1
|
He X, He S, Xiang G, Deng L, Zhang H, Wang Y, Li J, Lu H. Precise Lubrication and Protection of Cartilage Damage by Targeting Hydrogel Microsphere. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405943. [PMID: 39155588 DOI: 10.1002/adma.202405943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Osteoarthritis (OA) is a degenerative bone and joint disease characterized by decreased cartilage lubrication, leading to continuous wear and ultimately irreversible damage. This situation is particularly challenging for early-stage OA, as current bio-lubricants lack precise targeting for small inflammatory lesions. In this work, an antibody-mediated targeting hydrogel microspheres (HMS) is developed to precisely lubricate the local injury site of cartilage and prevent the progression of early OA. Anti-Collagen type I (Anti-Col1) is an antibody that targets cartilage injury sites in early OA stages. It is anchored on a HMS matrix made of Gelatin methacrylate (GelMA) and poly (sulfobetaine methacrylate) (PSBMA) to create targeted HMS (T-G/S HMS). The T-G/S HMS's high hydrophilicity, along with the dynamic interaction between its surficial Anti-Col1 and the Col1 on cartilage injury site, ensures its precise and effective lubrication of early OA lesions. Consequently, injecting T-G/S HMS into rats with early OA significantly slows disease progression and reduces symptoms. In conclusion, the developed injectable targeted lubricating HMS and the precisely targeted lubrication strategy represent a promising, convenient technique for treating OA, particularly for slowing the early-stage OA progression.
Collapse
Affiliation(s)
- Xiangming He
- Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sihan He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Gang Xiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Linhua Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hongqi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jiusheng Li
- Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hengyi Lu
- Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Aygün Ü, Şenocak E, Aksay MF, Çiçek AC, Halaç O, Toy S. Is microfracture sufficient for high-tibial osteotomy, or should intra-articular hyaluronic acid and oral glucosamine-chondroitin be used as additional treatments? J Orthop Surg Res 2024; 19:601. [PMID: 39342338 PMCID: PMC11437916 DOI: 10.1186/s13018-024-05095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND This study aimed to compare the effects of microfracture (MF) versus intra-articular hyaluronic acid (HA) + oral glucosamine and chondroitin sulfate (GC) in addition to MF in patients with osteoarthritic knees who underwent medial open wedge high tibial osteotomy (MOWHTO) after an average follow-up of five years. METHODS The study was designed retrospectively and included patients who underwent MOWHTO due to gonarthrosis, the MF method performed on these patients, and HA + GC treatments applied in addition to MF. Three groups consisting of 79 patients were formed: only HTO (Group 1), HTO + MF (Group 2), and HTO + MF + HA + GC (Group 3). The groups were compared using knee injury and osteoarthritis outcome score (KOOS), visual analog scale (VAS) for pain, and range of motion (ROM). The associations between the degree of correction and function and pain were evaluated. Additionally, the KOOS subparameters were compared between the groups. RESULTS There were significant improvements in the postoperative KOOS and VAS scores in all three groups (p < 0.05). However, the ROM did not improve in Group 1. There was no significant difference in the postoperative KOOS, VAS, or ROM values between Groups 2 and 3, but these values were significantly better in Groups 2 and 3 than in Group 1 (p < 0.05). When the degree of correction increased, there were no significant positive changes in the postoperative KOOS or VAS score in Group 1, unlike in the other two groups (p < 0.05). In corrections of ≥ 10°, while there was no significant difference in the postoperative KOOS or VAS score between Groups 2 and 3, these parameters significantly improved in these two groups compared to Group 1 (p < 0.05). Among the KOOS subparameters, pain and activities of daily living scores were greater in Groups 2 and 3 than in Group 1 (p < 0.05). CONCLUSIONS In MOWHTO, MF is a sufficient treatment method that improves the patient's clinical condition without requiring additional treatments such as HA and GC. LEVEL OF EVIDENCE III, retrospective cohort study.
Collapse
Affiliation(s)
- Ümit Aygün
- Faculty of Medicine, Department of Orthopaedics and Traumatology, Ağrı İbrahim Çeçen University, Ağrı, Türkiye.
| | - Eyüp Şenocak
- Faculty of Medicine, Department of Orthopaedics and Traumatology, Atatürk University, Erzurum, Türkiye
| | - Mehmet Fatih Aksay
- Faculty of Medicine, Department of Orthopaedics and Traumatology, Ağrı İbrahim Çeçen University, Ağrı, Türkiye
| | - Ali Can Çiçek
- Faculty of Medicine, Department of Orthopaedics and Traumatology, Ağrı İbrahim Çeçen University, Ağrı, Türkiye
| | - Orkun Halaç
- Orthopedics and Traumatology Clinic, Ağrı Training and Research Hospital, Ağrı, Türkiye
| | - Serdar Toy
- Department of Orthopaedics and Traumatology Clinic, Başakşehir Çam ve Sakura City Hospital, İstanbul, Türkiye
| |
Collapse
|
3
|
Rajankunte Mahadeshwara M, Al-Jawad M, Hall RM, Pandit H, El-Gendy R, Bryant M. How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review. Bioengineering (Basel) 2024; 11:541. [PMID: 38927777 PMCID: PMC11200606 DOI: 10.3390/bioengineering11060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Cartilage degeneration is a characteristic of osteoarthritis (OA), which is often observed in aging populations. This degeneration is due to the breakdown of articular cartilage (AC) mechanical and tribological properties primarily attributed to lubrication failure. Understanding the reasons behind these failures and identifying potential solutions could have significant economic and societal implications, ultimately enhancing quality of life. This review provides an overview of developments in the field of AC, focusing on its mechanical and tribological properties. The emphasis is on the role of lubrication in degraded AC, offering insights into its structure and function relationship. Further, it explores the fundamental connection between AC mechano-tribological properties and the advancement of its degradation and puts forth recommendations for strategies to boost its lubrication efficiency.
Collapse
Affiliation(s)
- Manoj Rajankunte Mahadeshwara
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Maisoon Al-Jawad
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Richard M. Hall
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Chapel Allerton Hospital, Leeds LS7 4SA, UK;
| | - Reem El-Gendy
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia 3, Ismailia Governorate 8366004, Egypt
| | - Michael Bryant
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
4
|
Yammine KM, Abularach SM, Kim SY, Bikovtseva AA, Lilianty J, Butty VL, Schiavoni RP, Bateman JF, Lamandé SR, Shoulders MD. ER procollagen storage defect without coupled unfolded protein response drives precocious arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.19.562780. [PMID: 37905055 PMCID: PMC10614947 DOI: 10.1101/2023.10.19.562780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Collagenopathies are a group of clinically diverse disorders caused by defects in collagen folding and secretion. For example, mutations in the gene encoding collagen type-II, the primary collagen in cartilage, can lead to diverse chondrodysplasias. One example is the Gly1170Ser substitution in procollagen-II, which causes precocious osteoarthritis. Here, we biochemically and mechanistically characterize an induced pluripotent stem cell-based cartilage model of this disease, including both hetero- and homozygous genotypes. We show that Gly1170Ser procollagen-II is notably slow to fold and secrete. Instead, procollagen-II accumulates intracellularly, consistent with an endoplasmic reticulum (ER) storage disorder. Owing to unique features of the collagen triple helix, this accumulation is not recognized by the unfolded protein response. Gly1170Ser procollagen-II interacts to a greater extent than wild-type with specific proteostasis network components, consistent with its slow folding. These findings provide mechanistic elucidation into the etiology of this disease. Moreover, the cartilage model will enable rapid testing of therapeutic strategies to restore proteostasis in the collagenopathies.
Collapse
|
5
|
Taghiyar L, Asadi H, Baghaban Eslaminejad M. A bioscaffold of decellularized whole osteochondral sheet improves proliferation and differentiation of loaded mesenchymal stem cells in a rabbit model. Cell Tissue Bank 2023; 24:711-724. [PMID: 36939962 DOI: 10.1007/s10561-023-10084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023]
Abstract
As a Natural decellularized extracellular matrix, osteochondral tissue is the best scaffold for the restoration of osteoarthritis defects. Bioscaffolds have the most similarly innate properties like biomechanical properties and the preserved connection of the bone-to-cartilage border. Although, their compacity and low porosity particularly, are proven to be difficulties of decellularization and cell penetration. This study aims to develop a new bioscaffold of decellularized osteochondral tissue (DOT) that is recellularized by bone marrow-derived mesenchymal stem cells (BM-MSCs), as a biphasic allograft, which preserved the interface between the cartilage section and subchondral bone of the joint. Whole osteochondral tissues of rabbit knee joints were sheeted in cartilaginous parts in 200-250 µm sections while connected to the subchondral bone and then fully decellularized. The BM-MSCs were seeded on the scaffolds in vitro; some constructs were subcutaneously implanted into the back of the rabbit. The cell penetration, differentiation to bone and cartilage, viability, and cell proliferation in vitro and in vivo were evaluated by qPCR, histological staining, MTT assay, and immunohistochemistry. DNA content analysis and SEM assessments confirmed the decellularization of the bioscaffold. Then, histological and SEM evaluations indicated that the cells could successfully penetrate the bone and cartilage lacunas in implanted grafts. MTT assay confirmed cell proliferation. Prominently, gene expression analysis showed that seeded cells differentiated into osteoblasts and chondrocytes in both bone and cartilage sections. More importantly, seeded cells on the bioscaffold started ECM secretion. Our results indicate that cartilage-to-bone border integrity was largely preserved. Additionally, ECM-sheeted DOT could be employed as a useful scaffold for promoting the regeneration of osteochondral defects.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamideh Asadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Geng R, Li J, Yu C, Zhang C, Chen F, Chen J, Ni H, Wang J, Kang K, Wei Z, Xu Y, Jin T. Knee osteoarthritis: Current status and research progress in treatment (Review). Exp Ther Med 2023; 26:481. [PMID: 37745043 PMCID: PMC10515111 DOI: 10.3892/etm.2023.12180] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023] Open
Abstract
Knee osteoarthritis (KOA) is a common chronic articular disease worldwide. It is also the most common form of OA and is characterized by high morbidity and disability rates. With the gradual increase in life expectancy and ageing population, KOA not only affects the quality of life of patients, but also poses a burden on global public health. OA is a disease of unknown etiology and complex pathogenesis. It commonly affects joints subjected to greater loads and higher levels of activity. The knee joint, which is the most complex joint of the human body and bears the greatest load among all joints, is therefore most susceptible to development of OA. KOA lesions may involve articular cartilage, synovium, joint capsule and periarticular muscles, causing irreversible articular damage. Factors such as mechanical overload, inflammation, metabolism, hormonal changes and ageing serve key roles in the acceleration of KOA progression. The clinical diagnosis of KOA is primarily based on combined analysis of symptoms, signs, imaging and laboratory examination results. At present, there is no cure for KOA and the currently available therapies primarily focus on symptomatic treatment and delay of disease progression. Knee replacement surgery is typically performed in patients with advanced disease. The current study presents a review of epidemiological characteristics, risk factors, histopathological manifestations, pathogenesis, diagnosis, treatment modalities and progress in KOA research.
Collapse
Affiliation(s)
- Ruizhi Geng
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Jiayi Li
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Anatomy and Histology, and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Yu
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Chaoqun Zhang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Fei Chen
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Jie Chen
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- School of Public Health, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Haonan Ni
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaxu Wang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Kaiqiang Kang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Ziqi Wei
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Anatomy and Histology, and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yongqing Xu
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Tao Jin
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| |
Collapse
|
7
|
Perdisa F, Bordini B, Salerno M, Traina F, Zaffagnini S, Filardo G. Total Knee Arthroplasty (TKA): When Do the Risks of TKA Overcome the Benefits? Double Risk of Failure in Patients up to 65 Years Old. Cartilage 2023; 14:305-311. [PMID: 37073516 PMCID: PMC10601565 DOI: 10.1177/19476035231164733] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 04/20/2023] Open
Abstract
OBJECTIVE The aim of this study was to document the survival rate in the middle-aged patient group up to 65 years old and to compare it with other age groups of patients undergoing total knee arthroplasty (TKA) for knee osteoarthritis (OA). DESIGN The Register of Orthopaedic Prosthetic Implants (RIPO) regional registry was used to analyze the results of patients <80 years old affected by primary OA and treated with TKA from 2000 to 2019. The database was investigated according to the age group: younger than 50 years, 50-65 years, or 66-79 years, with the aim to estimate revision surgeries and implant survivorship. RESULTS A total of 45,488 TKAs for primary OA were included in the analysis (M: 11,388; F: 27,846). The percentage of patients <65 years old increased from 13.5% to 24.8% between 2000 and 2019 (P < 0.0001). The survival analysis showed an overall influence of age on the implant revision rate (P < 0.0001), with an estimated survival rate of 78.7%, 89.4%, and 94.8% at 15 years in the 3 groups, respectively. Compared with the older-aged group, the relative risk of failure was 3.1 (95% confidence interval [CI] = 2.2-4.3; P < 0.001) higher in patients <50 years old and 1.8 (95% CI = 1.6-2.0; P < 0.001) higher in patients 50-65 years old. CONCLUSIONS TKA use in the middle-aged patient population up to 65 years old increased significantly over time. These patients present a double risk of failure with respect to older patients. This is particularly important considering the increasing life expectancy and the emergence of new joint preserving strategies, which could postpone the need for TKA to an older age.
Collapse
Affiliation(s)
| | - Barbara Bordini
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Salerno
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesco Traina
- Orthopaedic-Traumatology and Prosthetic Surgery and Revisons of Hip and Knee Implants, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Zaffagnini
- 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
8
|
Fani N, Peshkova M, Bikmulina P, Golroo R, Timashev P, Vosough M. Fabricating the cartilage: recent achievements. Cytotechnology 2023; 75:269-292. [PMID: 37389132 PMCID: PMC10299965 DOI: 10.1007/s10616-023-00582-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
This review aims to describe the most recent achievements and provide an insight into cartilage engineering and strategies to restore the cartilage defects. Here, we discuss cell types, biomaterials, and biochemical factors applied to form cartilage tissue equivalents and update the status of fabrication techniques, which are used at all stages of engineering the cartilage. The actualized concept to improve the cartilage tissue restoration is based on applying personalized products fabricated using a full cycle platform: a bioprinter, a bioink consisted of ECM-embedded autologous cell aggregates, and a bioreactor. Moreover, in situ platforms can help to skip some steps and enable adjusting the newly formed tissue in the place during the operation. Only some achievements described have passed first stages of clinical translation; nevertheless, the number of their preclinical and clinical trials is expected to grow in the nearest future.
Collapse
Affiliation(s)
- Nesa Fani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, Russia
| | - Reihaneh Golroo
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Arhebamen EP, Teodoro MT, Blonka AB, Matthew HWT. Long-Term Culture Performance of a Polyelectrolyte Complex Microcapsule Platform for Hyaline Cartilage Repair. Bioengineering (Basel) 2023; 10:bioengineering10040467. [PMID: 37106654 PMCID: PMC10135885 DOI: 10.3390/bioengineering10040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Articular cartilage (AC) tissue repair and regeneration remains an ongoing challenge. One component of the challenge is the limited ability to scale an engineered cartilage graft to clinically relevant sizes while maintaining uniform properties. In this paper, we report on the evaluation of our polyelectrolyte complex microcapsule (PECM) platform technology as a technique for generating cartilage-like spherical modules. Bone marrow-derived mesenchymal stem cells (bMSCs) or primary articular chondrocytes were encapsulated within PECMs composed of methacrylated hyaluronan, collagen I, and chitosan. The formation of cartilage-like tissue in the PECMs over a 90-day culture was characterized. The results showed that chondrocytes exhibited superior growth and matrix deposition compared to either chondrogenically-induced bMSCs or a mixed PECM culture containing both chondrocytes and bMSCs. The chondrocyte-generated matrix filled the PECM and produced substantial increases in capsule compressive strength. The PECM system thus appears to support intracapsular cartilage tissue formation and the capsule approach promotes efficient culture and handling of these micro tissues. Since previous studies have proven the feasibility of fusing such capsules into large tissue constructs, the results suggest that encapsulating primary chondrocytes in PECM modules may be a viable route toward achieving a functional articular cartilage graft.
Collapse
Affiliation(s)
- Ehinor P Arhebamen
- Department of Biomedical Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, MI 48202, USA
| | - Maria T Teodoro
- Department of Biomedical Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, MI 48202, USA
| | - Amelia B Blonka
- Department of Biomedical Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, MI 48202, USA
| | - Howard W T Matthew
- Department of Biomedical Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, MI 48202, USA
- Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Dr., Detroit, MI 48202, USA
| |
Collapse
|
10
|
Conditioned Medium - Is it an Undervalued Lab Waste with the Potential for Osteoarthritis Management? Stem Cell Rev Rep 2023:10.1007/s12015-023-10517-1. [PMID: 36790694 PMCID: PMC10366316 DOI: 10.1007/s12015-023-10517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND The approaches currently used in osteoarthritis (OA) are mainly short-term solutions with unsatisfactory outcomes. Cell-based therapies are still controversial (in terms of the sources of cells and the results) and require strict culture protocol, quality control, and may have side-effects. A distinct population of stromal cells has an interesting secretome composition that is underrated and commonly ends up as biological waste. Their unique properties could be used to improve the existing techniques due to protective and anti-ageing properties. SCOPE OF REVIEW In this review, we seek to outline the advantages of the use of conditioned media (CM) and exosomes, which render them superior to other cell-based methods, and to summarise current information on the composition of CM and their effect on chondrocytes. MAJOR CONCLUSIONS CM are obtainable from a variety of mesenchymal stromal cell (MSC) sources, such as adipose tissue, bone marrow and umbilical cord, which is significant to their composition. The components present in CMs include proteins, cytokines, growth factors, chemokines, lipids and ncRNA with a variety of functions. In most in vitro and in vivo studies CM from MSCs had a beneficial effect in enhance processes associated with chondrocyte OA pathomechanism. GENERAL SIGNIFICANCE This review summarises the information available in the literature on the function of components most commonly detected in MSC-conditioned media, as well as the effect of CM on OA chondrocytes in in vitro culture. It also highlights the need to standardise protocols for obtaining CM, and to conduct clinical trials to transfer the effects obtained in vitro to human subjects.
Collapse
|
11
|
Nikitina AI, Golovanova OA. Synthesis and Properties of Polymer Composites Based on Magnesium-Substituted Hydroxyapatite. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zhao Z, Wang Z, Pei L, Zhou X, Liu Y. Long non-coding ribonucleic acid AFAP1-AS1 promotes chondrocyte proliferation via the miR-512-3p/matrix metallopeptidase 13 (MMP-13) axis. Bioengineered 2022; 13:5386-5395. [PMID: 35188875 PMCID: PMC8973689 DOI: 10.1080/21655979.2022.2031390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long-chain non-coding RNAs are reported to be involved in cartilage damage. However, less research on the role of actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) in osteoarthritis. To investigate AFAP1-AS1 function in osteoarthritis development, AFAP1-AS1 and miR-512-3p expression levels in osteoarthritis cartilage and cells were evaluated using RT-qPCR. The downstream target genes of AFAP1-AS1 and miR-512-3p were predicted and validated using luciferase reporter assays. Moreover, a knee osteoarthritis model was established by injecting monoiodoacetate into the knee joints of mice. The effects of AFAP1-AS1 and miR-512-3p on osteoarthritis chondrocyte proliferation and MMP-13, collagen II, and collagen IV expressions were detected in vivo using CCK-8 assay and Western blotting and RT-qPCR, respectively. AFAP1-AS1 expression was upregulated in osteoarthritis cartilage and cells. MiR-512-3p expression was downregulated in osteoarthritis cartilage. AFAP1-AS1 overexpression inhibited miR-512-3p expression in chondrocytes. Furthermore, AFAP1-AS1 over-expression promoted chondrocyte proliferation, and miR-512-3p mimic inhibited chondrocyte proliferation in vivo. AFAP1-AS1 overexpression reduced type II and type IV collagen expression, while miR-512-3p overexpression promoted type II and type IV collagen in vivo. AFAP1-AS1 overexpression enhanced MMP-13 expression in vivo. AFAP1-AS1 overexpression regulated chondrocyte proliferation by inhibiting miR-512-3p expression in vivo. AFAP1-AS1 could be a potential target to treat osteoarthritis by inhibiting miR-512-3p and subsequently inducing chondrocyte proliferation and regulating matrix synthesis.
Collapse
Affiliation(s)
- Zhi Zhao
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Zhiyan Wang
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Lijia Pei
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Xinshe Zhou
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| |
Collapse
|
13
|
The Induced Pluripotent Stem Cells in Articular Cartilage Regeneration and Disease Modelling: Are We Ready for Their Clinical Use? Cells 2022; 11:cells11030529. [PMID: 35159338 PMCID: PMC8834349 DOI: 10.3390/cells11030529] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
The development of induced pluripotent stem cells has brought unlimited possibilities to the field of regenerative medicine. This could be ideal for treating osteoarthritis and other skeletal diseases, because the current procedures tend to be short-term solutions. The usage of induced pluripotent stem cells in the cell-based regeneration of cartilage damages could replace or improve on the current techniques. The patient’s specific non-invasive collection of tissue for reprogramming purposes could also create a platform for drug screening and disease modelling for an overview of distinct skeletal abnormalities. In this review, we seek to summarise the latest achievements in the chondrogenic differentiation of pluripotent stem cells for regenerative purposes and disease modelling.
Collapse
|
14
|
Zhou Q, Ren Q, Jiao L, Huang J, Yi J, Chen J, Lai J, Ji G, Zheng T. The potential roles of JAK/STAT signaling in the progression of osteoarthritis. Front Endocrinol (Lausanne) 2022; 13:1069057. [PMID: 36506076 PMCID: PMC9729341 DOI: 10.3389/fendo.2022.1069057] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is an age-related chronic progressive degenerative disease that induces persistent pain and disabilities. The development of OA is a complex process, and the risk factors are various, including aging, genetics, trauma and altered biomechanics. Inflammation and immunity play an important role in the pathogenesis of OA. JAK/STAT pathway is one of the most prominent intracellular signaling pathways, regulating cell proliferation, differentiation, and apoptosis. Inflammatory factors can act as the initiators of JAK/STAT pathway, which is implicated in the pathophysiological activity of chondrocyte. In this article, we provide a review on the importance of JAK/STAT pathway in the pathological development of OA. Potentially, JAK/STAT pathway becomes a therapeutic target for managing OA.
Collapse
Affiliation(s)
- Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Linhui Jiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jun Yi
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinliang Lai
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Guanglin Ji, ; Tiansheng Zheng,
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Guanglin Ji, ; Tiansheng Zheng,
| |
Collapse
|
15
|
Hinckel BB, Thomas D, Vellios EE, Hancock KJ, Calcei JG, Sherman SL, Eliasberg CD, Fernandes TL, Farr J, Lattermann C, Gomoll AH. Algorithm for Treatment of Focal Cartilage Defects of the Knee: Classic and New Procedures. Cartilage 2021; 13:473S-495S. [PMID: 33745340 PMCID: PMC8808924 DOI: 10.1177/1947603521993219] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To create a treatment algorithm for focal grade 3 or 4 cartilage defects of the knee using both classic and novel cartilage restoration techniques. DESIGN A comprehensive review of the literature was performed highlighting classic as well as novel cartilage restoration techniques supported by clinical and/or basic science research and currently being employed by orthopedic surgeons. RESULTS There is a high level of evidence to support the treatment of small to medium size lesions (<2-4 cm2) without subchondral bone involvement with traditional techniques such as marrow stimulation, osteochondral autograft transplant (OAT), or osteochondral allograft transplant (OCA). Newer techniques such as autologous matrix-induced chondrogenesis and bone marrow aspirate concentrate implantation have also been shown to be effective in select studies. If subchondral bone loss is present OAT or OCA should be performed. For large lesions (>4 cm2), OCA or matrix autologous chondrocyte implantation (MACI) may be performed. OCA is preferred over MACI in the setting of subchondral bone involvement while cell-based modalities such as MACI or particulated juvenile allograft cartilage are preferred in the patellofemoral joint. CONCLUSIONS Numerous techniques exist for the orthopedic surgeon treating focal cartilage defects of the knee. Treatment strategies should be based on lesion size, lesion location, subchondral bone involvement, and the level of evidence supporting each technique in the literature.
Collapse
Affiliation(s)
- Betina B. Hinckel
- Department of Orthopedic Surgery,
William Beaumont Hospital, Taylor, MI, USA
| | - Dimitri Thomas
- UNC Orthopedics and Sports Medicine at
Lenoir, Kinston, NC, USA
| | - Evan E. Vellios
- Sports Medicine and Shoulder Surgeon
Southern California Orthopedic Institute (SCOI), Van Nuys, CA, USA
| | | | - Jacob G. Calcei
- Department of Orthopaedic Surgery,
University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH,
USA
| | - Seth L. Sherman
- Division of Sports Medicine, Department
of Orthopedic Surgery, School of Medicine, Stanford University, Palo Alto, CA,
USA
| | | | - Tiago L. Fernandes
- University of São Paulo, Institute of
Orthopedics and Traumatology, Sports Medicine–FIFA, São Paulo, SP, Brazil
| | - Jack Farr
- OrthoIndy Knee Preservation and
Cartilage Restoration Center, School of Medicine, Indiana University, Indianapolis,
IN, USA
| | - Christian Lattermann
- Division of Sports Medicine,
Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA,
USA
| | | |
Collapse
|
16
|
Liu J, Dong X, Liu Y, Wang K, Lei S, Yang M, Yue H, Feng H, Feng K, Li K, Zhou J, Chen Y, Du W, Kang X, Xia Y. The Identified Hub Gene GlcN in Osteoarthritis Progression and Treatment. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5499450. [PMID: 34754325 PMCID: PMC8572607 DOI: 10.1155/2021/5499450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND As a chronic disease, osteoarthritis has caused great trouble to the health of middle-aged and elderly people. Studies have shown that glucosamine (GlcN) can be used to abate the progression and improve this disease. Based on this point of view, we try to verify the connection between GlcN and osteoarthritis and find more effective biomarkers. METHODS We downloaded the GSE72575 data set from the GEO database, and used the R language to perform DEG analysis on the gene expression profile of the samples. Next, the GO function and the KEGG signaling pathways were analyzed through the DAVID database, and then, the KEGG pathways enriched in the gene set were analyzed based on GSEA. Then, the PPI network of DEGs was constructed based on the STRING online database, and finally, the hub genes were selected by Cytoscape. RESULTS Three GlcN-treated MH7A cell treatment groups and 3 control groups in the GSE72575 data set were studied. Through analysis, there were 52 DEGs in these samples. Then, through GO, KEGG, and GSEA, regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway, FoxO signaling pathway, JAK-STAT signaling pathway, PI3K-Akt signaling pathway, TGF-beta signaling pathway, and ECM receptor interaction were involved in the regulatory mechanisms of the osteoarthritis pathogenesis. After that, the hub genes IL6 and DDIT3 were identified through PPI network construction and analysis. And it was found that IL6 was lowly expressed in the group with GlcN-treated MH7A cells, while DDIT3 was highly expressed. CONCLUSION The above results provide a basis for GlcN to participate in the treatment of osteoarthritis and a possibility for finding effective therapeutic targets.
Collapse
Affiliation(s)
- Jingsheng Liu
- The Fourth Ward of Orthopedics Department of the Second Hospital of Lanzhou University, No. 80 Cuiyingmen, Lanzhou City, Gansu Province 730000, China
| | - Xiaoli Dong
- Department of Physiology, Gansu University of Traditional Chinese Medicine, Chengguan District, Lanzhou City, Gansu Province 730030, China
| | - Yining Liu
- T.C Jasper School, Plano Independent School District, 6800 Archgate Dr. Plano, TX 75024, USA
| | - Kai Wang
- The Fourth Ward of Orthopedics Department of the Second Hospital of Lanzhou University, No. 80 Cuiyingmen, Lanzhou City, Gansu Province 730000, China
| | - Shuanhu Lei
- The Fourth Ward of Orthopedics Department of the Second Hospital of Lanzhou University, No. 80 Cuiyingmen, Lanzhou City, Gansu Province 730000, China
| | - Mingxuan Yang
- The Fourth Ward of Orthopedics Department of the Second Hospital of Lanzhou University, No. 80 Cuiyingmen, Lanzhou City, Gansu Province 730000, China
| | - Haiyuan Yue
- The Fourth Ward of Orthopedics Department of the Second Hospital of Lanzhou University, No. 80 Cuiyingmen, Lanzhou City, Gansu Province 730000, China
| | - Haijun Feng
- The Fourth Ward of Orthopedics Department of the Second Hospital of Lanzhou University, No. 80 Cuiyingmen, Lanzhou City, Gansu Province 730000, China
| | - Kai Feng
- The Fourth Ward of Orthopedics Department of the Second Hospital of Lanzhou University, No. 80 Cuiyingmen, Lanzhou City, Gansu Province 730000, China
| | - Kang Li
- The Fourth Ward of Orthopedics Department of the Second Hospital of Lanzhou University, No. 80 Cuiyingmen, Lanzhou City, Gansu Province 730000, China
| | - Jianwei Zhou
- The Fourth Ward of Orthopedics Department of the Second Hospital of Lanzhou University, No. 80 Cuiyingmen, Lanzhou City, Gansu Province 730000, China
| | - Yanqiang Chen
- The Fourth Ward of Orthopedics Department of the Second Hospital of Lanzhou University, No. 80 Cuiyingmen, Lanzhou City, Gansu Province 730000, China
| | - Wenjia Du
- The Fourth Ward of Orthopedics Department of the Second Hospital of Lanzhou University, No. 80 Cuiyingmen, Lanzhou City, Gansu Province 730000, China
| | - Xuewen Kang
- The Fourth Ward of Orthopedics Department of the Second Hospital of Lanzhou University, No. 80 Cuiyingmen, Lanzhou City, Gansu Province 730000, China
| | - Yayi Xia
- The Fourth Ward of Orthopedics Department of the Second Hospital of Lanzhou University, No. 80 Cuiyingmen, Lanzhou City, Gansu Province 730000, China
| |
Collapse
|
17
|
Bone marrow aspirate concentrate and scaffold for osteochondral lesions of the talus in ankle osteoarthritis: satisfactory clinical outcome at 10 years. Knee Surg Sports Traumatol Arthrosc 2021; 29:2504-2510. [PMID: 33606047 DOI: 10.1007/s00167-021-06494-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To evaluate at long-term follow-up patients undergoing a one-step procedure of debridement and BMAC seeded in situ onto a scaffold for the treatment of osteochondral lesions of the talus (OLT) in ankles affected by osteoarthritis (OA), documenting the duration of the clinical benefit and its efficacy in postponing end-stage procedures. METHODS This series included 56 consecutive patients. Patients were evaluated preoperatively and up to a mean of 10 years of follow-up with the AOFAS score and the AOS scale, including pain and disability subscales. Furthermore, patients were asked to rate the satisfaction and failures were documented as well. RESULTS The AOFAS score improved from 52.3 ± 14.3 to 73.5 ± 23.1 at 10 years (p < 0.0005); the AOS pain and disability subscales decreased from 70.9 ± 14.1 to 37.2 ± 32.7 and from 69.0 ± 14.8 to 34.2 ± 29.3, respectively (both p < 0.0005). The overall rate of satisfaction was 61.8 ± 41.2 and 68.6% of patients would undergo again the surgical procedure. A total of 17 failures was documented, for a failure rate of 33.3%. Older patients and those with more complex cases requiring previous or combined surgeries had lower outcomes, as well as those affected by grade 3 OA, who experienced a high failure rate of 71.4%. CONCLUSIONS This one-step technique for the treatment of OLT in OA ankles showed to be safe and to provide a satisfactory outcome, even if patients with end stage OA presented a high revision rate at 10 years. Moreover, this procedure was effective over time, with overall good results maintained up to a long-term follow-up. However, older age, more complex cases requiring previous or combined surgeries, and advanced OA led to an overall worst outcome and a significantly higher failure rate.
Collapse
|
18
|
[Cartilage repair procedures for early osteoarthritis]. DER ORTHOPADE 2021; 50:356-365. [PMID: 33844031 DOI: 10.1007/s00132-021-04099-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Commonly used cartilage repair procedures have been established for focal cartilage lesions; however, degenerative lesions with accompanying changes of other intraarticular structures are much more common in clinical practice. This stage, in which classic radiological signs of osteoarthritis are absent, is called early osteoarthritis and is characterized by impaired joint homeostasis with biomechanical and biochemical changes that can have a negative effect on regenerative cartilage therapy procedures. INDICATION Cartilage repair procedures are indicated for symptomatic focal early osteoarthritis, defined as cartilage degeneration ICRS grades I or II around a focal cartilage defect ICRS grades III or IV. In more advanced osteoarthritis with significant narrowing of the joint space, cartilage repair procedures are generally contraindicated. THERAPY The most studied cartilage repair procedure for early osteoarthritis is autologous chondrocyte implantation, which has shown acceptable results in case series, although higher failure rates are to be expected compared to focal, traumatic cartilage lesions. The use of bone marrow-stimulating techniques seems to be limited in early osteoarthritis and should only be used in cases of lesion < 2 cm2 and very little surrounding cartilage degeneration. Concomitant surgical procedures, especially unloading osteotomies, are very important.
Collapse
|
19
|
Xu Z, He Z, Shu L, Li X, Ma M, Ye C. Intra-Articular Platelet-Rich Plasma Combined With Hyaluronic Acid Injection for Knee Osteoarthritis Is Superior to Platelet-Rich Plasma or Hyaluronic Acid Alone in Inhibiting Inflammation and Improving Pain and Function. Arthroscopy 2021; 37:903-915. [PMID: 33091549 DOI: 10.1016/j.arthro.2020.10.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate the effectiveness and explore the therapeutic mechanisms of platelet-rich plasma (PRP) combined with hyaluronic acid (HA) as a treatment for knee osteoarthritis (KOA). METHODS In total, 122 knees were randomly divided into HA (34 knees), PRP (40 knees), and PRP+HA (48 knees) groups. Platelet densities in whole blood and PRP were examined using Wright-Giemsa staining. Visual analogue scale, Lequesne, Western Ontario and McMaster Universities Osteoarthritis Index, Lysholm scores, and postoperative complications were evaluated. High-frequency color Doppler imaging was used to observe the synovium and cartilage. Enzyme-linked immunosorbent assays were used to quantify interleukin-1β, tumor necrosis factor-α, matrix metalloproteinase-3, and tissue inhibitor of metalloproteinase-1 levels in synovial fluid. RESULTS The platelet density in PRP was 5.13-times that in whole blood (P = .002). At 24 months, pain and function scores in the PRP+HA group were better than those in the HA-alone and PRP-alone groups (Ppain = .000; Pfunction = .000). At 6 and 12 months, synovial hyperplasia in the PRP and PRP+HA groups was improved (P < .05). After 6 and 12 months, the synovial peak systolic velocity, synovial end-diastolic velocity, systolic/diastolic ratio, and resistance index were improved in the PRP+HA group (P < .05). Complications were greatest in the PRP group (P = .008). After 6 and 12 months, interleukin-1β, tumor necrosis factor-α, matrix metalloproteinase-3, and tissue inhibitor of metalloproteinase-1 in the PRP and PRP+HA groups decreased (P < .05), with more apparent inhibition in the PRP+HA group (P < .05). CONCLUSIONS PRP combined with HA is more effective than PRP or HA alone at inhibiting synovial inflammation and can effectively improve pain and function and reduce adverse reactions. Its mechanism involves changes in the synovium and cytokine content. LEVEL OF EVIDENCE Level II, Prospective cohort study.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, China; Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, China
| | - Liping Shu
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, China; Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Xuanze Li
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Minxian Ma
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, China; Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Chuan Ye
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang, China; Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China; China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
20
|
Vannini F, Mazzotti A, Stefanini N, Faldini C. Coronavirus disease 2019 pandemic: should we delay cartilage regenerative procedures and accept the consequences, or can we find a new normality? INTERNATIONAL ORTHOPAEDICS 2020; 44:2189-2190. [PMID: 32767087 PMCID: PMC7412772 DOI: 10.1007/s00264-020-04741-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic changed elective surgery routine. During the initial spread of the novel coronavirus, elective surgery has been stopped and only emergency and trauma and oncologic procedures were allowed. Following the decrease of the contagion curve, elective surgery is slowly being recovered. The hospitals should create a pre-hospitalization path to identify possible infected patient and further postpone surgery. In this setting, cartilage repair surgery should not be neglected, because this could potentially lead to an increase of patients needing major joint replacement surgery.
Collapse
Affiliation(s)
- Francesca Vannini
- 1st Orthopaedic and Traumatologic Clinic, IRCCS - Istituto Ortopedico Rizzoli, Via Pupilli 1, Bologna, 40136, Italy.
| | - Antonio Mazzotti
- 1st Orthopaedic and Traumatologic Clinic, IRCCS - Istituto Ortopedico Rizzoli, Via Pupilli 1, Bologna, 40136, Italy
| | - Niccolò Stefanini
- 1st Orthopaedic and Traumatologic Clinic, IRCCS - Istituto Ortopedico Rizzoli, Via Pupilli 1, Bologna, 40136, Italy
| | - Cesare Faldini
- 1st Orthopaedic and Traumatologic Clinic, IRCCS - Istituto Ortopedico Rizzoli, Via Pupilli 1, Bologna, 40136, Italy.,Department of Biomedical and Neuromotor Science - DIBINEM, University of Bologna, Bologna, Emilia-Romagna, Italy
| |
Collapse
|
21
|
Cai L, Nauman EA, Pedersen CBW, Neu CP. Finite deformation elastography of articular cartilage and biomaterials based on imaging and topology optimization. Sci Rep 2020; 10:7980. [PMID: 32409711 PMCID: PMC7224212 DOI: 10.1038/s41598-020-64723-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/17/2020] [Indexed: 01/17/2023] Open
Abstract
Tissues and engineered biomaterials exhibit exquisite local variation in stiffness that defines their function. Conventional elastography quantifies stiffness in soft (e.g. brain, liver) tissue, but robust quantification in stiff (e.g. musculoskeletal) tissues is challenging due to dissipation of high frequency shear waves. We describe new development of finite deformation elastography that utilizes magnetic resonance imaging of low frequency, physiological-level (large magnitude) displacements, coupled to an iterative topology optimization routine to investigate stiffness heterogeneity, including spatial gradients and inclusions. We reconstruct 2D and 3D stiffness distributions in bilayer agarose hydrogels and silicon materials that exhibit heterogeneous displacement/strain responses. We map stiffness in porcine and sheep articular cartilage deep within the bony articular joint space in situ for the first time. Elevated cartilage stiffness localized to the superficial zone is further related to collagen fiber compaction and loss of water content during cyclic loading, as assessed by independent T2 measurements. We additionally describe technical challenges needed to achieve in vivo elastography measurements. Our results introduce new functional imaging biomarkers, which can be assessed nondestructively, with clinical potential to diagnose and track progression of disease in early stages, including osteoarthritis or tissue degeneration.
Collapse
Affiliation(s)
- Luyao Cai
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, US
| | - Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, US
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, US
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, US
| | | | - Corey P Neu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, US.
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, US.
| |
Collapse
|
22
|
Kimmerling KA, Gomoll AH, Farr J, Mowry KC. Amniotic Suspension Allograft Modulates Inflammation in a Rat Pain Model of Osteoarthritis. J Orthop Res 2020; 38:1141-1149. [PMID: 31814175 PMCID: PMC7187262 DOI: 10.1002/jor.24559] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) affects over 301 million adults worldwide. Inflammation is a recognized component of the OA process; two potent pro-inflammatory cytokines involved in OA are interleukin-1β and tumor necrosis factor-α. Placental-derived tissues and fluids are known to contain anti-inflammatory and immunomodulatory cytokines and growth factors. The objective of this study was to evaluate the anti-inflammatory effects of amniotic suspension allograft (ASA) in an in vivo model of OA; we evaluated pain, function, and cytokine levels following ASA treatment in the rat monosodium iodoacetate (MIA) OA pain model. Rats were injected with 2 mg of MIA, which causes pain, cartilage degeneration, and inflammation, followed by treatment with saline, triamcinolone (positive control), or ASA 7 days following disease induction with MIA. Behavioral assays, including gait analysis, mechanical pain threshold, incapacitance, and swelling were evaluated, along with histology and serum and synovial fluid biomarkers. Treatment with ASA resulted in significant improvements in pain threshold, while weight bearing aversion and swelling were significantly decreased. There were no differences between groups in total joint score after histological grading. Serum biomarkers did not show differences, indicating a lack of systemic response; however, synovial fluid levels of IL-10 were significantly increased in animals treated with ASA. ASA treatment significantly reduced pain, weight-bearing aversion and swelling. This study provides mechanistic data regarding potential therapeutic effects of ASA in OA and preliminary evidence of the anti-inflammatory nature of ASA. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1141-1149, 2020.
Collapse
Affiliation(s)
| | - Andreas H. Gomoll
- Department of Orthopaedic SurgeryHospital for Special SurgeryNew YorkNew York
| | - Jack Farr
- Knee Preservation and Cartilage Restoration Center, OrthoIndyIndianapolisIndiana
| | | |
Collapse
|
23
|
Biologische Therapie der Gelenkarthrose. ARTHROSKOPIE 2020. [DOI: 10.1007/s00142-020-00363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Song JS, Hong KT, Kim NM, Park HS, Choi NH. Human umbilical cord blood-derived mesenchymal stem cell implantation for osteoarthritis of the knee. Arch Orthop Trauma Surg 2020; 140:503-509. [PMID: 31980879 DOI: 10.1007/s00402-020-03349-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION This study aimed to investigate the clinical outcomes after human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC) implantation for medial compartment (MC) osteoarthritis of the knee. MATERIALS AND METHODS Inclusion criteria were patients older than 60 years, with a kissing lesion of the MC, a full-thickness chondral defect ≥ 4 cm2 of the medial femoral condyle (MFC), and a varus deformity ≥ 3° on a long cassette scanogram. The mean age was 64.9 ± 4.4 years and the mean chondral defect of the MFC was 7.2 ± 1.9 cm2. A mixture of sodium hyaluronate and hUCB-MSC was implanted into the chondral defect and a high tibial osteotomy was performed in all patients. International Knee Documentation Committee (IKDC), visual analog scale (VAS), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores were evaluated preoperatively and 1 year and 2 years postoperatively. Cartilage regeneration was evaluated in 14 (56%) patients by second-look arthroscopy at 1 year postoperatively. RESULTS Twenty-five patients underwent hUBC-MSC implantation. IKDC, VAS, and WOMAC scores at 1 year and 2 years improved significantly compared to preoperative scores. These scores at 1 year and 2 years were not significantly different between the body mass index (BMI) < 25 group and BMI ≥ 25 group. However, the < 65-year-old group showed superior IKDC scores at 1 year and 2 years and VAS score at 2 years than the ≥ 65-year-old group. Younger age and larger size of the chondral defect were associated with a significantly greater improvement in IKDC, VAS and WOMAC scores at 2 years. Second-look arthroscopy demonstrated International Cartilage Repair Society-Cartilage Repair Assessment grade I in six (42.9%) patients and grade II in eight (57.1%). CONCLUSIONS hUCB-MSC implantation regenerated cartilage satisfactorily and showed satisfactory clinical outcomes in patients older than 60 years who had MC osteoarthritis.
Collapse
Affiliation(s)
- Jun-Seob Song
- Department of Orthopaedic Surgery, Seoul JS Hospital, Seoul, South Korea
| | - Ki-Taek Hong
- Department of Orthopaedic Surgery, Seoul JS Hospital, Seoul, South Korea
| | - Na-Min Kim
- Department of Orthopaedic Surgery, Seoul JS Hospital, Seoul, South Korea
| | - Han-Soo Park
- Department of Orthopaedic Surgery, Seoul JS Hospital, Seoul, South Korea
| | - Nam-Hong Choi
- Department of Orthopaedic Surgery, Eulji Medical Center, Seoul, South Korea.
| |
Collapse
|
25
|
Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment. J Clin Med 2019; 8:jcm8101637. [PMID: 31591319 PMCID: PMC6832991 DOI: 10.3390/jcm8101637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Gene therapy for osteoarthritis offers powerful, long-lasting tools that are well adapted to treat such a slow, progressive disorder, especially those therapies based on the clinically adapted recombinant adeno-associated viral (rAAV) vectors. Here, we examined the ability of an rAAV construct carrying a therapeutic sequence for the cartilage-specific SOX9 transcription factor to modulate the phenotype of human osteoarthritic articular chondrocytes compared with normal chondrocytes in a three-dimensional environment where the cells are embedded in their extracellular matrix. Successful sox9 overexpression via rAAV was noted for at least 21 days, leading to the significant production of major matrix components (proteoglycans, type-II collagen) without affecting the proliferation of the cells, while the cells contained premature hypertrophic processes relative to control conditions (reporter rAAV-lacZ application, absence of vector treatment). These findings show the value of using rAAV to adjust the osteoarthritic phenotype when the chondrocytes are confined in their inherently altered environment and the possibility of impacting key cellular processes via gene therapy to remodel human osteoarthritic cartilage lesions.
Collapse
|
26
|
Sessa A, Perdisa F, Di Martino A, Zaffagnini S, Filardo G. Cell-Free Biomimetic Osteochondral Scaffold: Implantation Technique. JBJS Essent Surg Tech 2019; 9:e27. [PMID: 32021725 DOI: 10.2106/jbjs.st.18.00089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This 1-stage cell-free scaffold-based technique is indicated for the treatment of full-thickness chondral and osteochondral lesions in the knee, regardless of the lesion size. The aim of the procedure is restoration of the osteochondral unit while avoiding the issues of donor site morbidity and those related to cell management. Description The surgical technique is simple and can be performed as a 1-stage procedure. The lesion site is visualized through a standard knee medial or lateral parapatellar arthrotomy. The defect is prepared by excision of the injured cartilage and subchondral bone to ensure adequate bone-marrow blood flow and to create a squared, regularly shaped lodging for the device. The scaffold is then shaped and sized according to the dimensions of the prepared lesion site and implanted by press-fitting or with addition of fibrin glue. Finally, the complete range of motion is tested to assess the stability of the implant before and after releasing the tourniquet. Alternatives Nonsurgical alternatives have been reported to include nonpharmacological modalities, such as dietary supplements, and pharmacological therapies as well as physical therapies and novel biological procedures involving injections of various substances1. There are several surgical alternatives, including among others microfracture, mosaicplasty, osteochondral allograft, and total knee arthroplasty, depending primarily on the disease stage and etiology as well as the specific patient conditions2,3. Rationale This cell-free device is engineered in 3 layers to mimic the structure and composition of the osteochondral unit in order to guide resident cells toward an ordered regeneration of both bone and cartilage layers, providing a better quality of regenerated articular surface. The treatment approach offers a useful alternative to current procedures in the field of osteochondral lesions, in particular for young and middle-aged patients affected by symptomatic defects in which subchondral bone is likely involved. The advantages of this scaffold include the ability to perform a 1-stage surgical procedure, off-the-shelf availability, a straightforward surgical technique, and lower costs compared with cell-based regenerative options. Furthermore, in contrast to some more traditional treatments, it can be used for large lesions.
Collapse
Affiliation(s)
- Andrea Sessa
- II Orthopedic and Traumatologic Clinic (A.S., A.D.M., and S.Z.), Knee and Hip Replacement Department (F.P.), and Applied Translational Research (ATR) Center (G.F.), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesco Perdisa
- II Orthopedic and Traumatologic Clinic (A.S., A.D.M., and S.Z.), Knee and Hip Replacement Department (F.P.), and Applied Translational Research (ATR) Center (G.F.), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Di Martino
- II Orthopedic and Traumatologic Clinic (A.S., A.D.M., and S.Z.), Knee and Hip Replacement Department (F.P.), and Applied Translational Research (ATR) Center (G.F.), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Zaffagnini
- II Orthopedic and Traumatologic Clinic (A.S., A.D.M., and S.Z.), Knee and Hip Replacement Department (F.P.), and Applied Translational Research (ATR) Center (G.F.), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Filardo
- II Orthopedic and Traumatologic Clinic (A.S., A.D.M., and S.Z.), Knee and Hip Replacement Department (F.P.), and Applied Translational Research (ATR) Center (G.F.), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
27
|
Andriolo L, Reale D, Di Martino A, Zaffagnini S, Vannini F, Ferruzzi A, Filardo G. High Rate of Failure After Matrix-Assisted Autologous Chondrocyte Transplantation in Osteoarthritic Knees at 15 Years of Follow-up. Am J Sports Med 2019; 47:2116-2122. [PMID: 31211592 DOI: 10.1177/0363546519855029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Chondral and osteochondral lesions in osteoarthritic knees of young patients remain challenging for orthopaedic surgeons, due to a combination of high functional demands and limited indications for joint replacement in this population. The possibility of extending the indication of cartilage regenerative procedures to these patients may allow the delay of metal resurfacing. PURPOSE To analyze the potential of a cartilage regenerative approach to provide clinical benefits in young patients with osteoarthritic knees, documenting outcomes in terms of clinical improvement as well as failures, in particular regarding knee replacement, at long-term follow-up. STUDY DESIGN Case series; Level of evidence, 4. METHODS A total of 41 patients (mean ± SD age, 43 ± 9 years) who had cartilage lesions (4 ± 2 cm2) in osteoarthritic knees (Kellgren-Lawrence grade 2 or 3) underwent matrix-assisted autologous chondrocyte transplantation (MACT) as a salvage procedure. Patients were evaluated with International Knee Documentation Committee (IKDC), EuroQol visual analog scale (EQ-VAS), and Tegner scores before surgery; at 1, 2, 5, and 9 years after surgery; and at a final follow-up at a mean of 15 years after surgery (range, 14-18 years). Failures were also recorded. RESULTS An improvement was observed in all scores after surgery, but a progressive worsening over time was noted. The mean ± SD IKDC score improved from 38.6 ± 16.2 to a maximum of 66.0 ± 18.6 at 2 years (P < .0005), with a subsequent deterioration until the final evaluation at 56.2 ± 21.7 (P = .024). A similar trend was confirmed by EQ-VAS scores. Tegner scores improved at all follow-up points but did not reach the preinjury level. Patients who underwent combined surgery obtained significantly lower results. Only 13 patients (32%) had an IKDC score higher than 70. During the follow-up period, 21 patients underwent reoperation (18 with knee replacement) and 3 more patients experienced clinical failure, for a total surgical and clinical failure rate of 59% at 15 years. CONCLUSION The use of cartilage regenerative surgical procedures, such as MACT, as salvage procedures for young, active patients affected by chondral and osteochondral lesions in osteoarthritic knees led to a limited improvement, with the majority of patients experiencing failure at long-term follow-up. Although a minor subpopulation experienced favorable and stable improvement, the use of MACT for such a challenging indication remains questionable until responding patients can be profiled.
Collapse
Affiliation(s)
- Luca Andriolo
- II Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Reale
- II Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Di Martino
- II Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Zaffagnini
- II Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Vannini
- I Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Ferruzzi
- I Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
28
|
Cengiz IF, Pereira H, Espregueira-Mendes J, Reis RL, Oliveira JM. The Clinical Use of Biologics in the Knee Lesions: Does the Patient Benefit? Curr Rev Musculoskelet Med 2019; 12:406-414. [PMID: 31254255 PMCID: PMC6684695 DOI: 10.1007/s12178-019-09573-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Overview the outcomes of the latest use of platelet-rich plasma (PRP) for the treatment of knee lesions in the clinics and discuss the challenges and limitations. RECENT FINDINGS Recent clinical studies mainly indicate there may be benefit of PRP usage for the treatment of knee lesions. As an autologous source of bioactive components, PRP has been shown to be typically safe, free of major adverse outcomes. The use of PRP has been continuously increasing, and some well-designed, double-blinded, placebo-controlled clinical trials have been published. Clinical outcomes relating to PRP usage are multifactorial and depend on the severity of the lesion and patient characteristics. Although PRP is safe to use and it can be easily applied in the clinics, case-specific considerations are needed to determine whether PRP could be beneficial or not. If the use of PRP is favored, then, the configuration/optimization of the preparation and administration/delivery strategy with or without a concomitant treatment may further enhance the clinical outcomes and patients' experience.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Hélder Pereira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Ripoll y De Prado Sports Clinic: Murcia-Madrid FIFA Medical Centre of Excellence, Madrid, Spain
- Orthopedic Department Centro Hospitalar Póvoa de Varzim, Vila do Conde, Portugal
| | - João Espregueira-Mendes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Orthopedic Department, University of Minho, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
29
|
Roffi A, Kon E, Perdisa F, Fini M, Di Martino A, Parrilli A, Salamanna F, Sandri M, Sartori M, Sprio S, Tampieri A, Marcacci M, Filardo G. A Composite Chitosan-Reinforced Scaffold Fails to Provide Osteochondral Regeneration. Int J Mol Sci 2019; 20:ijms20092227. [PMID: 31067635 PMCID: PMC6539239 DOI: 10.3390/ijms20092227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/23/2022] Open
Abstract
Several biomaterials have recently been developed to address the challenge of osteochondral regeneration. Among these, chitosan holds promises both for cartilage and bone healing. The aim of this in vivo study was to evaluate the regeneration potential of a novel hybrid magnesium-doped hydroxyapatite (MgHA), collagen, chitosan-based scaffold, which was tested in a sheep model to ascertain its osteochondral regenerative potential, and in a rabbit model to further evaluate its ability to regenerate bone tissue. Macroscopic, microtomography, histology, histomorphometry, and immunohistochemical analysis were performed. In the sheep model, all analyses did not show significant differences compared to untreated defects (p > 0.05), with no evidence of cartilage and subchondral bone regeneration. In the rabbit model, this bone scaffold provided less ability to enhance tissue healing compared with a commercial bone scaffold. Moreover, persistence of scaffold material and absence of integration with connective tissue around the scaffolds were observed. These results raised some concerns about the osteochondral use of this chitosan composite scaffold, especially for the bone layer. Further studies are needed to explore the best formulation of chitosan-reinforced composites for osteochondral treatment.
Collapse
Affiliation(s)
- Alice Roffi
- Applied and Translational Research (ATR) Center, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elizaveta Kon
- Knee Joint Reconstruction Center-3rd Orthopedic Division, Humanitas Clinical Institute, 20089 Rozzano, Italy.
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20090 Milan, Italy.
| | - Francesco Perdisa
- Hip and Knee Replacement Department, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Alessandro Di Martino
- II Orthopedic and Traumatologic Clinic; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Annapaola Parrilli
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Francesca Salamanna
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council (ISTEC-CNR), 48018 Faenza, Italy.
| | - Maria Sartori
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council (ISTEC-CNR), 48018 Faenza, Italy.
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council (ISTEC-CNR), 48018 Faenza, Italy.
| | - Maurilio Marcacci
- Knee Joint Reconstruction Center-3rd Orthopedic Division, Humanitas Clinical Institute, 20089 Rozzano, Italy.
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20090 Milan, Italy.
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
30
|
Gursoy S, Akkaya M, Simsek ME, Gursoy M, Dogan M, Bozkurt M. Factors Influencing the Results in Matrix-Associated Autologous Chondrocyte Implantation: A 2 - 5 Year Follow-Up Study. J Clin Med Res 2019; 11:137-144. [PMID: 30701007 PMCID: PMC6340672 DOI: 10.14740/jocmr3711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/24/2018] [Indexed: 12/28/2022] Open
Abstract
Background This study aimed to investigate the outcomes of matrix-associated autologous chondrocyte implantation (MACI) on the treatment of osteochondral lesions in the knee joint and to determine the factors affecting the functional results. Methods The study included 34 patients with a cartilage defect in the knee joint who were applied MACI® (GenzymeBiosurgery, Cambridge, Massachusetts, USA) technique between the years 2010 - 2015. The defect localizations and sizes, past surgeries were recorded. The clinical results were measured with Cincinnati and Lysholm scores. Results As a result of the repeated measures at postoperatively, it was found that the patients had increased Lysholm and Cincinnati functional scores in all follow-up periods (P = 0.0001). When the mean value of Lysholm and Cincinnati functional scores were assessed according to BMI group, no statistically significant difference was determined (P = 0.941 and P = 0.779). The measurements at 6 and 12 months of the follow-up indicated that the mean scores of the group with no concomitant pathologies were significantly higher than those of the group with concomitant pathologies. Conclusions The MACI application provides good and stable outcomes for focal cartilage damage in young patients. In order to obtain significant results after autologous chondrocyte implantation, the selection of appropriate patients without concomitant pathologies is required.
Collapse
Affiliation(s)
- Safa Gursoy
- Department of Orthopedics, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Mustafa Akkaya
- Department of Orthopedics, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Mehmet Emin Simsek
- Ankara Yildirim Beyazit University, Yenimahalle Training and Research Hospital, Ankara, Turkey
| | - Merve Gursoy
- Department of Radiology, Izmir Democracy University, Izmir, Turkey
| | - Metin Dogan
- Department of Orthopedics, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Murat Bozkurt
- Department of Orthopedics, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
31
|
Di Matteo B, El Araby MM, D'Angelo A, Iacono F, Nannini A, Vitale ND, Marcacci M, Respizzi S, Kon E. Adipose-Derived Stem Cell Treatments and Formulations. Clin Sports Med 2018; 38:61-78. [PMID: 30466723 DOI: 10.1016/j.csm.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article analyzes the current literature on the use of adipose-derived stem cells (ASCs) to evaluate the available evidence regarding their therapeutic potential in the treatment of cartilage pathology. Seventeen articles were included and analyzed, showing that there is overall a lack of high-quality evidence concerning the use of ASCs. Most trials are case series with short-term evaluation. The most adopted approach consists of an intra-articular injection of the stromal vascular fraction (SVF) rather than the expanded cells. Based on the available data, no specific preparation method or formulation could be considered as the preferred choice in clinical practice.
Collapse
Affiliation(s)
- Berardo Di Matteo
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| | - Mohamed Marzouk El Araby
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Alessandro D'Angelo
- Department of Orthopaedic, Traumatology and Rehabilitation, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, CTO Hospital, Via Zuretti 29, Turin 10126, Italy
| | - Francesco Iacono
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Alessandra Nannini
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Nicolò Danilo Vitale
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Maurilio Marcacci
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Stefano Respizzi
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy
| |
Collapse
|
32
|
Kamei N, Ochi M, Adachi N, Ishikawa M, Yanada S, Levin LS, Kamei G, Kobayashi T. The safety and efficacy of magnetic targeting using autologous mesenchymal stem cells for cartilage repair. Knee Surg Sports Traumatol Arthrosc 2018; 26:3626-3635. [PMID: 29549388 DOI: 10.1007/s00167-018-4898-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE A new cell delivery system using magnetic force, termed magnetic targeting, was developed for the accumulation of locally injected cells in a lesion. The aim of this study was to assess the safety and efficacy of mesenchymal stem cell (MSC) magnetic targeting in patients with a focal articular cartilage defect in the knee. METHODS MSC magnetic targeting for five patients was approved by the Ministry of Health Labour and Welfare of Japan. Autologous bone marrow MSCs were cultured and subsequently magnetized with ferucarbotran. The 1.0-T compact magnet was attached to a suitable position around the knee joint to allow the magnetic force to be as perpendicular to the surface of the lesion as possible. Then 1 × 107 MSCs were injected into the knee joint. The magnet was maintained in the same position for 10 min after the MSC injection. The primary endpoint was the occurrence of any adverse events. The secondary endpoints were efficacy assessed by magnetic resonance imaging (MRI) T2 mapping and clinical outcomes using the International Knee Documentation Committee (IKDC) Subjective Knee Evaluation and the Knee Injury and Osteoarthritis Outcome Score (KOOS). RESULTS No serious adverse events were observed during the treatment or in the follow-up period. Swelling of the treated knee joint was observed from the day after surgery in three of the five patients. The swelling resolved within 2 weeks in two patients. MRI showed that the cartilage defect areas were almost completely filled with cartilage-like tissue. MOCART scores were significantly higher 48 weeks postoperatively than preoperatively (74.8 ± 10.8 vs 27.0 ± 16.8, p = 0.042). Arthroscopy in three patients showed complete coverage of their cartilage defects. Clinical outcome scores were significantly better 48 weeks postoperatively than preoperatively for the IKDC Subjective Knee Evaluation (74.8 ± 17.7 vs 46.9 ± 17.7, p = 0.014) and knee-related quality-of-life (QOL) in the KOOS (53.8 ± 26.4 vs 22.5 ± 30.8, p = 0.012). CONCLUSION Magnetic targeting of MSCs was safely performed and showed complete coverage of the defects with cartilage-like tissues and significant improvement in clinical outcomes 48 weeks after treatment. The magnetic targeting of MSCs is useful as a minimally invasive treatment for cartilage repair. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Naosuke Kamei
- Department of Orthopaedic Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan.,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Mitsuo Ochi
- Hiroshima University, Higashihiroshima, Japan.
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | | | - L Scott Levin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Goki Kamei
- Department of Orthopaedic Surgery, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Takaaki Kobayashi
- Department of Orthopaedic Surgery, Tsuchiya General Hospital, Hiroshima, Japan
| |
Collapse
|
33
|
Intra-articular injections of expanded mesenchymal stem cells with and without addition of platelet-rich plasma are safe and effective for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2018; 26:3342-3350. [PMID: 29511819 DOI: 10.1007/s00167-018-4883-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/28/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To compare the effectiveness and safety of intra-articular injections of autologous expanded mesenchymal stromal stem cells alone (MSCs), or in combination with platelet-rich plasma (MSCs + PRP), in patients with knee osteoarthritis. METHODS Eighteen patients (57.6 ± 9.6 years) with radiographic symptomatic knee osteoarthritis (Dejour grades II-IV) were randomized to receive intra-articular injections of MSCs (n = 9) or MSCs + PRP (n = 9). Injections were performed 2-3 weeks after bone marrow aspiration (± 80-100 ml) which was obtained from both posterior iliac crests. RESULTS The Knee Injury and Osteoarthritis Outcome Score (KOOS) improved significantly throughout the 12 months for both groups (p < 0.05). No statistically significant differences between groups were found in KOOS subscales and global score improvements at 12-month end-point (n.s.). The MSCs group showed significant improvements in the pain, function and daily living activities, and sports and recreational activities subscales (p < 0.05). Similarly, the MSCs + PRP group showed significant improvements in the pain, function and daily living activities and quality of life subscales (p < 0.05). The average number of fibroblast colony forming units (CFU-F) was 56.8 + 21.9 for MSCs group and 50.7 ± 21.7 for MSCs + PRP group. Minimal adverse effects were seen in both groups (10 adverse events, in 5 patients). CONCLUSIONS Intra-articular injections of expanded MSCs alone or in combination with PRP are safe and have a beneficial effect on symptoms in patients with symptomatic knee osteoarthritis. Adding PRP to the MSCs injections did not provide additional benefit. These results are encouraging and support the recommendation of this minimally invasive procedure in patients with knee osteoarthritis, without requiring hospitalization. The CFU-F results may be used as reference for future research. LEVEL OF EVIDENCE Prospective cohort study, Level II.
Collapse
|
34
|
No evidence for combining cartilage treatment and knee osteotomy in osteoarthritic joints: a systematic literature review. Knee Surg Sports Traumatol Arthrosc 2018; 26:3290-3299. [PMID: 29453488 DOI: 10.1007/s00167-018-4871-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/12/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE To assess whether the combination of HTO and cartilage treatment produced an additional clinical benefit compared to HTO alone. The secondary aim was to identify if there was any difference among different cartilage procedures in terms of healing potential and clinical outcome. METHODS A systematic review of the literature was performed on PubMed database by three independent observers according to the following inclusion criteria: clinical reports of any level of evidence, written in the English language, with no time limitation, about HTO associated with cartilage surgical and injective treatment, including surveys reporting clinical, radiological, or second-look outcomes at any follow-up time. RESULTS The database search identified 1956 records: 21 studies were included for the final analysis, for a total of 1068 patients; 10 case series and 11 comparative studies. While overall good results were reported in the case series, the analysis of the comparative studies showed less uniform results. Among the eight studies investigating HTO with cartilage surgical procedures, improved tissue regeneration was found in 5/8 studies, whereas a clinical improvement was reported only in two studies. Three studies on HTO combination with injective treatment showed better tissue regeneration and clinical benefit. CONCLUSIONS Literature presents low-quality studies, with only few heterogeneous comparative papers. While surgical treatments targeting only the cartilage layer did not achieve clinical improvements, injective treatments targeting the overall joint environment showed promising findings. This prompts further research towards the development of treatments able to improve knee osteotomies outcomes. However, until new evidence will prove otherwise, there is no indication for a combined cartilage treatment in routine clinical practice. LEVEL OF EVIDENCE Level IV.
Collapse
|
35
|
Dallaudiere B, Crombé A, Gadeau AP, Pesquer L, Peuchant A, James C, Silvestre A. Iodine contrast agents do not influence Platelet-Rich Plasma function at an early time point in vitro. J Exp Orthop 2018; 5:47. [PMID: 30374787 PMCID: PMC6206314 DOI: 10.1186/s40634-018-0162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Iodine contrast agents (ICAs) are routinely used by radiologists to help guide intra-articular infiltrations. The aim of this study was to assess the in vitro effects of ICA on platelet function of human autologous Platelet-Rich Plasma (PRP). METHODS One hundred thirty-seven consecutive patients with symptomatic femoral-patellar osteoarthritis were included. All were addressed to our institution for a fluoroscopy-guided intra-articular PRP infiltration of the pathological femoral-patellar joint. For each patient, 500 μl of PRP were sampled before intra-articular injection. First, PRP samples were mixed with 50 μl of 2 widely used ICA: Visipaque270® (Iodixanol, n = 58) and Iopamiron200® (Iopamidol, n = 69). PRP concentration ([PRP]) was measured at different delays of incubation (t = 0, 5, 10, 15, 20 and 30 min) enabling to calculate PRP ratio (defined as [PRP](t)/[PRP](0mn)) at each delay, for each mixture, in order to quantitatively assess the influence of ICA on PRP ratio. Second, the PRP samples of 10 additional patients were mixed with Visipaque270®, Visipaque270®, Iopamiron200® and phosphate buffer saline (PBS: control solution) in order to qualitatively assess the influence of ICA on platelet aggregation, using ADP, Collagen, Arachidonic acid and TRAP tests. The surface expression of human P-selectin, a marker of α-granule release, in the PRP + Visipaque270® and PRP + Iopamiron200® mixtures was finally compared. Repeated-measures ANOVA, classical 2-way ANOVA and Wilcoxon matched-pairs test were used to study the influence of ICA on PRP quality. RESULTS There was no significant change in PRP ratio during the first 30mn of incubation (p = 0.991) whatever the ICA (p = 0.926). Whatever the aggregation test, there was no significant difference in the percentage of platelet aggregation between PRP + PBS, PRP + Visipaque270® and PRP + Iopamiron200® (p = 0.998), nor between PRP + PBS and PRP + Visipaque320® (p = 0.470). Finally, there was no significant difference in P-selectin expression between the PRP + Visipaque270® and PRP + Iopamiron200® mixtures (p = 0.500). CONCLUSION At early delays of incubation, Visipaque® and Iopamiron®, which are two widely used ICA for intra-articular infiltrations, did not influence the in vitro platelet function nor the quality of PRP.
Collapse
Affiliation(s)
- B Dallaudiere
- Interventional Musculoskeletal Radiology Department, Clinique du sport de Bordeaux, F-33700, Mérignac, France. .,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, F-33000, Bordeaux, France. .,Université de Bordeaux, F-33076, Bordeaux, France.
| | - A Crombé
- Interventional Musculoskeletal Radiology Department, Clinique du sport de Bordeaux, F-33700, Mérignac, France.,Université de Bordeaux, F-33076, Bordeaux, France.,Department of Radiology, Institut Bergonié, F-33000, Bordeaux, France
| | - A P Gadeau
- Université de Bordeaux, F-33076, Bordeaux, France.,Biology of Cardiovascular Diseases, INSERM U1034, F-33600, Pessa, France
| | - L Pesquer
- Interventional Musculoskeletal Radiology Department, Clinique du sport de Bordeaux, F-33700, Mérignac, France
| | - A Peuchant
- Department of Pathology, Clinique du sport de Bordeaux, F-33700, Mérignac, France
| | - C James
- Université de Bordeaux, F-33076, Bordeaux, France.,Biology of Cardiovascular Diseases, INSERM U1034, F-33600, Pessa, France
| | - A Silvestre
- Interventional Musculoskeletal Radiology Department, Clinique du sport de Bordeaux, F-33700, Mérignac, France.,Université de Bordeaux, F-33076, Bordeaux, France.,Biology of Cardiovascular Diseases, INSERM U1034, F-33600, Pessa, France
| |
Collapse
|
36
|
Filardo G, Perdisa F, Gelinsky M, Despang F, Fini M, Marcacci M, Parrilli AP, Roffi A, Salamanna F, Sartori M, Schütz K, Kon E. Novel alginate biphasic scaffold for osteochondral regeneration: an in vivo evaluation in rabbit and sheep models. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:74. [PMID: 29804259 DOI: 10.1007/s10856-018-6074-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Current therapeutic strategies for osteochondral restoration showed a limited regenerative potential. In fact, to promote the growth of articular cartilage and subchondral bone is a real challenge, due to the different functional and anatomical properties. To this purpose, alginate is a promising biomaterial for a scaffold-based approach, claiming optimal biocompatibility and good chondrogenic potential. A previously developed mineralized alginate scaffold was investigated in terms of the ability to support osteochondral regeneration both in a large and medium size animal model. The results were evaluated macroscopically and by microtomography, histology, histomorphometry, and immunohistochemical analysis. No evidence of adverse or inflammatory reactions was observed in both models, but limited subchondral bone formation was present, together with a slow scaffold resorption time.The implantation of this biphasic alginate scaffold provided partial osteochondral regeneration in the animal model. Further studies are needed to evaluate possible improvement in terms of osteochondral tissue regeneration for this biomaterial.
Collapse
Affiliation(s)
- Giuseppe Filardo
- Nano-Biotechnology (NABI) Laboratory, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Francesco Perdisa
- Nano-Biotechnology (NABI) Laboratory, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy.
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 73, Dresden, 01307, Germany
| | - Florian Despang
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 73, Dresden, 01307, Germany
| | - Milena Fini
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Maurilio Marcacci
- Knee Joint Reconstruction Center - 3rd Orthopaedic Division, Humanitas Clinical Institute, Via Alessandro Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan, Italy
| | - Anna Paola Parrilli
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Alice Roffi
- Nano-Biotechnology (NABI) Laboratory, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Francesca Salamanna
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Maria Sartori
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 73, Dresden, 01307, Germany
| | - Elizaveta Kon
- Knee Joint Reconstruction Center - 3rd Orthopaedic Division, Humanitas Clinical Institute, Via Alessandro Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan, Italy
| |
Collapse
|
37
|
Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z, Wang J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 2018; 8:7533-7549. [PMID: 35539132 PMCID: PMC9078458 DOI: 10.1039/c7ra13510f] [Citation(s) in RCA: 472] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Functional active wound dressings are expected to provide a moist wound environment, offer protection from secondary infections, remove wound exudate and accelerate tissue regeneration, as well as to improve the efficiency of wound healing. Chitosan-based hydrogels are considered as ideal materials for enhancing wound healing owing to their biodegradable, biocompatible, non-toxic, antimicrobial, biologically adhesive, biological activity and hemostatic effects. Chitosan-based hydrogels have been demonstrated to promote wound healing at different wound healing stages, and also can alleviate the factors against wound healing (such as excessive inflammatory and chronic wound infection). The unique biological properties of a chitosan-based hydrogel enable it to serve as both a wound dressing and as a drug delivery system (DDS) to deliver antibacterial agents, growth factors, stem cells and so on, which could further accelerate wound healing. For various kinds of wounds, chitosan-based hydrogels are able to promote the effectiveness of wound healing by modifying or combining with other polymers, and carrying different types of active substances. In this review, we will take a close look at the application of chitosan-based hydrogels in wound dressings and DDS to enhance wound healing.
Collapse
Affiliation(s)
- He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Chenyu Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
- Hallym University 1Hallymdaehak-gil Chuncheon Gangwon-do 200-702 Korea
| | - Chen Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Fan Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| |
Collapse
|
38
|
Clinical Trials and Management of Osteochondral Lesions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:391-413. [DOI: 10.1007/978-3-319-76711-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Emerging Concepts in Treating Cartilage, Osteochondral Defects, and Osteoarthritis of the Knee and Ankle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:25-62. [PMID: 29736568 DOI: 10.1007/978-3-319-76735-2_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The management and treatment of cartilage lesions, osteochondral defects, and osteoarthritis remain a challenge in orthopedics. Moreover, these entities have different behaviors in different joints, such as the knee and the ankle, which have inherent differences in function, biology, and biomechanics. There has been a huge development on the conservative treatment (new technologies including orthobiologics) as well as on the surgical approach. Some surgical development upraises from technical improvements including advanced arthroscopic techniques but also from increased knowledge arriving from basic science research and tissue engineering and regenerative medicine approaches. This work addresses the state of the art concerning basic science comparing the knee and ankle as well as current options for treatment. Furthermore, the most promising research developments promising new options for the future are discussed.
Collapse
|
40
|
Grazina R, Andrade R, Bastos R, Costa D, Pereira R, Marinhas J, Maestro A, Espregueira-Mendes J. Clinical Management in Early OA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:111-135. [PMID: 29736571 DOI: 10.1007/978-3-319-76735-2_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Knee osteoarthritis affects an important percentage of the population throughout their life. Several factors seem to be related to the development of knee osteoarthritis including genetic predisposition, gender, age, meniscal deficiency, lower limb malalignments, joint instability, cartilage defects, and increasing sports participation. The latter has contributed to a higher prevalence of early onset of knee osteoarthritis at younger ages with this active population demanding more consistent and durable outcomes. The diagnosis is complex and the common signs and symptoms are often cloaked at these early stages. Classification systems have been developed and are based on the presence of knee pain and radiographic findings coupled with magnetic resonance or arthroscopic evidence of early joint degeneration. Nonsurgical treatment is often the first-line option and is mainly based on daily life adaptations, weight loss, and exercise, with pharmacological agents having only a symptomatic role. Surgical treatment shows positive results in relieving the joint symptomatology, increasing the knee function and delaying the development to further degenerative stages. Biologic therapies are an emerging field showing early promising results; however, further high-level research is required.
Collapse
Affiliation(s)
- Rita Grazina
- Orthopaedic Surgery at Centro Hospitalar de Vila Nova de Gaia/Espinho E.P.E, Vila Nova de Gaia, Portugal
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,Faculty of Sports, University of Porto, Porto, Portugal
| | - Ricardo Bastos
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,Fluminense Federal University, Niteroi/Rio de Janeiro, Brazil
| | - Daniela Costa
- SMIC Dragão - Serviço Médico de Imagem Computorizada, Porto, Portugal
| | - Rogério Pereira
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Faculty of Sports, University of Porto, Porto, Portugal.,Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - José Marinhas
- Orthopaedic Surgery at Centro Hospitalar de Vila Nova de Gaia/Espinho E.P.E, Vila Nova de Gaia, Portugal.,Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal
| | - António Maestro
- Real Sporting de Gijón SAD, Gijón, Spain.,FREMAP Mutua de Accidentes, Gijón, Spain
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal. .,Dom Henrique Research Centre, Porto, Portugal. .,Orthopaedics Department of Minho University, Minho, Portugal. .,3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
41
|
Yabumoto H, Nakagawa Y, Mukai S, Saji T. Osteochondral autograft transplantation for isolated patellofemoral osteoarthritis. Knee 2017; 24:1498-1503. [PMID: 28970117 DOI: 10.1016/j.knee.2017.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/13/2017] [Accepted: 07/29/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND The purpose of this retrospective study was to evaluate clinical outcomes of osteochondral autograft transplantation (OAT) for isolated patellofemoral (PF) osteoarthritis (OA). METHODS OAT was performed in seven patients (six men, one woman; mean age, 61.1years) with isolated PF OA. The mean duration of follow up was 46.9months (range, 24-84months). Clinical outcomes were evaluated preoperatively and postoperatively according to the International Knee Documentation Committee (IKDC) objective score and the knee scoring system of the Japanese Orthopaedic Association (JOA) score. The International Cartilage Repair Society (ICRS) score was recorded in three cases that underwent second-look arthroscopies postoperatively. For morphological evaluation, the Kellgren and Lawrence (KL) classification and the modified magnetic resonance observation of cartilage repair tissue (MOCART) score were used. RESULTS The mean IKDC and JOA scores were both significantly improved. The percentage of normal and nearly normal on the IKDC score was increased from 28.6% (2/7) to 85.7% (6/7) (P=0.05). The mean JOA score was improved from 80.0 (range, 65.0-85.0) to 95.0 (range, 90.0-100) (P=0.0008). The mean ICRS scores were 10.3 (nearly normal) in the three cases that underwent second-look arthroscopies postoperatively. Regarding KL classification, the grade was unchanged in five cases (two cases in grade 1, three cases in grade 2) and improved in two cases (from grade 3 to 2, from grade 4 to 3). The mean modified MOCART score was 67.9 (range, 60.0-75) at 12-month follow up. There were no complications, and satisfaction was obtained in all cases. The study design was case series: level IV. CONCLUSIONS All clinical scores improved significantly postoperatively. Osteochondral plugs were transplanted perpendicular to the articular surface to obtain good congruity of the repaired articular surface. In this way, OAT is an effective procedure to prevent progression of isolated PF OA.
Collapse
Affiliation(s)
- Hiromitsu Yabumoto
- Department of Orthopaedic Surgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.
| | - Yasuaki Nakagawa
- Department of Orthopaedic Surgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Shogo Mukai
- Department of Orthopaedic Surgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Takahiko Saji
- Department of Orthopaedic Surgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| |
Collapse
|
42
|
Iolascon G, Gimigliano F, Moretti A, de Sire A, Migliore A, Brandi M, Piscitelli P. Early osteoarthritis: How to define, diagnose, and manage. A systematic review. Eur Geriatr Med 2017. [DOI: 10.1016/j.eurger.2017.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
43
|
Intra-articular Injection of Mesenchymal Stem Cells and Platelet-Rich Plasma to Treat Patellofemoral Osteoarthritis: Preliminary Results of a Long-Term Pilot Study. J Vasc Interv Radiol 2017; 28:1708-1713. [PMID: 29031987 DOI: 10.1016/j.jvir.2017.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To assess the feasibility and safety of concomitant intra-articular (IA) knee injection of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) under fluoroscopic guidance to treat patellofemoral osteoarthritis (OA). MATERIALS AND METHODS This prospective study included 19 consecutive patients referred for fluoroscopically guided IA MSC and PRP injection for symptomatic patellofemoral chondropathy in which conservative treatment had failed. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score and magnetic resonance (MR) data, including T2 mapping sequence, were prospectively collected before and 6 months after treatment. Clinical data without MR imaging were collected until 12 months after the procedure. RESULTS WOMAC scores were significantly lower after IA injection of MSCs and PRP at 6 months and during 12-months follow-up compared with baseline (mean score decreased from 34.3 to 14.2; P < .0018). Patients reported no complications. Concerning MR imaging follow-up, there were no significant differences in grade, surface, or T2 value of the chondral lesions (P > .375). CONCLUSIONS IA injection of MSCs and PRP in early patellofemoral OA appears to allow functional improvement.
Collapse
|
44
|
Joint Preservation Surgery for Medial Compartment Osteoarthritis. Arthrosc Tech 2017; 6:e717-e728. [PMID: 28706823 PMCID: PMC5495658 DOI: 10.1016/j.eats.2017.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/27/2017] [Indexed: 02/03/2023] Open
Abstract
Single compartment osteoarthritis is a commonly encountered condition in the middle-aged population, with the medial compartment being the most commonly involved compartment. Medial compartment osteoarthritis becomes seriously disabling for these active patients, with a very few definitive solutions. These patients quickly stop responding to the conservative methods such as lifestyle modification, drugs, physiotherapy, and rehab programs. Less invasive procedures such as intra-articular injections or joint debridement also do not give a long-lasting relief. On the other hand, this population is too young to undergo a knee replacement surgery because the failure rate of a knee replacement surgery is too high in the middle-aged patients as compared with the elderly population. A combination of biological stimulation of the damaged single compartment cartilage and biomechanical correction surgery can give a long-lasting relief in the middle-aged population. Because the medial compartment osteoarthritis is increasingly being treated with joint preservation surgeries, it is important to lay out the step-by-step surgical technique of a joint preservation surgery. This Technical Note presents the detailed technique, patient selection flow chart, tips, pearls, and surgical decision making, along with a surgical video of a joint preservation surgery.
Collapse
|
45
|
Park YB, Ha CW, Lee CH, Park YG. Restoration of a large osteochondral defect of the knee using a composite of umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel: a case report with a 5-year follow-up. BMC Musculoskelet Disord 2017; 18:59. [PMID: 28148266 PMCID: PMC5288855 DOI: 10.1186/s12891-017-1422-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023] Open
Abstract
Background The treatment of articular cartilage defects is a therapeutic challenge for orthopaedic surgeons. Furthermore, large osteochondral defects needs restoration of the underlying bone for sufficient biomechanical characteristics as well as the overlying cartilage. Case presentation A symptomatic large osteochondral defect in the knee joint was restored using a composite of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) 0.5 x 107/ml and 4% hyaluronic acid (HA) hydrogel. Significant improvements in pain and function of the knee joint were identified by the evaluation at 12 months after surgery. A hyaline-like cartilage completely filled the defect and was congruent with the surrounding normal cartilage as revealed by magnetic resonance imaging (MRI), a second-look arthroscopy and histological assessment. The improved clinical outcomes maintained until 5.5 years. MRI also showed the maintenance of the restored bony and cartilaginous tissues. Conclusion This case report suggests that the composite of allogeneic UCB-MSCs and HA hydrogel can be considered a safe and effective treatment option for large osteochondral defects of the knee.
Collapse
Affiliation(s)
- Yong-Beom Park
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, 06973, South Korea
| | - Chul-Won Ha
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea. .,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| | - Choong-Hee Lee
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Yong-Geun Park
- Department of Orthopedic Surgery, Jeju National University Hospital, Jeju National University School of Medicine, 15 Aran 13-gil, Jeju-si, 63241, South Korea
| |
Collapse
|
46
|
Castagnini F, Pellegrini C, Perazzo L, Vannini F, Buda R. Joint sparing treatments in early ankle osteoarthritis: current procedures and future perspectives. J Exp Orthop 2016; 3:3. [PMID: 26915003 PMCID: PMC4713405 DOI: 10.1186/s40634-016-0038-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/08/2016] [Indexed: 02/07/2023] Open
Abstract
Ankle osteoarthritis (AOA) is a severe pathology, mostly affecting a post-traumatic young population. Arthroscopic debridement, arthrodiastasis, osteotomy are the current joint sparing procedures, but, in the available studies, controversial results were achieved, with better outcomes in case of limited degeneration. Only osteotomy in case of malalignment is universally accepted as a joint sparing procedure in case of partial AOA. Recently, the biological mechanism of osteoarthritis has been intensively studied: it is a whole joint pathology, affecting cartilage, bone and synovial membrane. In particular, the first stage is characterized by a reversible catabolic activity with a state of chondropenia. Thus, biological procedures for early AOA were proposed in order to delay or to avoid end stage procedures. Mesenchymal stem cells (MSCs) may be a good solution to prevent or reverse degeneration, due to their immunomodulatory features (able to control the catabolic joint environment) and their regenerative osteochondral capabilities (able to treat the chondral defects). In fact, MSCs may regulate the cytokine cascade and the metalloproteinases release, restoring the osteochondral tissue as well. After interesting reports of mesenchymal stem cells seeded on scaffold and applied to cartilage defects in non-degenerated joints, bone marrow derived cells transplantation appears to be a promising technique in order to control the degenerative pathway and restore the osteochondral defects.
Collapse
Affiliation(s)
- Francesco Castagnini
- I Clinic of Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Bologna, Italy.
| | - Camilla Pellegrini
- I Clinic of Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Luca Perazzo
- I Clinic of Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Francesca Vannini
- I Clinic of Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Roberto Buda
- Orthopaedics and Traumatology, I Clinic, Rizzoli Orthopaedic Institute, University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Andrade R, Vasta S, Pereira R, Pereira H, Papalia R, Karahan M, Oliveira JM, Reis RL, Espregueira-Mendes J. Knee donor-site morbidity after mosaicplasty - a systematic review. J Exp Orthop 2016; 3:31. [PMID: 27813019 PMCID: PMC5095115 DOI: 10.1186/s40634-016-0066-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/24/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mosaicplasty has been associated with good short- to long-term results. Nevertheless, the osteochondral harvesting is restricted to the donor-site area available and it may lead to significant donor-site morbidity. PURPOSE Provide an overview of donor-site morbidity associated with harvesting of osteochondral plugs from the knee joint in mosaicplasty procedure. METHODS Comprehensive search using Pubmed, Cochrane Library, SPORTDiscus and CINAHL databases was carried out through 10th October of 2016. As inclusion criteria, all English-language studies that assessed the knee donor-site morbidity after mosaicplasty were accepted. The outcomes were the description and rate of knee donor-site morbidity, sample's and cartilage defect's characterization and mosaicplasty-related features. Correlation between mosaicplasty features and rate of morbidity was performed. The methodological and reporting quality were assessed according to Coleman's methodology score. RESULTS Twenty-one studies were included, comprising a total of 1726 patients, with 1473 and 268 knee and ankle cartilage defects were included. The defect size ranged from 0.85 cm2 to 4.9 cm2 and most commonly 3 or less plugs (averaging 2.9 to 9.4 mm) were used. Donor-site for osteochondral harvesting included margins of the femoral trochlea (condyles), intercondylar notch, patellofemoral joint and upper tibio-fibular joint. Mean donor-site morbidity was 5.9 % and 19.6 % for knee and ankle mosaicplasty procedures, respectively. Concerning knee-to-knee mosaicplasty procedures, the most common donor-site morbidity complaints were patellofemoral disturbances (22 %) and crepitation (31 %), and in knee-to-ankle procedures there was a clear tendency for pain or instability during daily living or sports activities (44 %), followed by patellofemoral disturbances, knee stiffness and persistent pain (13 % each). There was no significant correlation between rate of donor-site morbidity and size of the defect, number and size of the plugs (p > 0.05). CONCLUSIONS Osteochondral harvesting in mosaicplasty often results in considerable donor-site morbidity. The donor-site morbidity for knee-to-ankle (16.9 %) was greater than knee-to-knee (5.9 %) mosaicplasty procedures, without any significant correlation between rate of donor-site morbidity and size of the defect, number and size of the plugs. Lack or imcomplete of donor-site morbidity reporting within the mosaicplasty studies is a concern that should be addressed in future studies. LEVEL OF EVIDENCE Level IV, systematic review of Level I-IV studies.
Collapse
Affiliation(s)
- Renato Andrade
- Faculty of Sports, University of Porto, Porto, Portugal
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
| | - Sebastiano Vasta
- Orthopaedic and Trauma Department, Campus Biomedico University of Rome, Rome, Italy
| | - Rogério Pereira
- Faculty of Sports, University of Porto, Porto, Portugal
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Faculty of Health Sciences, University of Fernando Pessoa, Porto, Portugal
| | - Hélder Pereira
- Dom Henrique Research Centre, Porto, Portugal
- Orthopaedic Department, Centro Hospitalar Póvoa de Varzim, Vila do Conde, Portugal
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Ripoll y De Prado Sports Clinic FIFA Medical Centre of Excellence, Murcia-Madrid, Spain
| | - Rocco Papalia
- Orthopaedic and Trauma Department, Campus Biomedico University of Rome, Rome, Italy
| | - Mustafa Karahan
- Department of Orthopaedic Surgery, Acibadem University, Istanbul, Turkey
| | - J. Miguel Oliveira
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopaedics Department of Minho University, Minho, Portugal
| |
Collapse
|
48
|
Burke J, Hunter M, Kolhe R, Isales C, Hamrick M, Fulzele S. Therapeutic potential of mesenchymal stem cell based therapy for osteoarthritis. Clin Transl Med 2016; 5:27. [PMID: 27510262 PMCID: PMC4980326 DOI: 10.1186/s40169-016-0112-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease affecting articular cartilage in joints, and it is a leading cause of disability in the United States. Current pharmacological treatment strategies are ineffective to prevent the OA progression; however, cellular therapies have the potential to regenerate the lost cartilage, combat cartilage degeneration, provide pain relief, and improve patient mobility. One of the most promising sources of cellular regenerative medicine is from mesenchymal stem cells (MSCs). MSCs can be isolated from adipose tissue, bone marrow, synovial tissue, and other sources. The aim of this review is to compile recent advancement in cellular based therapy more specifically in relation to MSCs in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- John Burke
- Department of Orthopedics, Georgia Regents University, Augusta, GA, USA
| | - Monte Hunter
- Department of Orthopedics, Georgia Regents University, Augusta, GA, USA
| | - Ravindra Kolhe
- Department of Pathology, Georgia Regents University, Augusta, GA, USA
| | - Carlos Isales
- Department of Orthopedics, Georgia Regents University, Augusta, GA, USA.,Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - Mark Hamrick
- Department of Cell Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Orthopedics, Georgia Regents University, Augusta, GA, USA. .,Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA. .,Department of Orthopedics Surgery, Augusta University, Augusta, GA, 30904, USA.
| |
Collapse
|
49
|
Prevalence of Articular Cartilage Lesions and Surgical Clinical Outcomes in Football (Soccer) Players' Knees: A Systematic Review. Arthroscopy 2016; 32:1466-77. [PMID: 27090724 DOI: 10.1016/j.arthro.2016.01.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/18/2015] [Accepted: 01/21/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE To systematize the available scientific literature on the prevalence of articular cartilage and/or osteochondral lesions in football (soccer) players' knees, and overview the surgical procedures and functional outcomes and return to sports. METHODS A comprehensive search using Pubmed, Cochrane Library, SPORTDiscus, and CINAHL databases was carried out until September 30, 2015. All English language studies that assessed the outcomes of a surgical technique for the treatment of articular cartilage lesions in football players' knees, with a minimum follow-up of 12 months, were included. The reference list of the most relevant papers was screened. The main outcomes of interest were the clinical, arthroscopy or imaging primary outcomes and the return to sports rate. The methodological and reporting qualities were assessed according to Coleman methodology score. RESULTS The search provided 485 titles and abstracts. Five studies were eligible for inclusion (mean Coleman score of 37.2 points), comprising a total of 183 football players with a mean age of 25.7 years. A total of 217 articular cartilage and/or osteochondral lesions were reported, where the medial and lateral femoral condyles were the most common sites of lesion. The surgical procedures investigated were mosaicplasty, microfracture, autologous chondrocyte implantation, and chondral debridement. CONCLUSIONS No definitive conclusion could be made in respect to the best current surgical technique for articular cartilage and osteochondral lesions. Microfracture and mosaicplasty can provide a faster return to competition and faster clinical and functional results, whereas autologous chondrocyte implantation and/or matrix-induced autologous chondrocytes implantation procedures can enhance longstanding clinical and functional results. LEVEL OF EVIDENCE Level IV, systematic review of Level III and IV studies.
Collapse
|
50
|
Mariani E, Canella V, Cattini L, Kon E, Marcacci M, Di Matteo B, Pulsatelli L, Filardo G. Leukocyte-Rich Platelet-Rich Plasma Injections Do Not Up-Modulate Intra-Articular Pro-Inflammatory Cytokines in the Osteoarthritic Knee. PLoS One 2016; 11:e0156137. [PMID: 27258008 PMCID: PMC4892682 DOI: 10.1371/journal.pone.0156137] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/26/2016] [Indexed: 11/18/2022] Open
Abstract
Introduction The presence of leukocytes in platelet concentrates is deemed to cause deleterious effects when injected intra articularly. The aim of this study is to analyse both local and systemic effects induced by leukocyte-rich Platelet-rich Plasma (PRP) injections through a proteomic characterization of serial synovial fluid and blood samples obtained from subjects treated for knee OA. Secondary aim was to compare the effects on knee homeostasis and systemic response with those obtained with visco-supplementation. Methods Thirty-six OA patients treated either by autologous L-PRP or HA intra-articular knee injections, administered in series of three at one-week intervals, were analyzed. Just before the injection, 1 ml of synovial fluid was collected through the same needle way. In the same time, a peripheral blood sample was obtained and plasma separated. A further peripheral blood sample was collected at 2, 6, and 12 months. L-PRP, plasma and synovial fluid were tested by multiplex bead-based sandwich immunoassay by means of the Bio-Plex suspension array system (Bio-Rad Laboratories) for the presence of pro- and anti-inflammatory cytokines (IL-1beta, IL-6, IL-8, IL-17 and IL-4, IL-10, IL-13) and growth factors (FGF-b, HGF, PDGF-AB/BB). Results In general, pro-inflammatory cytokine levels were similar at basal condition and after treatment whereas anti-inflammatory ones were nearly undetectable. L-PRP administration did not modulate significant changes of cytokine concentrations either in synovial fluid or plasma, whatever the time points analyzed. No different trend was observed between L-PRP and HA administration in terms of pro- and anti-inflammatory cytokines, as well as growth factors. Conclusions In contrast with the evidence reported by “in vitro” studies, where a cellular pro-inflammatory response appears to be induced by the presence of leukocytes, these results suggest that the presence leukocyte-rich PRP doesn’t induce a relevant in vivo up regulation of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Erminia Mariani
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Valentina Canella
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Luca Cattini
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Elizaveta Kon
- Laboratory of Biomechanics and Technology Innovation/NABI, 2 Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Maurilio Marcacci
- Laboratory of Biomechanics and Technology Innovation/NABI, 2 Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Berardo Di Matteo
- Laboratory of Biomechanics and Technology Innovation/NABI, 2 Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
- * E-mail:
| | - Lia Pulsatelli
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Giuseppe Filardo
- Laboratory of Biomechanics and Technology Innovation/NABI, 2 Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|