully and improve oxygenation in the critically ill.
Collapse
Affiliation(s)
- Tobias M Bingold
- Clinic of Anaesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Airway pressure release ventilation improves pulmonary blood flow in infants after cardiac surgery*. Crit Care Med 2011; 39:2599-604. [DOI: 10.1097/ccm.0b013e318228297a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Spontaneously regulated vs. controlled ventilation of acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care 2011; 17:24-9. [PMID: 21157317 DOI: 10.1097/mcc.0b013e328342726e] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW To present an updated discussion of those aspects of controlled positive pressure breathing and retained spontaneous regulation of breathing that impact the management of patients whose tissue oxygenation is compromised by acute lung injury. RECENT FINDINGS The recent introduction of ventilation techniques geared toward integrating natural breathing rhythms into even the earliest phase of acute respiratory distress syndrome support (e.g., airway pressure release, proportional assist ventilation, and neurally adjusted ventilatory assist), has stimulated a burst of new investigations. SUMMARY Optimizing gas exchange, avoiding lung injury, and preserving respiratory muscle strength and endurance are vital therapeutic objectives for managing acute lung injury. Accordingly, comparing the physiology and consequences of breathing patterns that preserve and eliminate breathing effort has been a theme of persisting investigative interest throughout the several decades over which it has been possible to sustain cardiopulmonary life support outside the operating theater.
Collapse
|
23
|
Guenther U, Manzke T, Wrigge H, Dutschmann M, Zinserling J, Putensen C, Hoeft A. The Counteraction of Opioid-Induced Ventilatory Depression by the Serotonin 1A-Agonist 8-OH-DPAT Does Not Antagonize Antinociception in Rats In Situ and In Vivo. Anesth Analg 2009; 108:1169-76. [DOI: 10.1213/ane.0b013e318198f828] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Year in review in Intensive Care Medicine, 2008: II. Experimental, acute respiratory failure and ARDS, mechanical ventilation and endotracheal intubation. Intensive Care Med 2009; 35:215-31. [PMID: 19125232 PMCID: PMC2638603 DOI: 10.1007/s00134-008-1380-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 12/11/2022]
|
25
|
Futier E, Constantin JM, Combaret L, Mosoni L, Roszyk L, Sapin V, Attaix D, Jung B, Jaber S, Bazin JE. Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:R116. [PMID: 18786263 PMCID: PMC2592744 DOI: 10.1186/cc7010] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 07/31/2008] [Accepted: 09/11/2008] [Indexed: 11/10/2022]
Abstract
Introduction Controlled mechanical ventilation (CMV) induces profound modifications of diaphragm protein metabolism, including muscle atrophy and severe ventilator-induced diaphragmatic dysfunction. Diaphragmatic modifications could be decreased by spontaneous breathing. We hypothesized that mechanical ventilation in pressure support ventilation (PSV), which preserves diaphragm muscle activity, would limit diaphragmatic protein catabolism. Methods Forty-two adult Sprague-Dawley rats were included in this prospective randomized animal study. After intraperitoneal anesthesia, animals were randomly assigned to the control group or to receive 6 or 18 hours of CMV or PSV. After sacrifice and incubation with 14C-phenylalanine, in vitro proteolysis and protein synthesis were measured on the costal region of the diaphragm. We also measured myofibrillar protein carbonyl levels and the activity of 20S proteasome and tripeptidylpeptidase II. Results Compared with control animals, diaphragmatic protein catabolism was significantly increased after 18 hours of CMV (33%, P = 0.0001) but not after 6 hours. CMV also decreased protein synthesis by 50% (P = 0.0012) after 6 hours and by 65% (P < 0.0001) after 18 hours of mechanical ventilation. Both 20S proteasome activity levels were increased by CMV. Compared with CMV, 6 and 18 hours of PSV showed no significant increase in proteolysis. PSV did not significantly increase protein synthesis versus controls. Both CMV and PSV increased protein carbonyl levels after 18 hours of mechanical ventilation from +63% (P < 0.001) and +82% (P < 0.0005), respectively. Conclusions PSV is efficient at reducing mechanical ventilation-induced proteolysis and inhibition of protein synthesis without modifications in the level of oxidative injury compared with continuous mechanical ventilation. PSV could be an interesting alternative to limit ventilator-induced diaphragmatic dysfunction.
Collapse
Affiliation(s)
- Emmanuel Futier
- General Intensive Care Unit, Hotel-Dieu Hospital, University Hospital of Clermont-Ferrand, Boulevard L. Malfreyt, Clermond-Ferrand, 63058, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Preserved spontaneous breathing in acute lung injury: show me the money? Intensive Care Med 2007; 34:397-9. [PMID: 18087690 DOI: 10.1007/s00134-007-0958-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
|