1
|
Sarkar S, Yalla B, Khanna P, Baishya M. Is EIT-guided positive end-expiratory pressure titration for optimizing PEEP in ARDS the white elephant in the room? A systematic review with meta-analysis and trial sequential analysis. J Clin Monit Comput 2024; 38:873-883. [PMID: 38619718 DOI: 10.1007/s10877-024-01158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Electrical Impedance Tomography (EIT) is a novel real-time lung imaging technology for personalized ventilation adjustments, indicating promising results in animals and humans. The present study aimed to assess its clinical utility for improved ventilation and oxygenation compared to traditional protocols. Comprehensive electronic database screening was done until 30th November, 2023. Randomized controlled trials, controlled clinical trials, comparative cohort studies, and assessments of EIT-guided PEEP titration and conventional methods in adult ARDS patients regarding outcome, ventilatory parameters, and P/F ratio were included. Our search retrieved five controlled cohort studies and two RCTs with 515 patients and overall reduced risk of mortality [RR = 0.68; 95% CI: 0.49 to 0.95; I2 = 0%], better dynamic compliance [MD = 3.46; 95% CI: 1.59 to 5.34; I2 = 0%] with no significant difference in PaO2/FiO2 ratio [MD = 6.5; 95%CI -13.86 to 26.76; I2 = 74%]. The required information size except PaO2/FiO2 was achieved for a power of 95% based on the 50% reduction in risk of mortality, 10% improved compliance as the cumulative Z-score of the said outcomes crossed the alpha spending boundary and did not dip below the inner wedge of futility. EIT-guided individualized PEEP titration is a novel modality; further well-designed studies are needed to substantiate its utility.
Collapse
Affiliation(s)
- Soumya Sarkar
- Department of Anaesthesiology, AIIMS, Kalyani, India
| | - Bharat Yalla
- Department of Anaesthesia, Pain Medicine & Critical Care, AIIMS, Ansari Nagar, New Delhi, 110029, India
| | - Puneet Khanna
- Department of Anaesthesia, Pain Medicine & Critical Care, AIIMS, Ansari Nagar, New Delhi, 110029, India.
| | - Madhurjya Baishya
- Department of Anaesthesia, Pain Medicine & Critical Care, AIIMS, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
2
|
Frerichs I, Schädler D, Becher T. Setting positive end-expiratory pressure by using electrical impedance tomography. Curr Opin Crit Care 2024; 30:43-52. [PMID: 38085866 DOI: 10.1097/mcc.0000000000001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW This review presents the principles and possibilities of setting positive end-expiratory pressure (PEEP) using electrical impedance tomography (EIT). It summarizes the major findings of recent studies where EIT was applied to monitor the effects of PEEP on regional lung function and to guide the selection of individualized PEEP setting. RECENT FINDINGS The most frequent approach of utilizing EIT for the assessment of PEEP effects and the PEEP setting during the time period from January 2022 till June 2023 was based on the analysis of pixel tidal impedance variation, typically acquired during stepwise incremental and/or decremental PEEP variation. The most common EIT parameters were the fraction of ventilation in various regions of interest, global inhomogeneity index, center of ventilation, silent spaces, and regional compliance of the respiratory system. The studies focused mainly on the spatial and less on the temporal distribution of ventilation. Contrast-enhanced EIT was applied in a few studies for the estimation of ventilation/perfusion matching. SUMMARY The availability of commercial EIT devices resulted in an increase in clinical studies using this bedside imaging technology in neonatal, pediatric and adult critically ill patients. The clinical interest in EIT became evident but the potential of this method in clinical decision-making still needs to be fully exploited.
Collapse
Affiliation(s)
- Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | |
Collapse
|
3
|
Heines SJH, Becher TH, van der Horst ICC, Bergmans DCJJ. Clinical Applicability of Electrical Impedance Tomography in Patient-Tailored Ventilation: A Narrative Review. Tomography 2023; 9:1903-1932. [PMID: 37888742 PMCID: PMC10611090 DOI: 10.3390/tomography9050150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Electrical Impedance Tomography (EIT) is a non-invasive bedside imaging technique that provides real-time lung ventilation information on critically ill patients. EIT can potentially become a valuable tool for optimising mechanical ventilation, especially in patients with acute respiratory distress syndrome (ARDS). In addition, EIT has been shown to improve the understanding of ventilation distribution and lung aeration, which can help tailor ventilatory strategies according to patient needs. Evidence from critically ill patients shows that EIT can reduce the duration of mechanical ventilation and prevent lung injury due to overdistension or collapse. EIT can also identify the presence of lung collapse or recruitment during a recruitment manoeuvre, which may guide further therapy. Despite its potential benefits, EIT has not yet been widely used in clinical practice. This may, in part, be due to the challenges associated with its implementation, including the need for specialised equipment and trained personnel and further validation of its usefulness in clinical settings. Nevertheless, ongoing research focuses on improving mechanical ventilation and clinical outcomes in critically ill patients.
Collapse
Affiliation(s)
- Serge J. H. Heines
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
| | - Tobias H. Becher
- Department of Anesthesiology and Intensive Care Medicine, Campus Kiel, University Medical Centre Schleswig-Holstein, 24118 Kiel, Germany;
| | - Iwan C. C. van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Dennis C. J. J. Bergmans
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
4
|
Preissner M, Song Y, Trevascus D, Zosky GR, Dubsky S. Mechanical ventilation decreases tidal volume heterogeneity but increases heterogeneity in end-expiratory volumes. J Appl Physiol (1985) 2023; 135:747-752. [PMID: 37589057 DOI: 10.1152/japplphysiol.00693.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
How the heterogeneous distribution of lung volumes changes in response to different mechanical ventilation (MV) strategies is unclear. Using our well-developed four-dimensional computed tomography (4DCT) high-resolution imaging technique, we aimed to assess the effect of different MV strategies on the distribution and heterogeneity of regional lung volumes. Healthy adult female BALB/c mice received either 2 h of "injurious" MV [n = 6, mechanical ventilation at high PIP with zero PEEP (HPZP)] with a peak inspiratory pressure (PIP) of 20 cmH2O and zero positive end-expiratory pressure (PEEP), or 2 h of "protective" MV [n = 8, mechanical ventilation at low PIP with PEEP (LPP)] with PIP = 12 cmH2O and PEEP = 2 cmH2O. 4DCT images were obtained at baseline (0 h) and after 2 h of MV. Tidal volume (Vt) and end-expiratory lung volume (EEV) were measured throughout the whole lung on a voxel-by-voxel basis. Heterogeneity of ventilation was determined by the coefficient of variation (COV) of Vt and EEV. Our data showed that MV had minimal impact on global Vt but decreased EEV in the HPZP group (P < 0.05). Both ventilation modes decreased the COV of Vt (39.4% for HPZP and 9.7% for LPP) but increased the COV in EEV (36.4% for HPZP and 29.2% for LPP). This was consistent with the redistribution index, which was significantly higher in the HVZP group than in the LPP group (P < 0.001). We concluded that regional assessment of the change in EEV showed different patterns in progression between LPP and HPZP strategies. Both ventilation strategies decreased heterogeneity in Vt after 2 h of MV but increased heterogeneity in EEV. Further work is required to determine the link between these effects and ventilator-induced lung injury.NEW & NOTEWORTHY Tidal volume heterogeneity decreases over time in response to mechanical ventilation, in contrast to end-expiratory volume heterogeneity which increases.
Collapse
Affiliation(s)
- Melissa Preissner
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | - Yong Song
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - David Trevascus
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | - Graeme R Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Stephen Dubsky
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Sett A, Kenna KR, Sutton RJ, Perkins EJ, Sourial M, Chapman JD, Donath SM, Sasi A, Rogerson SR, Manley BJ, Davis PG, Pereira-Fantini PM, Tingay DG. Lung ultrasound of the dependent lung detects real-time changes in lung volume in the preterm lamb. Arch Dis Child Fetal Neonatal Ed 2023; 108:51-56. [PMID: 35750468 PMCID: PMC9763221 DOI: 10.1136/archdischild-2022-323900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/03/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Effective lung protective ventilation requires reliable, real-time estimation of lung volume at the bedside. Neonatal clinicians lack a readily available imaging tool for this purpose. OBJECTIVE To determine the ability of lung ultrasound (LUS) of the dependent region to detect real-time changes in lung volume, identify opening and closing pressures of the lung, and detect pulmonary hysteresis. METHODS LUS was performed on preterm lambs (n=20) during in vivo mapping of the pressure-volume relationship of the respiratory system using the super-syringe method. Electrical impedance tomography was used to derive regional lung volumes. Images were blindly graded using an expanded scoring system. The scores were compared with total and regional lung volumes, and differences in LUS scores between pressure increments were calculated. RESULTS Changes in LUS scores correlated moderately with changes in total lung volume (r=0.56, 95% CI 0.47-0.64, p<0.0001) and fairly with right whole (r=0.41, CI 0.30-0.51, p<0.0001), ventral (r=0.39, CI 0.28-0.49, p<0.0001), central (r=0.41, CI 0.31-0.52, p<0.0001) and dorsal (r=0.38, CI 0.27-0.49, p<0.0001) regional lung volumes. The pressure-volume relationship of the lung exhibited hysteresis in all lambs. LUS was able to detect hysteresis in 17 (85%) lambs. The greatest changes in LUS scores occurred at the opening and closing pressures. CONCLUSION LUS was able to detect large changes in total and regional lung volume in real time and correctly identified opening and closing pressures but lacked the precision to detect small changes in lung volume. Further work is needed to improve precision prior to translation to clinical practice.
Collapse
Affiliation(s)
- Arun Sett
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia .,Newborn Research Centre, The Royal Women's Hospital, Melbourne, Victoria, Australia.,Newborn Services, Joan Kirner Women's and Children's, Sunshine Hospital, Western Health, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia.,Paediatric Infant Perinatal Emergency Retrieval, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Kelly R Kenna
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Rebecca J Sutton
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia,Translational Research Unit, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Magdy Sourial
- Translational Research Unit, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Jack D Chapman
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Susan M Donath
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Arun Sasi
- Paediatric Infant Perinatal Emergency Retrieval, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Sheryle R Rogerson
- Newborn Research Centre, The Royal Women's Hospital, Melbourne, Victoria, Australia,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia,Paediatric Infant Perinatal Emergency Retrieval, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Brett J Manley
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia,Newborn Research Centre, The Royal Women's Hospital, Melbourne, Victoria, Australia,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter G Davis
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia,Newborn Research Centre, The Royal Women's Hospital, Melbourne, Victoria, Australia,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia,Newborn Research Centre, The Royal Women's Hospital, Melbourne, Victoria, Australia,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia,Department of Neonatology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Heines SJH, de Jongh SAM, Strauch U, van der Horst ICC, van de Poll MCG, Bergmans DCJJ. The global inhomogeneity index assessed by electrical impedance tomography overestimates PEEP requirement in patients with ARDS: an observational study. BMC Anesthesiol 2022; 22:258. [PMID: 35971060 PMCID: PMC9377133 DOI: 10.1186/s12871-022-01801-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background Electrical impedance tomography (EIT) visualises alveolar overdistension and alveolar collapse and enables optimisation of ventilator settings by using the best balance between alveolar overdistension and collapse (ODCL). Besides, the global inhomogeneity index (GI), measured by EIT, may also be of added value in determining PEEP. Optimal PEEP is often determined based on the best dynamic compliance without EIT at the bedside. This study aimed to assess the effect of a PEEP trial on ODCL, GI and dynamic compliance in patients with and without ARDS. Secondly, PEEP levels from “optimal PEEP” approaches by ODCL, GI and dynamic compliance are compared. Methods In 2015–2016, we included patients with ARDS using postoperative cardiothoracic surgery patients as a reference group. A PEEP trial was performed with four consecutive incremental followed by four decremental PEEP steps of 2 cmH2O. Primary outcomes at each step were GI, ODCL and best dynamic compliance. In addition, the agreement between ODCL, GI, and dynamic compliance was determined for the individual patient. Results Twenty-eight ARDS and 17 postoperative cardiothoracic surgery patients were included. The mean optimal PEEP, according to best compliance, was 10.3 (±2.9) cmH2O in ARDS compared to 9.8 (±2.5) cmH2O in cardiothoracic surgery patients. Optimal PEEP according to ODCL was 10.9 (±2.5) in ARDS and 9.6 (±1.6) in cardiothoracic surgery patients. Optimal PEEP according to GI was 17.1 (±3.9) in ARDS compared to 14.2 (±3.4) in cardiothoracic surgery patients. Conclusions Currently, no golden standard to titrate PEEP is available. We showed that when using the GI, PEEP requirements are higher compared to ODCL and best dynamic compliance during a PEEP trial in patients with and without ARDS. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-022-01801-7.
Collapse
Affiliation(s)
- Serge J H Heines
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands.
| | - Sebastiaan A M de Jongh
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands
| | - Ulrich Strauch
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marcel C G van de Poll
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre+, P. Debyelaan 25, 6229HX, Maastricht, the Netherlands.,School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Dennis C J J Bergmans
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan 25, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands.,School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
7
|
Abstract
OBJECTIVE To describe, through a narrative review, the physiologic principles underlying electrical impedance tomography, and its potential applications in managing acute respiratory distress syndrome (ARDS). To address the current evidence supporting its use in different clinical scenarios along the ARDS management continuum. DATA SOURCES We performed an online search in Pubmed to review articles. We searched MEDLINE, Cochrane Central Register, and clinicaltrials.gov for controlled trials databases. STUDY SELECTION Selected publications included case series, pilot-physiologic studies, observational cohorts, and randomized controlled trials. To describe the rationale underlying physiologic principles, we included experimental studies. DATA EXTRACTION Data from relevant publications were reviewed, analyzed, and its content summarized. DATA SYNTHESIS Electrical impedance tomography is an imaging technique that has aided in understanding the mechanisms underlying multiple interventions used in ARDS management. It has the potential to monitor and predict the response to prone positioning, aid in the dosage of flow rate in high-flow nasal cannula, and guide the titration of positive-end expiratory pressure during invasive mechanical ventilation. The latter has been demonstrated to improve physiologic and mechanical parameters correlating with lung recruitment. Similarly, its use in detecting pneumothorax and harmful patient-ventilator interactions such as pendelluft has been proven effective. Nonetheless, its impact on clinically meaningful outcomes remains to be determined. CONCLUSIONS Electrical impedance tomography is a potential tool for the individualized management of ARDS throughout its different stages. Clinical trials should aim to determine whether a specific approach can improve clinical outcomes in ARDS management.
Collapse
|
8
|
Abstract
Today's management of the ventilated patient still relies on the measurement of old parameters such as airway pressures and flow. Graphical presentations reveal the intricacies of patient-ventilator interactions in times of supporting the patient on the ventilator instead of fully ventilating the heavily sedated patient. This opens a new pathway for several bedside technologies based on basic physiologic knowledge; however, it may increase the complexity of measurements. The spread of the COVID-19 infection has confronted the anesthesiologist and intensivist with one of the most severe pulmonary pathologies of the last decades. Optimizing the patient at the bedside is an old and newly required skill for all physicians in the intensive care unit, supported by mobile technologies such as lung ultrasound and electrical impedance tomography. This review summarizes old knowledge and presents a brief insight into extended monitoring options.
Collapse
Affiliation(s)
- Ralph Gertler
- Department of Anaesthesiology and Intensive Care, HELIOS Klinikum München West, Teaching Hospital of the Ludwig-Maximilians-Universität, Steinerweg 5, München 85241, Germany.
| |
Collapse
|
9
|
Abstract
Supplemental Digital Content is available in the text. OBJECTIVES: Clinicians have little guidance on the time needed before assessing the effect of a mean airway pressure change during high-frequency oscillatory ventilation. We aimed to determine: 1) time to stable lung volume after a mean airway pressure change during high-frequency oscillatory ventilation and 2) the relationship between time to volume stability and the volume state of the lung. DESIGN: Prospective observational study. SETTING: Regional quaternary teaching hospital neonatal ICU. PATIENTS: Thirteen term or near-term infants receiving high-frequency oscillatory ventilation and muscle relaxants. INTERVENTIONS: One to two cm H2O mean airway pressure changes every 10 minutes as part of an open lung strategy based on oxygen response. MEASUREMENTS AND MAIN RESULTS: Continuous lung volume measurements (respiratory inductive plethysmography) were made during the mean airway pressure changes. Volume signals were analyzed with a biexponential model to calculate the time to stable lung volume if the model R2 was greater than 0.6. If volume stability did not occur within 10 minutes, the model was extrapolated to maximum 3,600 s. One-hundred ninety-six mean airway pressure changes were made, with no volume change in 33 occurrences (17%). One-hundred twenty-five volume signals met modeling criteria for inclusion; median (interquartile range) R2, 0.96 (0.91–0.98). The time to stable lung volume was 1,131 seconds (718–1,959 s) (mean airway pressure increases) and 647 seconds (439–1,309 s) (mean airway pressure decreases), with only 17 (14%) occurring within 10 minutes and time to stability being longer when the lung was atelectatic. CONCLUSIONS: During high-frequency oscillatory ventilation, the time to stable lung volume after a mean airway pressure change is variable, often requires more than 10 minutes, and is dependent on the preceding volume state.
Collapse
|
10
|
Becher T, Buchholz V, Hassel D, Meinel T, Schädler D, Frerichs I, Weiler N. Individualization of PEEP and tidal volume in ARDS patients with electrical impedance tomography: a pilot feasibility study. Ann Intensive Care 2021; 11:89. [PMID: 34080074 PMCID: PMC8171998 DOI: 10.1186/s13613-021-00877-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/17/2021] [Indexed: 01/20/2023] Open
Abstract
Background In mechanically ventilated patients with acute respiratory distress syndrome (ARDS), electrical impedance tomography (EIT) provides information on alveolar cycling and overdistension as well as assessment of recruitability at the bedside. We developed a protocol for individualization of positive end-expiratory pressure (PEEP) and tidal volume (VT) utilizing EIT-derived information on recruitability, overdistension and alveolar cycling. The aim of this study was to assess whether the EIT-based protocol allows individualization of ventilator settings without causing lung overdistension, and to evaluate its effects on respiratory system compliance, oxygenation and alveolar cycling. Methods 20 patients with ARDS were included. Initially, patients were ventilated according to the recommendations of the ARDS Network with a VT of 6 ml per kg predicted body weight and PEEP adjusted according to the lower PEEP/FiO2 table. Subsequently, ventilator settings were adjusted according to the EIT-based protocol once every 30 min for a duration of 4 h. To assess global overdistension, we determined whether lung stress and strain remained below 27 mbar and 2.0, respectively. Results Prospective optimization of mechanical ventilation with EIT led to higher PEEP levels (16.5 [14–18] mbar vs. 10 [8–10] mbar before optimization; p = 0.0001) and similar VT (5.7 ± 0.92 ml/kg vs. 5.8 ± 0.47 ml/kg before optimization; p = 0.96). Global lung stress remained below 27 mbar in all patients and global strain below 2.0 in 19 out of 20 patients. Compliance remained similar, while oxygenation was significantly improved and alveolar cycling was reduced after EIT-based optimization. Conclusions Adjustment of PEEP and VT using the EIT-based protocol led to individualization of ventilator settings with improved oxygenation and reduced alveolar cycling without promoting global overdistension. Trial registrationThis study was registered at clinicaltrials.gov (NCT02703012) on March 9, 2016 before including the first patient. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-021-00877-7.
Collapse
Affiliation(s)
- Tobias Becher
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Valerie Buchholz
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Daniel Hassel
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Timo Meinel
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dirk Schädler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Norbert Weiler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Among noninvasive lung imaging techniques that can be employed at the bedside electrical impedance tomography (EIT) and lung ultrasound (LUS) can provide dynamic, repeatable data on the distribution regional lung ventilation and response to therapeutic manoeuvres.In this review, we will provide an overview on the rationale, basic functioning and most common applications of EIT and Point of Care Ultrasound (PoCUS, mainly but not limited to LUS) in the management of mechanically ventilated patients. RECENT FINDINGS The use of EIT in clinical practice is supported by several studies demonstrating good correlation between impedance tomography data and other validated methods of assessing lung aeration during mechanical ventilation. Similarly, LUS also correlates with chest computed tomography in assessing lung aeration, its changes and several pathological conditions, with superiority over other techniques. Other PoCUS applications have shown to effectively complement the LUS ultrasound assessment of the mechanically ventilated patient. SUMMARY Bedside techniques - such as EIT and PoCUS - are becoming standards of the care for mechanically ventilated patients to monitor the changes in lung aeration, ventilation and perfusion in response to treatment and to assess weaning from mechanical ventilation.
Collapse
|
12
|
Hsu HJ, Chang HT, Zhao Z, Wang PH, Zhang JH, Chen YS, Frerichs I, Möller K, Fu F, Hsu HS, Chuang SP, Hsia HY, Yen DHT. Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve: a randomized trial in moderate to severe ARDS. Physiol Meas 2021; 42:014002. [PMID: 33361553 DOI: 10.1088/1361-6579/abd679] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of the study was to compare titration of positive end-expiratory pressure (PEEP) with electrical impedance tomography (EIT) and with ventilator-embedded pressure-volume (PV) loop in moderate to severe acute respiratory distress syndrome (ARDS). APPROACH Eighty-seven moderate to severe ARDS patients (arterial oxygen partial pressure to fractional inspired oxygen ratio, PaO2/FiO2 ≤ 200 mmHg) were randomized to either EIT group (n = 42) or PV group (n = 45). All patients received identical medical care using the same general support guidelines and protective mechanical ventilation. In the EIT group, the selected PEEP equaled the airway pressure at the intercept between cumulated collapse and overdistension percentages curves and in the PV group, at the pressure where maximal hysteresis was reached. MAIN RESULTS Baseline characteristics and settings were comparable between the groups. After optimization, PEEP was significantly higher in the PV group (17.4 ± 1.7 versus 16.2 ± 2.6 cmH2O, PV versus EIT groups, p = 0.02). After 48 h, driving pressure was significantly higher in the PV group (12.4 ± 3.6 versus 10.9 ± 2.5 cmH2O, p = 0.04). Lung mechanics and oxygenation were better in the EIT group but did not statistically differ between the groups. The survival rate was lower in the PV group (44.4% versus 69.0%, p = 0.02; hazard ratio 2.1, confidence interval 1·1-3.9). None of the other pre-specified exploratory clinical endpoints were significantly different. SIGNIFICANCE In moderate to severe ARDS, PEEP titration guided with EIT, compared with PV curve, might be associated with improved driving pressure and survival rate. TRIAL REGISTRATION NCT03112512, 13 April, 2017.
Collapse
Affiliation(s)
- Hui-Ju Hsu
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan. Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yen S, Song Y, Preissner M, Bennett E, Wilson R, Pavez M, Dubsky S, Dargaville PA, Fouras A, Zosky GR. The proteomic response is linked to regional lung volumes in ventilator-induced lung injury. J Appl Physiol (1985) 2020; 129:837-845. [PMID: 32758039 DOI: 10.1152/japplphysiol.00097.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is unclear how acid-induced lung injury alters the regional lung volume response to mechanical ventilation (MV) and how this impacts protein expression. Using a mouse model, we investigated the separate and combined effects of acid aspiration and MV on regional lung volumes and how these were associated with the proteome. Adult BALB/c mice were divided into four groups: intratracheal saline, intratracheal acid, saline/MV, or acid/MV. Specific tidal volume (sVt) and specific end-expiratory volume (sEEV) were measured at baseline and after 2 h of ventilation using dynamic high-resolution four-dimensional computed tomography (4DCT) images. Lung tissue was dissected into 10 regions corresponding to the image segmentation for label-free quantitative proteomic analysis. Our data showed that acid aspiration significantly reduced sVt and caused further reductions in sVt and sEEV after 2 h of ventilation. Proteomic analysis revealed 42 dysregulated proteins in both Saline/MV and Acid/MV groups, and 37 differentially expressed proteins in the Acid/MV group. Mapping of the overlapping proteins showed significant enrichment of complement/coagulation cascades (CCC). Analysis of 37 unique proteins in the Acid/MV group identified six additional CCC proteins and seven downregulated proteins involved in the mitochondrial respiratory chain (MRC). Regional MRC protein levels were positively correlated with sEEV, while the CCC protein levels were negatively associated with sVt. Therefore, this study showed that tidal volume was associated with the expression of CCC proteins, while low end-expiratory lung volumes were associated with MRC protein expression, suggesting that tidal stretch and lung collapse activate different injury pathways.NEW & NOTEWORTHY This study provides novel insights into the regional response to mechanical ventilation in the setting of acid-induced lung injury and highlights the complex interaction between tidal stretch and low-end-expiratory lung volumes; both of which caused altered regulation of different injury pathways.
Collapse
Affiliation(s)
- Seiha Yen
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Yong Song
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Melissa Preissner
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | - Ellen Bennett
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Macarena Pavez
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Stephen Dubsky
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | - Peter A Dargaville
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Graeme R Zosky
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.,Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
14
|
Scaramuzzo G, Spadaro S, Dalla Corte F, Waldmann AD, Böhm SH, Ragazzi R, Marangoni E, Grasselli G, Pesenti A, Volta CA, Mauri T. Personalized Positive End-Expiratory Pressure in Acute Respiratory Distress Syndrome: Comparison Between Optimal Distribution of Regional Ventilation and Positive Transpulmonary Pressure. Crit Care Med 2020; 48:1148-1156. [PMID: 32697485 DOI: 10.1097/ccm.0000000000004439] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Different techniques exist to select personalized positive end-expiratory pressure in patients affected by the acute respiratory distress syndrome. The positive end-expiratory transpulmonary pressure strategy aims to counteract dorsal lung collapse, whereas electrical impedance tomography could guide positive end-expiratory pressure selection based on optimal homogeneity of ventilation distribution. We compared the physiologic effects of positive end-expiratory pressure guided by electrical impedance tomography versus transpulmonary pressure in patients affected by acute respiratory distress syndrome. DESIGN Cross-over prospective physiologic study. SETTING Two academic ICUs. PATIENTS Twenty ICU patients affected by acute respiratory distress syndrome undergoing mechanical ventilation. INTERVENTION Patients monitored by an esophageal catheter and a 32-electrode electrical impedance tomography monitor underwent two positive end-expiratory pressure titration trials by randomized cross-over design to find the level of positive end-expiratory pressure associated with: 1) positive end-expiratory transpulmonary pressure (PEEPPL) and 2) proportion of poorly or nonventilated lung units (Silent Spaces) less than or equal to 15% (PEEPEIT). Each positive end-expiratory pressure level was maintained for 20 minutes, and afterward, lung mechanics, gas exchange, and electrical impedance tomography data were collected. MEASUREMENTS AND MAIN RESULTS PEEPEIT and PEEPPL differed in all patients, and there was no correlation between the levels identified by the two methods (Rs = 0.25; p = 0.29). PEEPEIT determined a more homogeneous distribution of ventilation with a lower percentage of dependent Silent Spaces (p = 0.02), whereas PEEPPL was characterized by lower airway-but not transpulmonary-driving pressure (p = 0.04). PEEPEIT was significantly higher than PEEPPL in subjects with extrapulmonary acute respiratory distress syndrome (p = 0.006), whereas the opposite was true for pulmonary acute respiratory distress syndrome (p = 0.03). CONCLUSIONS Personalized positive end-expiratory pressure levels selected by electrical impedance tomography- and transpulmonary pressure-based methods are not correlated at the individual patient level. PEEPPL is associated with lower dynamic stress, whereas PEEPEIT may help to optimize lung recruitment and homogeneity of ventilation. The underlying etiology of acute respiratory distress syndrome could deeply influence results from each method.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Savino Spadaro
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Francesca Dalla Corte
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Andreas D Waldmann
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Stephan H Böhm
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Riccardo Ragazzi
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Elisabetta Marangoni
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Carlo Alberto Volta
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Yen S, Preissner M, Bennett E, Dubsky S, Carnibella R, O'Toole R, Roddam L, Jones H, Dargaville PA, Fouras A, Zosky GR. The Link between Regional Tidal Stretch and Lung Injury during Mechanical Ventilation. Am J Respir Cell Mol Biol 2019; 60:569-577. [PMID: 30428271 DOI: 10.1165/rcmb.2018-0143oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to assess the association between regional tidal volume (Vt), regional functional residual capacity (FRC), and the expression of genes linked with ventilator-induced lung injury. Two groups of BALB/c mice (n = 8 per group) were ventilated for 2 hours using a protective or injurious ventilation strategy, with free-breathing mice used as control animals. Regional Vt and FRC of the ventilated mice was determined by analysis of high-resolution four-dimensional computed tomographic images taken at baseline and after 2 hours of ventilation and corrected for the volume of the region (i.e., specific [s]Vt and specific [s]FRC). RNA concentrations of 21 genes in 10 different lung regions were quantified using a quantitative PCR array. sFRC at baseline varied regionally, independent of ventilation strategy, whereas sVt varied regionally depending on ventilation strategy. The expression of IL-6 (P = 0.04), Ccl2 (P < 0.01), and Ang-2 (P < 0.05) was associated with sVt but not sFRC. The expression of seven other genes varied regionally (IL-1β and RAGE [receptor for advanced glycation end products]) or depended on ventilation strategy (Nfe2l2 [nuclear factor erythroid-derived 2 factor 2], c-fos, and Wnt1) or both (TNF-α and Cxcl2), but it was not associated with regional sFRC or sVt. These observations suggest that regional inflammatory responses to mechanical ventilation are driven primarily by tidal stretch.
Collapse
Affiliation(s)
| | - Melissa Preissner
- 2 Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | | | - Stephen Dubsky
- 2 Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | | | | | | | - Heather Jones
- 4 Biomedical Imaging Research Institute.,5 Department of Medicine, and.,6 Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Peter A Dargaville
- 7 Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Graeme R Zosky
- 1 School of Medicine and.,7 Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
16
|
Tingay DG, Togo A, Pereira-Fantini PM, Miedema M, McCall KE, Perkins EJ, Thomson J, Dowse G, Sourial M, Dellacà RL, Davis PG, Dargaville PA. Aeration strategy at birth influences the physiological response to surfactant in preterm lambs. Arch Dis Child Fetal Neonatal Ed 2019; 104:F587-F593. [PMID: 31498776 DOI: 10.1136/archdischild-2018-316240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/26/2018] [Accepted: 12/19/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND The influence of pressure strategies to promote lung aeration at birth on the subsequent physiological response to exogenous surfactant therapy has not been investigated. OBJECTIVES To compare the effect of sustained inflation (SI) and a dynamic positive end-expiratory pressure (PEEP) manoeuvre at birth on the subsequent physiological response to exogenous surfactant therapy in preterm lambs. METHODS Steroid-exposed preterm lambs (124-127 days' gestation; n=71) were randomly assigned from birth to either (1) positive-pressure ventilation (PPV) with no recruitment manoeuvre; (2) SI until stable aeration; or (3) 3 min dynamic stepwise PEEP strategy (maximum 14-20 cmH2O; dynamic PEEP (DynPEEP)), followed by PPV for 60 min using a standardised protocol. Surfactant (200 mg/kg poractant alfa) was administered at 10 min. Dynamic compliance, gas exchange and regional ventilation and aeration characteristics (electrical impedance tomography) were measured throughout and compared between groups, and with a historical group (n=38) managed using the same strategies without surfactant. RESULTS Compliance increased after surfactant only in the DynPEEP group (p<0.0001, repeated measures analysis of variance), being 0.17 (0.10, 0.23) mL/kg/cmH2O higher at 60 min than the SI group. An SI resulted in the least uniform aeration, and unlike the no-recruitment and DynPEEP groups, the distribution of aeration and tidal ventilation did not improve with surfactant. All groups had similar improvements in oxygenation post-surfactant compared with the corresponding groups not treated with surfactant. CONCLUSIONS A DynPEEP strategy at birth may improve the response to early surfactant therapy, whereas rapid lung inflation with SI creates non-uniform aeration that appears to inhibit surfactant efficacy.
Collapse
Affiliation(s)
- David Gerald Tingay
- Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia.,Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Neonatal Research, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Andrea Togo
- Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Martijn Miedema
- Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia.,Neonatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Karen E McCall
- Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia.,Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Elizabeth J Perkins
- Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia.,Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jessica Thomson
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Georgie Dowse
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Magdy Sourial
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Raffaele L Dellacà
- TBM Lab, Dipartimento di Elettronica, Informazione e BioIngegneria (DEIB), Politecnico di Milano University, Milan, Italy
| | - Peter G Davis
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Neonatal Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter Anderson Dargaville
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Neonatal and Paediatric Intensive Care Unit, Royal Hobart Hospital, Hobart, Tasmania, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
17
|
Karsten J, Voigt N, Gillmann HJ, Stueber T. Determination of optimal positive end-expiratory pressure based on respiratory compliance and electrical impedance tomography: a pilot clinical comparative trial. ACTA ACUST UNITED AC 2019; 64:135-145. [PMID: 29874190 DOI: 10.1515/bmt-2017-0103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
There is no agreement on gold standard method for positive end-expiratory pressure (PEEP) titration. Electrical impedance tomography (EIT) may aid in finding the optimal PEEP level. In this pilot trial, we investigated potential differences in the suggested optimal PEEP (BestPEEP) as derived by respiratory compliance and EIT-derived parameters. We examined if compliance-derived PEEP differs with regard to the regional ventilation distribution in relation to atelectasis and hyperinflation. Measurements were performed during an incremental/decremental PEEP trial in 15 ventilated intensive care patients suffering from mild-to-moderate impairment of oxygenation due to sepsis, pneumonia, trauma and metabolic and ischemic disorders. Measurement agreement was analyzed using Bland-Altman plots. We observed a diversity of EIT-derived and compliance-based optimal PEEP in the evaluated patients. BestPEEPCompliance did not necessarily correspond to the BestPEEPODCL with the least regional overdistension and collapse. The collapsed area was significantly smaller when the overdistension/collapse index was used for PEEP definition (p=0.022). Our results showed a clinically relevant difference in the suggested optimal PEEP levels when using different parameters for PEEP titration. The compliance-derived PEEP level revealed a higher proportion of residual regional atelectasis as compared to EIT-based PEEP.
Collapse
Affiliation(s)
- Jan Karsten
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Nicolas Voigt
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Hans-Joerg Gillmann
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Stueber
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
18
|
Zhao Z, Lee LC, Chang MY, Frerichs I, Chang HT, Gow CH, Hsu YL, Möller K. The incidence and interpretation of large differences in EIT-based measures for PEEP titration in ARDS patients. J Clin Monit Comput 2019; 34:1005-1013. [PMID: 31587120 DOI: 10.1007/s10877-019-00396-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022]
Abstract
Positive end-expiratory pressure (PEEP) can be titrated by electrical impedance tomography (EIT). The aim of the present study was to examine the performance of different EIT measures during PEEP trials with the aim of identifying "optimum" PEEP and to provide possible interpretations of largely diverging results. After recruitment (maximum plateau pressure 35 cmH2O), decremental PEEP trial with steps of 2 cmH2O and duration of 2 min per step was performed. Ventilation gain and loss, the global inhomogeneity (GI) index, trend of end-expiratory lung impedance (EELI) and regional compliance (Creg) for estimation of overdistension and collapse were calculated. Largely diverging results of PEEP selection among the measures were defined as differences ≥ 4 PEEP steps (i.e. ≥ 8 cmH2O). In 30 ARDS patients we examined so far, 3 patients showed significant differences in PEEP selections. Overdistension and collapse estimation based on Creg tended to select lower PEEP while the GI index and EELI trend suggested higher PEEP settings. Regional inspiration times were heterogeneous indicating that the assumption of a uniform driving pressure in the calculation of Creg may not be valid. Judging by the predominant ventilation distribution in the most dependent regions, these patients were non-recruitable with the applied recruitment method or pressure levels. The existence of differences in the recommended PEEP among the analyzed EIT measures might be an indicator of non-recruitable lungs and heterogeneous airway resistances. In these extreme cases, the largely diverging results may prompt the attending clinician to develop individual ventilation strategies.Clinical Trial Registration Registration number NCT03112512, https://clinicaltrials.gov/ Registered 13 April 2017.
Collapse
Affiliation(s)
- Zhanqi Zhao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.,Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Li-Chung Lee
- Department of Internal Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City, Taiwan
| | - Mei-Yun Chang
- Department of Internal Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City, Taiwan
| | - Inez Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre of Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Hou-Tai Chang
- Department of Internal Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City, Taiwan.
| | - Chien-Hung Gow
- Department of Internal Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City, Taiwan
| | - Yeong-Long Hsu
- Department of Internal Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City, Taiwan. .,Department of Healthcare Management, College of Medical Technology and Nursing, Yuanpei University of Medical Technology, No. 306 Yuanpei Street, Hsinchu, Taiwan.
| | - Knut Möller
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| |
Collapse
|
19
|
Milne S, Huvanandana J, Nguyen C, Duncan JM, Chapman DG, Tonga KO, Zimmermann SC, Slattery A, King GG, Thamrin C. Time-based pulmonary features from electrical impedance tomography demonstrate ventilation heterogeneity in chronic obstructive pulmonary disease. J Appl Physiol (1985) 2019; 127:1441-1452. [PMID: 31556831 DOI: 10.1152/japplphysiol.00304.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary electrical impedance tomography (EIT) is a functional imaging technique that allows real-time monitoring of ventilation distribution. Ventilation heterogeneity (VH) is a characteristic feature of chronic obstructive pulmonary disease (COPD) and has previously been quantified using features derived from tidal variations in the amplitude of the EIT signal. However, VH may be better described by time-based metrics, the measurement of which is made possible by the high temporal resolution of EIT. We aimed 1) to quantify VH using novel time-based EIT metrics and 2) to determine the physiological relevance of these metrics by exploring their relationships with complex lung mechanics measured by the forced oscillation technique (FOT). We performed FOT, spirometry, and tidal-breathing EIT measurements in 11 healthy controls and 9 volunteers with COPD. Through offline signal processing, we derived 3 features from the impedance-time (Z-t) curve for each image pixel: 1) tE, mean expiratory time; 2) PHASE, mean time difference between pixel and global Z-t curves; and 3) AMP, mean amplitude of Z-t curve tidal variation. Distribution was quantified by the coefficient of variation (CV) and the heterogeneity index (HI). Both CV and HI of the tE and PHASE features were significantly increased in COPD compared with controls, and both related to spirometry and FOT resistance and reactance measurements. In contrast, distribution of the AMP feature showed no relationships with lung mechanics. These novel time-based EIT metrics of VH reflect complex lung mechanics in COPD and have the potential to allow real-time visualization of pulmonary physiology in spontaneously breathing subjects.NEW & NOTEWORTHY Pulmonary electrical impedance tomography (EIT) is a real-time imaging technique capable of monitoring ventilation with exquisite temporal resolution. We report novel, time-based EIT measurements that not only demonstrate ventilation heterogeneity in chronic obstructive pulmonary disease (COPD), but also reflect oscillatory lung mechanics. These EIT measurements are noninvasive, radiation-free, easy to obtain, and provide real-time visualization of the complex pathophysiology of COPD.
Collapse
Affiliation(s)
- Stephen Milne
- Airway Physiology and Imaging Group and Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Respiratory Medicine, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia.,Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacqueline Huvanandana
- Airway Physiology and Imaging Group and Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Chinh Nguyen
- Airway Physiology and Imaging Group and Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Joseph M Duncan
- Department of Respiratory Medicine, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
| | - David G Chapman
- Airway Physiology and Imaging Group and Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.,Translational Airways Group, School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Katrina O Tonga
- Airway Physiology and Imaging Group and Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine, the University of New South Wales, Kensington, New South Wales, Australia
| | - Sabine C Zimmermann
- Airway Physiology and Imaging Group and Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Respiratory Medicine, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
| | - Alexander Slattery
- Department of Respiratory Medicine, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
| | - Gregory G King
- Airway Physiology and Imaging Group and Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Respiratory Medicine, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia.,Centre of Excellence in Severe Asthma, New Lambton, New South Wales, Australia
| | - Cindy Thamrin
- Airway Physiology and Imaging Group and Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Electrical Impedance Tomography for Cardio-Pulmonary Monitoring. J Clin Med 2019; 8:jcm8081176. [PMID: 31394721 PMCID: PMC6722958 DOI: 10.3390/jcm8081176] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Electrical impedance tomography (EIT) is a bedside monitoring tool that noninvasively visualizes local ventilation and arguably lung perfusion distribution. This article reviews and discusses both methodological and clinical aspects of thoracic EIT. Initially, investigators addressed the validation of EIT to measure regional ventilation. Current studies focus mainly on its clinical applications to quantify lung collapse, tidal recruitment, and lung overdistension to titrate positive end-expiratory pressure (PEEP) and tidal volume. In addition, EIT may help to detect pneumothorax. Recent studies evaluated EIT as a tool to measure regional lung perfusion. Indicator-free EIT measurements might be sufficient to continuously measure cardiac stroke volume. The use of a contrast agent such as saline might be required to assess regional lung perfusion. As a result, EIT-based monitoring of regional ventilation and lung perfusion may visualize local ventilation and perfusion matching, which can be helpful in the treatment of patients with acute respiratory distress syndrome (ARDS).
Collapse
|
21
|
Muders T, Hentze B, Simon P, Girrbach F, Doebler MRG, Leonhardt S, Wrigge H, Putensen C. A Modified Method to Assess Tidal Recruitment by Electrical Impedance Tomography. J Clin Med 2019; 8:E1161. [PMID: 31382559 PMCID: PMC6723902 DOI: 10.3390/jcm8081161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Avoiding tidal recruitment and collapse during mechanical ventilation should reduce the risk of lung injury. Electrical impedance tomography (EIT) enables detection of tidal recruitment by measuring regional ventilation delay inhomogeneity (RVDI) during a slow inflation breath with a tidal volume (VT) of 12 mL/kg body weight (BW). Clinical applicability might be limited by such high VTs resulting in high end-inspiratory pressures (PEI) during positive end-expiratory pressure (PEEP) titration. We hypothesized that RVDI can be obtained with acceptable accuracy from reduced slow inflation VTs. In seven ventilated pigs with experimental lung injury, tidal recruitment was quantified by computed tomography at PEEP levels changed stepwise between 0 and 25 cmH2O. RVDI was measured by EIT during slow inflation VTs of 12, 9, 7.5, and 6 mL/kg BW. Linear correlation of tidal recruitment and RVDI was excellent for VTs of 12 (R2 = 0.83, p < 0.001) and 9 mL/kg BW (R2 = 0.83, p < 0.001) but decreased for VTs of 7.5 (R2 = 0.76, p < 0.001) and 6 mL/kg BW (R2 = 0.71, p < 0.001). With any reduction in slow inflation VT, PEI decreased at all PEEP levels. Receiver-Operator-Characteristic curve analyses revealed that RVDI-thresholds to predict distinct amounts of tidal recruitment differ when obtained from different slow inflation VTs. In conclusion, tidal recruitment can sufficiently be monitored by EIT-based RVDI-calculation with a slow inflation of 9 mL/kg BW.
Collapse
Affiliation(s)
- Thomas Muders
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn 53127, Germany.
| | - Benjamin Hentze
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn 53127, Germany
- Chair for Medical Information Technology, RWTH Aachen University, Aachen 52074, Germany
| | - Philipp Simon
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Felix Girrbach
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Michael R G Doebler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn 53127, Germany
| | - Steffen Leonhardt
- Chair for Medical Information Technology, RWTH Aachen University, Aachen 52074, Germany
| | - Hermann Wrigge
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital Halle, Halle 06112, Germany
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn 53127, Germany
| |
Collapse
|
22
|
Integrated EIT system for functional lung ventilation imaging. Biomed Eng Online 2019; 18:83. [PMID: 31345220 PMCID: PMC6659234 DOI: 10.1186/s12938-019-0701-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background Electrical impedance tomography (EIT) has been used for functional lung imaging of regional air distributions during mechanical ventilation in intensive care units (ICU). From numerous clinical and animal studies focusing on specific lung functions, a consensus about how to use the EIT technique has been formed lately. We present an integrated EIT system implementing the functions proposed in the consensus. The integrated EIT system could improve the usefulness when monitoring of mechanical ventilation for lung protection so that it could facilitate the clinical acceptance of this new technique. Methods Using a custom-designed 16-channel EIT system with 50 frames/s temporal resolution, the integrated EIT system software was developed to implement five functional images and six EIT measures that can be observed in real-time screen view and analysis screen view mode, respectively. We evaluated the performance of the integrated EIT system with ten mechanically ventilated porcine subjects in normal and disease models. Results Quantitative and simultaneous imaging of tidal volume (TV), end-expiratory lung volume change (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\triangle$$\end{document}▵EELV), compliance, ventilation delay, and overdistension/collapse images were performed. Clinically useful parameters were successfully extracted including anterior/posterior ventilation ratio (A/P ratio), center of ventilation (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{CoV}}_{{x}}$$\end{document}CoVx, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{CoV}}_{{y}}$$\end{document}CoVy), global inhomogeneity (GI), coefficient of variation (CV), ventilation delay and percentile of overdistension/collapse. The integrated EIT system was demonstrated to suggest an optimal positive end-expiratory pressure (PEEP) for lung protective ventilation in normal and in the disease model of an acute injury. Optimal PEEP for normal and disease model was 2.3 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$7.9 \, {\mathrm{cmH}}_{2}\mathrm{O}$$\end{document}7.9cmH2O, respectively. Conclusions The proposed integrated approach for functional lung ventilation imaging could facilitate clinical acceptance of the bedside EIT imaging method in ICU. Future clinical studies of applying the proposed methods to human subjects are needed to show the clinical significance of the method for lung protective mechanical ventilation and mechanical ventilator weaning in ICU.
Collapse
|
23
|
Victor M, Melo J, Roldán R, Nakamura M, Tucci M, Costa E, Amato M, Yoneyama T, Tanaka H. Modelling approach to obtain regional respiratory mechanics using electrical impedance tomography and volume-dependent elastance model. Physiol Meas 2019; 40:045001. [PMID: 30921784 DOI: 10.1088/1361-6579/ab144a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE This paper presents a method for breath-by-breath estimation of regional respiratory mechanics without the need for special manoeuvres (such as inspiratory pause or low-flow inflation) using electrical impedance tomography (EIT) associated with pressure/airflow waveforms. APPROACH We developed a method to estimate regional parameters using the regional impedance fraction, by multiplying it by global flow and volume waveforms. A volume-dependent elastance model was used to obtain compliance, resistance, volume-independent (E 1), and volume-dependent (E 2) components. Three swine under invasive mechanical ventilation were used to assess internal consistency and illustrate potential applications of our method. One animal (case 1) was ventilated with a broad range of tidal volumes to compare the consistency between regional and global resistances and compliances. Two other animals (cases 2 and 3) had respiratory compliance decreased, respectively, by overdistension and collapse as quantified by x-ray computed tomography. MAIN RESULTS In case 1, derived global estimates obtained from the independent regional estimates were strongly associated with direct measurements of global mechanics (correlation coefficients of 0.9976 and 0.9981 for compliances and resistances, respectively), suggesting consistency of our modelling. In cases 2 and 3, the development of lung overdistension and collapse over time was captured by regional estimates. CONCLUSIONS Using EIT and pressure/airflow waveforms, regional respiratory parameters can be obtained cycle-by-cycle, refining lung function monitoring. SIGNIFICANCE The method allows real-time monitoring of regional parameters and their trends over time, which might be helpful to differentiate deterioration in lung compliance due to overdistension or collapse.
Collapse
Affiliation(s)
- M Victor
- Electronics Engineering Department, Aeronautics Institute of Technology, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vasques F, Sanderson B, Barrett NA, Camporota L. Monitoring of regional lung ventilation using electrical impedance tomography. Minerva Anestesiol 2019; 85:1231-1241. [PMID: 30945516 DOI: 10.23736/s0375-9393.19.13477-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among recent lung imaging techniques and devices, electrical impedance tomography (EIT) can provide dynamic information on the distribution regional lung ventilation. EIT images possess a high temporal and functional resolution allowing the visualization of dynamic physiological and pathological changes on a breath-by-breath basis. EIT detects changes in electric impedance (i.e., changes in gas/fluid ratio) and describes them in real time, both visually through images and waveforms, and numerically, allowing the clinician to monitor disease evolution and response to treatment. The use of EIT in clinical practice is supported by several studies demonstrating a good correlation between impedance tomography data and other validated methods of measuring lung volume. In this review, we will provide an overview on the rationale, basic functioning and most common applications of EIT in the management of mechanically ventilated patients.
Collapse
Affiliation(s)
- Francesco Vasques
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK.,Division of Centre of Human Applied Physiological Sciences, King's College London, London, UK
| | - Barnaby Sanderson
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK.,Division of Centre of Human Applied Physiological Sciences, King's College London, London, UK
| | - Nicholas A Barrett
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK.,Division of Centre of Human Applied Physiological Sciences, King's College London, London, UK
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK - .,Division of Centre of Human Applied Physiological Sciences, King's College London, London, UK
| |
Collapse
|
25
|
Frerichs I, Dargaville PA, Rimensberger PC. Regional pulmonary effects of bronchoalveolar lavage procedure determined by electrical impedance tomography. Intensive Care Med Exp 2019; 7:11. [PMID: 30771111 PMCID: PMC6377686 DOI: 10.1186/s40635-019-0225-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Background The provision of guidance in ventilator therapy by continuous monitoring of regional lung ventilation, aeration and respiratory system mechanics is the main clinical benefit of electrical impedance tomography (EIT). A new application was recently described in critically ill patients undergoing diagnostic bronchoalveolar lavage (BAL) with the intention of using EIT to identify the region where sampling was performed. Increased electrical bioimpedance was reported after fluid instillation. To verify the accuracy of these findings, contradicting the current EIT knowledge, we have systematically analysed chest EIT data acquired under controlled experimental conditions in animals undergoing a large number of BAL procedures. Methods One hundred thirteen BAL procedures were performed in 13 newborn piglets positioned both supine and prone. EIT data was obtained at 13 images before, during and after each BAL. The data was analysed at three time points: (1) after disconnection from the ventilator before the fluid instillation and by the ends of fluid (2) instillation and (3) recovery by suction and compared with the baseline measurements before the procedure. Functional EIT images were generated, and changes in pixel electrical bioimpedance were calculated relative to baseline. The data was examined in the whole image and in three (ventral, middle, dorsal) regions-of-interest per lung. Results Compared with the baseline phase, chest electrical bioimpedance fell after the disconnection from the ventilator in all animals in both postures during all procedures. The fluid instillation further decreased electrical bioimpedance. During fluid recovery, electrical bioimpedance increased, but not to baseline values. All effects were highly significant (p < 0.001). The fractional changes in individual regions-of-interest were posture-dependent. The regional fall in electrical bioimpedance was smaller in the ventral and larger in the dorsal regions after the fluid instillation than after the initial disconnection to ambient pressure in supine animals (p < 0.001) whereas these changes were of comparable amplitude in prone position. Conclusions The results of this study show a regionally dissimilar initial fall in electrical bioimpedance caused by non-uniform aeration loss at the beginning of the BAL procedure. They also confirm a further pronounced fall in bioimpedance during fluid instillation, incomplete recovery after suction and a posture-dependent distribution pattern of these effects. Electronic supplementary material The online version of this article (10.1186/s40635-019-0225-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inéz Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
| | - Peter A Dargaville
- Neonatal and Paediatric Intensive Care Unit, Royal Hobart Hospital, Hobart, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Peter C Rimensberger
- Pediatric and Neonatal Intensive Care Unit, Children's Hospital, University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Shono A, Kotani T. Clinical implication of monitoring regional ventilation using electrical impedance tomography. J Intensive Care 2019; 7:4. [PMID: 30680219 PMCID: PMC6339287 DOI: 10.1186/s40560-019-0358-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/09/2019] [Indexed: 11/10/2022] Open
Abstract
Mechanical ventilation can initiate ventilator-associated lung injury (VALI) and contribute to the development of multiple organ dysfunction. Although a lung protective strategy limiting both tidal volume and plateau pressure reduces VALI, uneven intrapulmonary gas distribution is still capable of increasing regional stress and strain, especially in non-homogeneous lungs, such as during acute respiratory distress syndrome. Real-time monitoring of regional ventilation may prevent inhomogeneous ventilation, leading to a reduction in VALI. Electrical impedance tomography (EIT) is a technique performed at the patient's bedside. It is noninvasive and radiation-free and provides dynamic tidal images of gas distribution. Studies have reported that EIT provides useful information both in animal and clinical studies during mechanical ventilation. EIT has been shown to be useful during lung recruitment, titration of positive end-expiratory pressure, lung volume estimation, and evaluation of homogeneity of gas distribution in a single EIT measure or in combination with multiple EIT measures. EIT-guided mechanical ventilation preserved the alveolar architecture and maintained oxygenation and lung mechanics better than low-tidal volume ventilation in animal models. However, careful assessment is required for data analysis owing to the limited understanding of the results of EIT interpretation. Previous studies indicate monitoring regional ventilation by EIT is feasible in the intensive care setting and has potential to lead to lung protective ventilation. Further clinical studies are warranted to evaluate whether monitoring of regional ventilation using EIT can shorten the duration of ventilation or improve mortality in patients with acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Atsuko Shono
- 1Department of Anesthesiology, Shimane University, 89-1 Enya-cho, Izumo City, Shimane 693-8501 Japan
| | - Toru Kotani
- 2Department of Intensive Care Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666 Japan
| |
Collapse
|
27
|
Positive end-expiratory pressure titration with electrical impedance tomography and pressure-volume curve in severe acute respiratory distress syndrome. Ann Intensive Care 2019; 9:7. [PMID: 30656479 PMCID: PMC6336593 DOI: 10.1186/s13613-019-0484-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The study objective was to compare titration of positive end-expiratory pressure (PEEP) with electrical impedance tomography (EIT) and with ventilator-embedded pressure-volume loop in severe acute respiratory distress syndrome (ARDS). METHODS We have designed a prospective study with historical control group. Twenty-four severe ARDS patients (arterial oxygen partial pressure to fractional inspired oxygen ratio, PaO2/FiO2 < 100 mmHg) were included in the EIT group and examined prospectively. Data from another 31 severe ARDS patients were evaluated retrospectively (control group). All patients were receiving medical care under identical general support guidelines and protective mechanical ventilation. The PEEP level selected in the EIT group was the intercept point of cumulated collapse and overdistension percentages curves. In the control group, optimal PEEP was selected 2 cmH2O above the lower inflection point on the static pressure-volume curve. RESULTS Patients in the EIT group were younger (P < 0.05), and their mean plateau pressure was 1.5 cmH2O higher (P < 0.01). No differences in other baseline parameters such as APACHE II score, PaO2/FiO2, initial PEEP, driving pressure, tidal volume, and respiratory system compliance were found. Two hours after the first PEEP titration, significantly higher PEEP, compliance, and lower driving pressure were found in the EIT group (P < 0.01). Hospital survival rates were 66.7% (16 of 24 patients) in the EIT group and 48.4% (15 of 31) in the control group. Identical rates were found regarding the weaning success rate: 66.7% in the EIT group and 48.4% in the control group. CONCLUSION In severe ARDS patients, it was feasible and safe to guide PEEP titration with EIT at the bedside. As compared with pressure-volume curve, the EIT-guided PEEP titration may be associated with improved oxygenation, compliance, driving pressure, and weaning success rate. The findings encourage further randomized control study with a larger sample size and potentially less bias in the baseline data. Trial Registration NCT03112512.
Collapse
|
28
|
Eichler L, Mueller J, Grensemann J, Frerichs I, Zöllner C, Kluge S. Lung aeration and ventilation after percutaneous tracheotomy measured by electrical impedance tomography in non-hypoxemic critically ill patients: a prospective observational study. Ann Intensive Care 2018; 8:110. [PMID: 30443867 PMCID: PMC6238017 DOI: 10.1186/s13613-018-0454-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022] Open
Abstract
Background Percutaneous dilatational tracheotomy (PDT) may lead to transient impairment of pulmonary function due to suboptimal ventilation, loss of positive end-expiratory pressure (PEEP) and repetitive suction maneuvers during the procedure. Possible changes in regional lung aeration were investigated using electrical impedance tomography (EIT), an increasingly implied instrument for bedside monitoring of pulmonary aeration. Methods With local ethics committee approval, after obtaining written informed consent 29 patients scheduled for elective PDT under bronchoscopic control were studied during mechanical ventilation in supine position. Anesthetized patients were monitored with a 16-electrode EIT monitor for 2 min at four time points: (a) before and (b) after initiation of neuromuscular blockade (NMB), (c) after dilatational tracheostomy (PDT) and (d) after a standardized recruitment maneuver (RM) following surgery, respectively. Possible changes in lung aeration were detected by changes in end-expiratory lung impedance (Δ EELI). Global and regional ventilation was characterized by analysis of tidal impedance variation. Results While NMB had no detectable effect on EELI, PDT led to significantly reduced EELI in dorsal lung regions as compared to baseline, suggesting reduced regional aeration. This effect could be reversed by a standardized RM. Mean delta EELI from baseline (SE) was: NMB − 47 ± 62; PDT − 490 ± 180; RM − 89 ± 176, values shown as arbitrary units (a.u.). Analysis of regional tidal impedance variation, a robust measure of regional ventilation, did not show significant changes in ventilation distribution. Conclusion Though changes of EELI might suggest temporary loss of aeration in dorsal lung regions, PDT does not lead to significant changes in either regional ventilation distribution or oxygenation.
Collapse
Affiliation(s)
- Lars Eichler
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251, Hamburg, Germany.
| | - Jakob Mueller
- Section of Anesthesiology, Tabea Hospital, Hamburg, Germany
| | - Jörn Grensemann
- Department of Intensive Care Medicine, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Inez Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig Holstein, Campus Kiel, Kiel, Germany
| | - Christian Zöllner
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20251, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Major VJ, Chiew YS, Shaw GM, Chase JG. Biomedical engineer's guide to the clinical aspects of intensive care mechanical ventilation. Biomed Eng Online 2018; 17:169. [PMID: 30419903 PMCID: PMC6233601 DOI: 10.1186/s12938-018-0599-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/01/2018] [Indexed: 12/16/2022] Open
Abstract
Background Mechanical ventilation is an essential therapy to support critically ill respiratory failure patients. Current standards of care consist of generalised approaches, such as the use of positive end expiratory pressure to inspired oxygen fraction (PEEP–FiO2) tables, which fail to account for the inter- and intra-patient variability between and within patients. The benefits of higher or lower tidal volume, PEEP, and other settings are highly debated and no consensus has been reached. Moreover, clinicians implicitly account for patient-specific factors such as disease condition and progression as they manually titrate ventilator settings. Hence, care is highly variable and potentially often non-optimal. These conditions create a situation that could benefit greatly from an engineered approach. The overall goal is a review of ventilation that is accessible to both clinicians and engineers, to bridge the divide between the two fields and enable collaboration to improve patient care and outcomes. This review does not take the form of a typical systematic review. Instead, it defines the standard terminology and introduces key clinical and biomedical measurements before introducing the key clinical studies and their influence in clinical practice which in turn flows into the needs and requirements around how biomedical engineering research can play a role in improving care. Given the significant clinical research to date and its impact on this complex area of care, this review thus provides a tutorial introduction around the review of the state of the art relevant to a biomedical engineering perspective. Discussion This review presents the significant clinical aspects and variables of ventilation management, the potential risks associated with suboptimal ventilation management, and a review of the major recent attempts to improve ventilation in the context of these variables. The unique aspect of this review is a focus on these key elements relevant to engineering new approaches. In particular, the need for ventilation strategies which consider, and directly account for, the significant differences in patient condition, disease etiology, and progression within patients is demonstrated with the subsequent requirement for optimal ventilation strategies to titrate for patient- and time-specific conditions. Conclusion Engineered, protective lung strategies that can directly account for and manage inter- and intra-patient variability thus offer great potential to improve both individual care, as well as cohort clinical outcomes.
Collapse
Affiliation(s)
- Vincent J Major
- Department of Population Health, NYU Langone Health, New York, NY, USA.
| | - Yeong Shiong Chiew
- School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
| | - Geoffrey M Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| | - J Geoffrey Chase
- Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
30
|
Franchineau G, Bréchot N, Lebreton G, Hekimian G, Nieszkowska A, Trouillet JL, Leprince P, Chastre J, Luyt CE, Combes A, Schmidt M. Bedside Contribution of Electrical Impedance Tomography to Setting Positive End-Expiratory Pressure for Extracorporeal Membrane Oxygenation–treated Patients with Severe Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2017; 196:447-457. [DOI: 10.1164/rccm.201605-1055oc] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Guillaume Franchineau
- INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Université Pierre et Marie Curie Univ Paris 06, Paris, France; and
- Medical Intensive Care Unit and
| | - Nicolas Bréchot
- INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Université Pierre et Marie Curie Univ Paris 06, Paris, France; and
- Medical Intensive Care Unit and
| | - Guillaume Lebreton
- INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Université Pierre et Marie Curie Univ Paris 06, Paris, France; and
- Cardiac Surgery Department, Assistance Publique–Hôpitaux de Paris, Pitié–Salpêtrière Hospital, Paris, France
| | - Guillaume Hekimian
- INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Université Pierre et Marie Curie Univ Paris 06, Paris, France; and
- Medical Intensive Care Unit and
| | - Ania Nieszkowska
- INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Université Pierre et Marie Curie Univ Paris 06, Paris, France; and
- Medical Intensive Care Unit and
| | - Jean-Louis Trouillet
- INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Université Pierre et Marie Curie Univ Paris 06, Paris, France; and
- Medical Intensive Care Unit and
| | - Pascal Leprince
- INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Université Pierre et Marie Curie Univ Paris 06, Paris, France; and
- Cardiac Surgery Department, Assistance Publique–Hôpitaux de Paris, Pitié–Salpêtrière Hospital, Paris, France
| | - Jean Chastre
- INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Université Pierre et Marie Curie Univ Paris 06, Paris, France; and
- Medical Intensive Care Unit and
| | - Charles-Edouard Luyt
- INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Université Pierre et Marie Curie Univ Paris 06, Paris, France; and
- Medical Intensive Care Unit and
| | - Alain Combes
- INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Université Pierre et Marie Curie Univ Paris 06, Paris, France; and
- Medical Intensive Care Unit and
| | - Matthieu Schmidt
- INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Université Pierre et Marie Curie Univ Paris 06, Paris, France; and
- Medical Intensive Care Unit and
| |
Collapse
|
31
|
Bhatia R, Davis PG, Tingay DG. Regional Volume Characteristics of the Preterm Infant Receiving First Intention Continuous Positive Airway Pressure. J Pediatr 2017; 187:80-88.e2. [PMID: 28545875 DOI: 10.1016/j.jpeds.2017.04.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/27/2017] [Accepted: 04/21/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To determine whether applying nasal continuous positive airway pressure (CPAP) using systematic changes in continuous distending pressure (CDP) results in a quasi-static pressure-volume relationship in very preterm infants receiving first intention CPAP in the first 12-18 hours of life. STUDY DESIGN Twenty infants at <32 weeks' gestation with mild respiratory distress syndrome (RDS) managed exclusively with nasal CPAP had CDP increased from 5 to 8 to 10 cmH2O, and then decreased to 8 cmH2O and returned to baseline CDP. Each CDP was maintained for 20 min. At each CDP, relative impedance change in end-expiratory thoracic volume (ΔZEEV) and tidal volume (ΔZVT) were measured using electrical impedance tomography. Esophageal pressure (Poes) was measured as a proxy for intrapleural pressure to determine transpulmonary pressure (Ptp). RESULTS Overall, there was a relationship between Ptp and global ΔZEEV representing the pressure-volume relationship in the lungs. There were regional variations in ΔZEEV, with 13 infants exhibiting hysteresis with the greatest gains in EEV and tidal volume in the dependent lung with no hemodynamic compromise. Seven infants did not demonstrate hysteresis during decremental CDP changes. CONCLUSION It was possible to define a pressure-volume relationship of the lung and demonstrate reversal of atelectasis by systematically manipulating CDP in most very preterm infants with mild RDS. This suggests that CDP manipulation can be used to optimize the volume state of the preterm lung.
Collapse
Affiliation(s)
- Risha Bhatia
- Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Neonatal Research, Murdoch Childrens Research Institute, Melbourne, Australia; The University of Melbourne, Melbourne, Australia; Monash Newborn, Monash Children's Hospital, Melbourne, Australia.
| | - Peter G Davis
- Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Neonatal Research, Murdoch Childrens Research Institute, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - David G Tingay
- Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Neonatal Research, Murdoch Childrens Research Institute, Melbourne, Australia; The University of Melbourne, Melbourne, Australia; Department of Neonatology, The Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|
32
|
Ball L, Vercesi V, Costantino F, Chandrapatham K, Pelosi P. Lung imaging: how to get better look inside the lung. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:294. [PMID: 28828369 DOI: 10.21037/atm.2017.07.20] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the last years, imaging has played a key role in the diagnosis and monitoring and critical illness, including acute respiratory distress syndrome (ARDS). Chest X-ray (CXR) and computed tomography (CT) are the conventional techniques most performed in the critically ill patients, the latter being the gold standard to assess lung aeration in ARDS patients. In addition, two bedside techniques are now gaining popularity alongside the conventional ones: lung ultrasound (LUS) and electrical impedance tomography (EIT). These techniques do not involve the use of ionizing radiations, are non-invasive and relatively easy to use, and are under extensive investigation as a complement, and for some application a substitution of conventional techniques. At last, positron emission tomography (PET) and magnetic resonance imaging (MRI) can provide functional information on the lung and respiratory function, and are increasingly used in research to improve the understanding of the pathophysiological mechanisms underlying ARDS. The purpose of this review is to give an up-to-date overview of the conventional and emerging imaging techniques available the diagnosis and management of patients with ARDS.
Collapse
Affiliation(s)
- Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa, Italy
| | - Veronica Vercesi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa, Italy
| | - Federico Costantino
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa, Italy
| | - Karthikka Chandrapatham
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa, Italy
| |
Collapse
|
33
|
Mapping Regional Differences of Local Pressure-Volume Curves With Electrical Impedance Tomography. Crit Care Med 2017; 45:679-686. [DOI: 10.1097/ccm.0000000000002233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Zannin E, Doni D, Ventura ML, Fedeli T, Rigotti C, Dellacá RL, Tagliabue PE. Relationship between Mean Airways Pressure, Lung Mechanics, and Right Ventricular Output during High-Frequency Oscillatory Ventilation in Infants. J Pediatr 2017; 180:110-115. [PMID: 27745747 DOI: 10.1016/j.jpeds.2016.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/28/2016] [Accepted: 09/08/2016] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To characterize changes in lung mechanics and right ventricular output (RVO) during incremental/decremental continuous distending pressure (CDP) maneuvers in newborn infants receiving high-frequency oscillatory ventilation, with the aim of evaluating when open lung maneuvers are needed and whether they are beneficial. STUDY DESIGN Thirteen infants on high-frequency oscillatory ventilation were studied with a median (IQR) gestational age of 261 (253-291) weeks and median (IQR) body weight of 810 (600-1020) g. CDP was increased stepwise from 8 cmH2O to a maximum pressure and subsequently decreased until oxygenation deteriorated or a CDP of 8 cmH2O was reached. The lowest CDP that maintained good oxygenation was considered the clinically optimal CDP. At each CDP, the following variables were evaluated: oxygenation, respiratory system reactance (Xrs), and RVO by Doppler echocardiography. RESULTS At maximal CDP reached during the trial, 19 [1] cmH2O (mean [SEM]), oxygenation markedly improved, and Xrs and RVO decreased. During deflation, oxygenation remained stable over a wide range of CDP settings, Xrs returned to the baseline values, and RVO increased but the baseline values were not readily restored in all patients. CONCLUSION These results suggest that Xrs and RVO are more sensitive than oxygenation to overdistension and they may be useful in clinical practice to guide open lung maneuvers.
Collapse
Affiliation(s)
- Emanuela Zannin
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano University, Milan, Italy
| | - Daniela Doni
- Neonatal Intensive Care Unit, Fondazione MBBM, Monza, Italy
| | | | - Tiziana Fedeli
- Neonatal Intensive Care Unit, Fondazione MBBM, Monza, Italy
| | | | - Raffaele L Dellacá
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano University, Milan, Italy
| | | |
Collapse
|
35
|
Tingay DG, Rajapaksa A, Zannin E, Pereira-Fantini PM, Dellaca RL, Perkins EJ, Zonneveld CEE, Adler A, Black D, Frerichs I, Lavizzari A, Sourial M, Grychtol B, Mosca F, Davis PG. Effectiveness of individualized lung recruitment strategies at birth: an experimental study in preterm lambs. Am J Physiol Lung Cell Mol Physiol 2016; 312:L32-L41. [PMID: 27881405 DOI: 10.1152/ajplung.00416.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/20/2016] [Indexed: 02/02/2023] Open
Abstract
Respiratory transition at birth involves rapidly clearing fetal lung liquid and preventing efflux back into the lung while aeration is established. We have developed a sustained inflation (SIOPT) individualized to volume response and a dynamic tidal positive end-expiratory pressure (PEEP) (open lung volume, OLV) strategy that both enhance this process. We aimed to compare the effect of each with a group managed with PEEP of 8 cmH2O and no recruitment maneuver (No-RM), on gas exchange, lung mechanics, spatiotemporal aeration, and lung injury in 127 ± 1 day preterm lambs. Forty-eight fetal-instrumented lambs exposed to antenatal steroids were ventilated for 60 min after application of the allocated strategy. Spatiotemporal aeration and lung mechanics were measured with electrical impedance tomography and forced-oscillation, respectively. At study completion, molecular and histological markers of lung injury were analyzed. Mean (SD) aeration at the end of the SIOPT and OLV groups was 32 (22) and 38 (15) ml/kg, compared with 17 (10) ml/kg (180 s) in the No-RM (P = 0.024, 1-way ANOVA). This translated into better oxygenation at 60 min (P = 0.047; 2-way ANOVA) resulting from better distal lung tissue aeration in SIOPT and OLV. There was no difference in lung injury. Neither SIOPT nor OLV achieved homogeneous aeration. Histological injury and mRNA biomarker upregulation were more likely in the regions with better initial aeration, suggesting volutrauma. Tidal ventilation or an SI achieves similar aeration if optimized, suggesting that preventing fluid efflux after lung liquid clearance is at least as important as fluid clearance during the initial inflation at birth.
Collapse
Affiliation(s)
- David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia; .,Neonatology, The Royal Children's Hospital, Parkville, Australia.,Neonatal Research, The Royal Women's Hospital, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Anushi Rajapaksa
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Emanuela Zannin
- TBM Laboratory, Dipartimento di Elettronica, Informazione e Ingegneria Biomedica-DEIB, Politecnico di Milano University, Milano, Italy
| | - Prue M Pereira-Fantini
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Raffaele L Dellaca
- TBM Laboratory, Dipartimento di Elettronica, Informazione e Ingegneria Biomedica-DEIB, Politecnico di Milano University, Milano, Italy
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia.,Neonatology, The Royal Children's Hospital, Parkville, Australia
| | | | - Andy Adler
- Systems and Computer Engineering, Carleton University, Ottawa, Canada
| | - Don Black
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia
| | - Inéz Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anna Lavizzari
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia.,NICU, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico-Università degli Studi di Milano, Milano, Italy
| | - Magdy Sourial
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia
| | - Bartłomiej Grychtol
- Fraunhofer Project Group for Automation in Medicine and Biotechnology, Mannheim, Germany; and
| | - Fabio Mosca
- NICU, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico-Università degli Studi di Milano, Milano, Italy
| | - Peter G Davis
- Neonatal Research, Murdoch Children's Research Institute, Parkville, Australia.,Neonatal Research, The Royal Women's Hospital, Parkville, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
36
|
Frerichs I, Amato MBP, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, Bodenstein M, Gagnon H, Böhm SH, Teschner E, Stenqvist O, Mauri T, Torsani V, Camporota L, Schibler A, Wolf GK, Gommers D, Leonhardt S, Adler A. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax 2016; 72:83-93. [PMID: 27596161 PMCID: PMC5329047 DOI: 10.1136/thoraxjnl-2016-208357] [Citation(s) in RCA: 496] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 11/04/2022]
Abstract
Electrical impedance tomography (EIT) has undergone 30 years of development. Functional chest examinations with this technology are considered clinically relevant, especially for monitoring regional lung ventilation in mechanically ventilated patients and for regional pulmonary function testing in patients with chronic lung diseases. As EIT becomes an established medical technology, it requires consensus examination, nomenclature, data analysis and interpretation schemes. Such consensus is needed to compare, understand and reproduce study findings from and among different research groups, to enable large clinical trials and, ultimately, routine clinical use. Recommendations of how EIT findings can be applied to generate diagnoses and impact clinical decision-making and therapy planning are required. This consensus paper was prepared by an international working group, collaborating on the clinical promotion of EIT called TRanslational EIT developmeNt stuDy group. It addresses the stated needs by providing (1) a new classification of core processes involved in chest EIT examinations and data analysis, (2) focus on clinical applications with structured reviews and outlooks (separately for adult and neonatal/paediatric patients), (3) a structured framework to categorise and understand the relationships among analysis approaches and their clinical roles, (4) consensus, unified terminology with clinical user-friendly definitions and explanations, (5) a review of all major work in thoracic EIT and (6) recommendations for future development (193 pages of online supplements systematically linked with the chief sections of the main document). We expect this information to be useful for clinicians and researchers working with EIT, as well as for industry producers of this technology.
Collapse
Affiliation(s)
- Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marcelo B P Amato
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Anton H van Kaam
- Department of Neonatology, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - David G Tingay
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Zhanqi Zhao
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Bartłomiej Grychtol
- Fraunhofer Project Group for Automation in Medicine and Biotechnology PAMB, Mannheim, Germany
| | - Marc Bodenstein
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hervé Gagnon
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Ola Stenqvist
- Department of Anesthesiology and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vinicius Torsani
- Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andreas Schibler
- Paediatric Critical Care Research Group, Mater Research University of Queensland, South Brisbane, Australia
| | - Gerhard K Wolf
- Children's Hospital Traunstein, Ludwig Maximilian's University, Munich, Germany
| | - Diederik Gommers
- Department of Adult Intensive Care, Erasmus MC, Rotterdam, The Netherlands
| | - Steffen Leonhardt
- Philips Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Andy Adler
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
37
|
Milesi I, Tingay DG, Zannin E, Bianco F, Tagliabue P, Mosca F, Lavizzari A, Ventura ML, Zonneveld CE, Perkins EJ, Black D, Sourial M, Dellacá RL. Intratracheal atomized surfactant provides similar outcomes as bolus surfactant in preterm lambs with respiratory distress syndrome. Pediatr Res 2016; 80:92-100. [PMID: 26954481 DOI: 10.1038/pr.2016.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/21/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Aerosolization of exogenous surfactant remains a challenge. This study is aimed to evaluate the efficacy of atomized poractant alfa (Curosurf) administered with a novel atomizer in preterm lambs with respiratory distress syndrome. METHODS Twenty anaesthetized lambs, 127 ± 1 d gestational age, (mean ± SD) were instrumented before birth and randomized to receive either (i) positive pressure ventilation without surfactant (Control group), (ii) 200 mg/kg of bolus instilled surfactant (Bolus group) at 10 min of life or (iii) 200 mg/kg of atomized surfactant (Atomizer group) over 60 min from 10 min of life. All lambs were ventilated for 180 min with a standardized protocol. Lung mechanics, regional lung compliance (electrical impedance tomography), and carotid blood flow (CBF) were measured with arterial blood gas analysis. RESULTS Dynamic compliance and oxygenation responses were similar in the Bolus and Atomizer groups, and both better than Control by 180 min (all P < 0.05; two-way ANOVA). Both surfactant groups demonstrated more homogeneous regional lung compliance throughout the study period. There were no differences in CBFConclusion:In a preterm lamb model, atomized surfactant resulted in similar gas exchange and mechanics as bolus administration. This study suggests evaluation of supraglottic atomization with this system when noninvasive support is warranted.
Collapse
Affiliation(s)
- Ilaria Milesi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milano, Italy
| | - David G Tingay
- Neonatal Research, Murdoch Childrens Research Institute, Melbourne, Australia.,Neonatology, The Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Emanuela Zannin
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milano, Italy
| | - Federico Bianco
- Research and Development Department, Chiesi Farmaceutici SpA, Parma, Italy
| | | | - Fabio Mosca
- NICU, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico-Università degli Studi di Milano
| | - Anna Lavizzari
- NICU, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico-Università degli Studi di Milano
| | | | - C Elroy Zonneveld
- Neonatal Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Don Black
- Neonatal Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Magdy Sourial
- Neonatal Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Raffaele L Dellacá
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milano, Italy
| |
Collapse
|
38
|
Tingay DG, Rajapaksa A, McCall K, Zonneveld CEE, Black D, Perkins E, Sourial M, Lavizzari A, Davis PG. The interrelationship of recruitment maneuver at birth, antenatal steroids, and exogenous surfactant on compliance and oxygenation in preterm lambs. Pediatr Res 2016; 79:916-21. [PMID: 26866905 DOI: 10.1038/pr.2016.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/07/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND To describe the interrelationship between antenatal steroids, exogenous surfactant, and two approaches to lung recruitment at birth on oxygenation and respiratory system compliance (Cdyn) in preterm lambs. METHODS Lambs (n = 63; gestational age 127 ± 1 d) received either surfactant at 10-min life (Surfactant), antenatal corticosteroids (Steroid), or neither (Control). Within each epoch lambs were randomly assigned to a 30-s 40 cmH2O sustained inflation (SI) or an initial stepwise positive end-expiratory pressure (PEEP) open lung ventilation (OLV) maneuver at birth. All lambs then received the same management for 60-min with alveolar-arterial oxygen difference (AaDO2) and Cdyn measured at regular time points. RESULTS Overall, the OLV strategy improved Cdyn and AaDO2 (all epochs except Surfactant) compared to SI (all P < 0.05; two-way ANOVA). Irrespective of strategy, Cdyn was better in the Steroid group in the first 10 min (all P < 0.05). Thereafter, Cdyn was similar to Steroid epoch in the OLV + Surfactant, but not SI + Surfactant group. OLV influenced the effect of steroid and surfactant (P = 0.005) on AaDO2 more than SI (P = 0.235). CONCLUSIONS The antenatal state of the lung influences the type and impact of a recruitment maneuver at birth. The effectiveness of surfactant maybe enhanced using PEEP-based time-dependent recruitment strategies rather than approaches solely aimed at initial lung liquid clearance.
Collapse
Affiliation(s)
- David G Tingay
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Neonatology, The Royal Children's Hospital, Melbourne, Victoria, Australia.,Neonatal Research Group, The Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Anushi Rajapaksa
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Karen McCall
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Cornelis E E Zonneveld
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Don Black
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Elizabeth Perkins
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Magdy Sourial
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Neonatology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Anna Lavizzari
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,NICU, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico-Università degli Studi di Milano, Milano, Italy
| | - Peter G Davis
- Neonatal Research Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Neonatal Research Group, The Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Liu S, Tan L, Möller K, Frerichs I, Yu T, Liu L, Huang Y, Guo F, Xu J, Yang Y, Qiu H, Zhao Z. Identification of regional overdistension, recruitment and cyclic alveolar collapse with electrical impedance tomography in an experimental ARDS model. Crit Care 2016; 20:119. [PMID: 27142073 PMCID: PMC4855824 DOI: 10.1186/s13054-016-1300-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 04/19/2016] [Indexed: 11/21/2022] Open
Abstract
Background Information on regional ventilation distribution in mechanically ventilated patients is important to develop lung protective ventilation strategies. In the present prospective animal study, we introduce an electrical impedance tomography (EIT)-based method to classify lungs into normally ventilated, overinflated, tidally recruited/derecruited and recruited regions. Methods Acute respiratory distress syndrome (ARDS) was introduced with repeated bronchoalveolar lavage in ten healthy male pigs until the ratio of arterial partial pressure of oxygen and fraction of inspired oxygen (PaO2/FiO2) decreased to less than 100 mmHg and remained stable for 30 minutes. Stepwise positive end-expiratory pressure (PEEP) increments were performed from 0 cmH2O to 30 cmH2O with 3 cmH2O increase every 5 minutes. Respiratory system compliance (Crs), blood gases and hemodynamics were measured at the same time. Lung regions at end-expiration and during tidal breathing were identified in EIT images. Results Overinflated regions contain air at end-expiration but they are not or are only minimally ventilated. Recruited regions compared to reference PEEP level contain air at end-expiration of arbitrary PEEP level but not at that of reference PEEP level. Tidally recruited/derecruited regions are not represented in lung regions at end-expiration but are ventilated during tidal breathing. The results coincided with measurements of blood gases. The coefficient for correlation between the number of recruited pixels and PaO2/FiO2 was 0.89 ± 0.12 (p = 0.02). Conclusion The proposed novel EIT-based method provides information on overinflation, recruitment and cyclic alveolar collapse at the bedside, which may improve the ventilation strategies used.
Collapse
Affiliation(s)
- Songqiao Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Li Tan
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Knut Möller
- Institute of Technical Medicine, Furtwangen University, Jakob-Kienzle Straße 17, 78054, VS-Schwenningen, Germany
| | - Inez Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Tao Yu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Yingzi Huang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Fengmei Guo
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Jingyuan Xu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China.
| | - Zhanqi Zhao
- Institute of Technical Medicine, Furtwangen University, Jakob-Kienzle Straße 17, 78054, VS-Schwenningen, Germany
| |
Collapse
|
40
|
Tingay DG, Rajapaksa A, Zonneveld CE, Black D, Perkins EJ, Adler A, Grychtol B, Lavizzari A, Frerichs I, Zahra VA, Davis PG. Spatiotemporal Aeration and Lung Injury Patterns Are Influenced by the First Inflation Strategy at Birth. Am J Respir Cell Mol Biol 2016; 54:263-72. [DOI: 10.1165/rcmb.2015-0127oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
41
|
Tidal volume monitoring by electrical impedance tomography (EIT) using different regions of interest (ROI): Calibration equations. Biomed Signal Process Control 2015. [DOI: 10.1016/j.bspc.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Abstract
PURPOSE OF REVIEW This review article summarizes the recent advances in electrical impedance tomography (EIT) related to cardiopulmonary imaging and monitoring on the background of the 30-year development of this technology. RECENT FINDINGS EIT is expected to become a bedside tool for monitoring and guiding ventilator therapy. In this context, several studies applied EIT to determine spatial ventilation distribution during different ventilation modes and settings. EIT was increasingly combined with other signals, such as airway pressure, enabling the assessment of regional respiratory system mechanics. EIT was for the first time used prospectively to define ventilator settings in an experimental and a clinical study. Increased neonatal and paediatric use of EIT was noted. Only few studies focused on cardiac function and lung perfusion. Advanced radiological imaging techniques were applied to assess EIT performance in detecting regional lung ventilation. New approaches to improve the quality of thoracic EIT images were proposed. SUMMARY EIT is not routinely used in a clinical setting, but the interest in EIT is evident. The major task for EIT research is to provide the clinicians with guidelines how to conduct, analyse and interpret EIT examinations and combine them with other medical techniques so as to meaningfully impact the clinical decision-making.
Collapse
|
43
|
Tingay DG, Polglase GR, Bhatia R, Berry CA, Kopotic RJ, Kopotic CP, Song Y, Szyld E, Jobe AH, Pillow JJ. Pressure-limited sustained inflation vs. gradual tidal inflations for resuscitation in preterm lambs. J Appl Physiol (1985) 2015; 118:890-7. [PMID: 25635005 DOI: 10.1152/japplphysiol.00985.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/26/2015] [Indexed: 01/09/2023] Open
Abstract
Support of the mechanically complex preterm lung needs to facilitate aeration while avoiding ventilation heterogeneities: whether to achieve this gradually or quickly remains unclear. We compared the effect of gradual vs. constant tidal inflations and a pressure-limited sustained inflation (SI) at birth on gas exchange, lung mechanics, gravity-dependent lung volume distribution, and lung injury in 131-day gestation preterm lambs. Lambs were resuscitated with either 1) a 20-s, 40-cmH2O pressure-limited SI (PressSI), 2) a gradual increase in tidal volume (Vt) over 5-min from 3 ml/kg to 7 ml/kg (IncrVt), or 3) 7 ml/kg Vt from birth. All lambs were subsequently ventilated for 15 min with 7 ml/kg Vt with the same end-expiratory pressure. Lung mechanics, gas exchange and spatial distribution of end-expiratory volume (EEV), and tidal ventilation (electrical impedance tomography) were recorded regularly. At 15 min, early mRNA tissue markers of lung injury were assessed. The IncrVt group resulted in greater tissue hysteresivity at 5 min (P = 0.017; two-way ANOVA), higher alveolar-arterial oxygen difference from 10 min (P < 0.01), and least uniform gravity-dependent distribution of EEV. There were no other differences in lung mechanics between groups, and the PressSI and 7 ml/kg Vt groups behaved similarly throughout. EEV was more uniformly distributed, but Vt least so, in the PressSI group. There were no differences in mRNA markers of lung injury. A gradual increase in Vt from birth resulted in less recruitment of the gravity-dependent lung with worse oxygenation. There was no benefit of a SI at birth over mechanical ventilation with 7 ml/kg Vt.
Collapse
Affiliation(s)
- David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Neonatology, The Royal Children's Hospital, Melbourne, Victoria, Australia; Neonatal Research, The Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Graeme R Polglase
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Risha Bhatia
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Neonatology, The Royal Children's Hospital, Melbourne, Victoria, Australia; Neonatal Research, The Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Clare A Berry
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | | | | | - Yong Song
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Perth, Australia; School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Edgardo Szyld
- Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina; Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Alan H Jobe
- Cincinnati Children's Hospital Medical Centre, Cincinnati, Ohio
| | - J Jane Pillow
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Perth, Australia; School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia;
| |
Collapse
|
44
|
Setting the Ventilator in the NICU. PEDIATRIC AND NEONATAL MECHANICAL VENTILATION 2015. [PMCID: PMC7122498 DOI: 10.1007/978-3-642-01219-8_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Success in providing respiratory support to the neonate requires a clear understanding of the context in which it is being applied. Perhaps more than for any other age group, the array of different situations in which ventilation is applied to the newborn infant is extremely broad, with in each case different pathophysiological disturbances and often the need to use a specific approach to apply ventilation optimally. Table 42.1 provides a list of the more common situations in which conventional ventilation is used in the neonate and includes some considerations regarding ventilator settings for each situation. For each situation, a suggested mode of ventilation is indicated, along with target ranges for positive end-expiratory pressure (PEEP) and tidal volume (VT). Further discussion of the physiological rationale and available evidence for ventilator settings is set out below.
Collapse
|
45
|
Blankman P, Hasan D, Erik G, Gommers D. Detection of 'best' positive end-expiratory pressure derived from electrical impedance tomography parameters during a decremental positive end-expiratory pressure trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R95. [PMID: 24887391 PMCID: PMC4095609 DOI: 10.1186/cc13866] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 05/01/2014] [Indexed: 01/21/2023]
Abstract
Introduction This study compares different parameters derived from electrical impedance tomography (EIT) data to define ‘best’ positive end-expiratory pressure (PEEP) during a decremental PEEP trial in mechanically-ventilated patients. ‘Best’ PEEP is regarded as minimal lung collapse and overdistention in order to prevent ventilator-induced lung injury. Methods A decremental PEEP trial (from 15 to 0 cm H2O PEEP in 4 steps) was performed in 12 post-cardiac surgery patients on the ICU. At each PEEP step, EIT measurements were performed and from this data the following were calculated: tidal impedance variation (TIV), regional compliance, ventilation surface area (VSA), center of ventilation (COV), regional ventilation delay (RVD index), global inhomogeneity (GI index), and intratidal gas distribution. From the latter parameter we developed the ITV index as a new homogeneity parameter. The EIT parameters were compared with dynamic compliance and the PaO2/FiO2 ratio. Results Dynamic compliance and the PaO2/FiO2 ratio had the highest value at 10 and 15 cm H2O PEEP, respectively. TIV, regional compliance and VSA had a maximum value at 5 cm H2O PEEP for the non-dependent lung region and a maximal value at 15 cm H2O PEEP for the dependent lung region. GI index showed the lowest value at 10 cm H2O PEEP, whereas for COV and the RVD index this was at 15 cm H2O PEEP. The intratidal gas distribution showed an equal contribution of both lung regions at a specific PEEP level in each patient. Conclusion In post-cardiac surgery patients, the ITV index was comparable with dynamic compliance to indicate ‘best’ PEEP. The ITV index can visualize the PEEP level at which ventilation of the non-dependent region is diminished, indicating overdistention. Additional studies should test whether application of this specific PEEP level leads to better outcome and also confirm these results in patients with acute respiratory distress syndrome.
Collapse
|
46
|
Bodenstein M, Boehme S, Bierschock S, Vogt A, David M, Markstaller K. Determination of respiratory gas flow by electrical impedance tomography in an animal model of mechanical ventilation. BMC Pulm Med 2014; 14:73. [PMID: 24779960 PMCID: PMC4012093 DOI: 10.1186/1471-2466-14-73] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 03/28/2014] [Indexed: 01/10/2023] Open
Abstract
Background A recent method determines regional gas flow of the lung by electrical impedance tomography (EIT). The aim of this study is to show the applicability of this method in a porcine model of mechanical ventilation in healthy and diseased lungs. Our primary hypothesis is that global gas flow measured by EIT can be correlated with spirometry. Our secondary hypothesis is that regional analysis of respiratory gas flow delivers physiologically meaningful results. Methods In two sets of experiments n = 7 healthy pigs and n = 6 pigs before and after induction of lavage lung injury were investigated. EIT of the lung and spirometry were registered synchronously during ongoing mechanical ventilation. In-vivo aeration of the lung was analysed in four regions-of-interest (ROI) by EIT: 1) global, 2) ventral (non-dependent), 3) middle and 4) dorsal (dependent) ROI. Respiratory gas flow was calculated by the first derivative of the regional aeration curve. Four phases of the respiratory cycle were discriminated. They delivered peak and late inspiratory and expiratory gas flow (PIF, LIF, PEF, LEF) characterizing early or late inspiration or expiration. Results Linear regression analysis of EIT and spirometry in healthy pigs revealed a very good correlation measuring peak flow and a good correlation detecting late flow. PIFEIT = 0.702 · PIFspiro + 117.4, r2 = 0.809; PEFEIT = 0.690 · PEFspiro-124.2, r2 = 0.760; LIFEIT = 0.909 · LIFspiro + 27.32, r2 = 0.572 and LEFEIT = 0.858 · LEFspiro-10.94, r2 = 0.647. EIT derived absolute gas flow was generally smaller than data from spirometry. Regional gas flow was distributed heterogeneously during different phases of the respiratory cycle. But, the regional distribution of gas flow stayed stable during different ventilator settings. Moderate lung injury changed the regional pattern of gas flow. Conclusions We conclude that the presented method is able to determine global respiratory gas flow of the lung in different phases of the respiratory cycle. Additionally, it delivers meaningful insight into regional pulmonary characteristics, i.e. the regional ability of the lung to take up and to release air.
Collapse
Affiliation(s)
- Marc Bodenstein
- Department of Anaesthesiology, University Medical Center Mainz, Mainz 55101, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Moens Y, Schramel JP, Tusman G, Ambrisko TD, Solà J, Brunner JX, Kowalczyk L, Böhm SH. Variety of non-invasive continuous monitoring methodologies including electrical impedance tomography provides novel insights into the physiology of lung collapse and recruitment – case report of an anaesthetized horse. Vet Anaesth Analg 2014; 41:196-204. [DOI: 10.1111/vaa.12098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Vogt B, Falkenberg C, Weiler N, Frerichs I. Pulmonary function testing in children and infants. Physiol Meas 2014; 35:R59-90. [PMID: 24557323 DOI: 10.1088/0967-3334/35/3/r59] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pulmonary function testing is performed in children and infants with the aim of documenting lung development with age and making diagnoses of lung diseases. In children and infants with an established lung disease, pulmonary function is tested to assess the disease progression and the efficacy of therapy. It is difficult to carry out the measurements in this age group without disturbances, so obtaining results of good quality and reproducibility is challenging. Young children are often uncooperative during the examinations. This is partly related to their young age but also due to the long testing duration and the unpopular equipment. We address a variety of examination techniques for lung function assessment in children and infants in this review. We describe the measuring principles, examination procedures, clinical findings and their interpretation, as well as advantages and limitations of these methods. The comparability between devices and centres as well as the availability of reference values are still considered a challenge in many of these techniques. In recent years, new technologies have emerged allowing the assessment of lung function not only on the global level but also on the regional level. This opens new possibilities for detecting regional lung function heterogeneity that might lead to a better understanding of respiratory pathophysiology in children.
Collapse
Affiliation(s)
- B Vogt
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | |
Collapse
|
49
|
Zhao Z, Pulletz S, Frerichs I, Müller-Lisse U, Möller K. The EIT-based global inhomogeneity index is highly correlated with regional lung opening in patients with acute respiratory distress syndrome. BMC Res Notes 2014; 7:82. [PMID: 24502320 PMCID: PMC3922336 DOI: 10.1186/1756-0500-7-82] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 02/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The electrical impedance tomography (EIT)-based global inhomogeneity (GI) index was introduced to quantify tidal volume distribution within the lung. Up to now, the GI index was evaluated for plausibility but the analysis of how it is influenced by various physiological factors is still missing. The aim of our study was to evaluate the influence of proportion of open lung regions measured by EIT on the GI index. METHODS A constant low-flow inflation maneuver was performed in 18 acute respiratory distress syndrome (ARDS) patients (58 ± 14 years, mean age ± SD) and 8 lung-healthy patients (41 ± 12 years) under controlled mechanical ventilation. EIT raw data were acquired at 25 scans/s and reconstructed offline. Recruited lung regions were identified as those image pixels of the lung regions within the EIT scans where local impedance amplitudes exceeded 10% of the maximum amplitude during the maneuver. A series of GI indices was calculated during mechanical lung inflation, based on the differential images obtained between different time points. Respiratory system elastance (Ers) values were calculated at 10 lung volume levels during low-flow maneuver. RESULTS The GI index decreased during low-flow inflation, while the percentage of open lung regions increased. The values correlated highly in both ARDS (r2 = 0.88 ± 0.08, p < 0.01) and lung-healthy patients (r2 = 0.92 ± 0.05, p < 0.01). Ers and GI index were also significantly correlated in 16 out of 18 ARDS (r2 = 0.84 ± 0.13, p < 0.01) and in 6 out of 8 lung-healthy patients (r2 = 0.84 ± 0.07, p < 0.01). Significant differences were found in GI values between two groups (0.52 ± 0.21 for ARDS and 0.41 ± 0.04 for lung-healthy patients, p < 0.05) as well in Ers values (0.017 ± 0.008 cmH2O/ml for ARDS and 0.009 ± 0.001 cmH2O/ml for lung-healthy patients, p < 0.01). CONCLUSIONS We conclude that the GI index is a reliable measure of ventilation heterogeneity highly correlated with lung recruitability measured with EIT. The GI index may prove to be a useful EIT-based index to guide ventilation therapy.
Collapse
Affiliation(s)
- Zhanqi Zhao
- Institute of Technical Medicine, Furtwangen University, Jakob-Kienzle Straße 17, D-78054 VS-Schwenningen, Germany.
| | | | | | | | | |
Collapse
|
50
|
Effect of sustained inflation vs. stepwise PEEP strategy at birth on gas exchange and lung mechanics in preterm lambs. Pediatr Res 2014; 75:288-94. [PMID: 24257321 DOI: 10.1038/pr.2013.218] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/27/2013] [Indexed: 11/08/2022]
Abstract
BACKGROUND Sustained inflation (SI) at birth facilitates establishment of functional residual capacity (FRC) in the preterm lung, but the ideal lung recruitment strategy is unclear. We have compared the effect of SI and a stepwise positive end-expiratory pressure (PEEP; SEP) strategy in a preterm model. METHODS 127 d gestation lambs received either 20-s SI (n = 9) or 2 cmH2O stepwise PEEP increases to 20 cmH2O every 10 inflations, and then decreases to 6 cmH2O (n = 10). Ventilation continued for 70 min, with surfactant administered at 10 min. Alveolar-arterial oxygen gradient (AaDO2), compliance (C(dyn)), end-expiratory thoracic volume (EEVRIP; respiratory inductive plethysmography), and EEV and C(dyn) in the gravity-dependent and nondependent hemithoraces (electrical impedance tomography) were measured throughout. Early mRNA markers of lung injury were analyzed using quantitative real-time PCR. RESULTS From 15 min of life, AaDO2 was lower in SEP group (P < 0.005; two-way ANOVA). SEP resulted in higher and more homogeneous C(dyn) (P < 0.0001). Mean (SD) EEVRIP at 5 min was 18 (9) ml/kg and 6 (5) ml/kg following SEP and SI, respectively (P = 0.021; Bonferroni posttest); this difference was due to a greater nondependent hemithorax EEV. There was no difference in markers of lung injury. CONCLUSION An SEP at birth improved gas exchange, lung mechanics, and EEV, without increasing lung injury, compared to the SI strategy used.
Collapse
|