1
|
Moreland RB, Brubaker L, Tinawi L, Wolfe AJ. Rapid and accurate testing for urinary tract infection: new clothes for the emperor. Clin Microbiol Rev 2024:e0012924. [PMID: 39641639 DOI: 10.1128/cmr.00129-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
SUMMARYUrinary tract infection (UTI) is among the most common infections in clinical practice. In some cases, if left untreated, it can lead to pyelonephritis and urosepsis. In other cases, UTI resolves without treatment. Clinical diagnosis is typically based on patient symptoms and/or urinalysis, including urine dipsticks. The standard urine culture method is sometimes employed to identify the suspected urinary pathogen (uropathogen) and/or guide antimicrobial choice, but results are rarely available before 24 h. The standard urine culture method also misses fastidious, anaerobic, and slow-growing uropathogens and rarely reports polymicrobial infections. The unexplained combination of negative urine cultures with persistent urinary tract symptoms is distressing to both patients and clinicians. Given the broad appreciation of the advantages provided by rapid testing (e.g., for COVID-19 or influenza A), a rapid, accurate diagnostic test is needed to deliver timely treatment to patients seeking care for UTI that optimizes antibiotic stewardship. Herein, we discuss progress being made toward an accessible, timely (i.e., within hours), accurate assay with results that are clinically useful for the treating clinician within the timeframe of the infection (i.e., the growth rate of the pathogen(s)). New and emerging uropathogens often overlooked by current diagnostic techniques are also reviewed.
Collapse
Affiliation(s)
- Robert B Moreland
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Linda Brubaker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Lana Tinawi
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
2
|
Stewart E, Hochstedler-Kramer BR, Khemmani M, Clark NM, Parada JP, Farooq A, Doshi C, Wolfe AJ, Albarillo FS. Characterizing the urobiome in geriatric males with chronic indwelling urinary catheters: an exploratory longitudinal study. Microbiol Spectr 2024; 12:e0094124. [PMID: 39387607 PMCID: PMC11536997 DOI: 10.1128/spectrum.00941-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
The impact of chronic indwelling urinary catheters (IUCs) on the composition and stability of the urinary microbiota remains unknown. The primary aim of this study was to describe the urinary microbiomes of geriatric males with chronic IUCs. A secondary aim was to explore clinical catheter-associated urinary tract infection (CAUTI) courses of the participants. Geriatric male patients with chronic IUCs were followed longitudinally. Catheterized urine, catheter tips, and both urethral and periurethral swabs were collected from participants at monthly intervals. Microbes were isolated and identified from each specimen using an enhanced culture method called expanded quantitative urine culture (EQUC) and targeted 16S rRNA gene DNA sequencing. Microbial outcomes were examined both in the absence of urinary symptoms and in the context of clinical diagnosis of CAUTI. Ten male participants (mean age 86 years) were enrolled. Urinary microbiomes differed for each participant. However, within each individual, microbiomes were similar over time and across niches (bladder, catheter, urethra, and periurethra). Within-niche microbiomes differed across individuals, and this was observed over time. The most abundant bacteria isolated from all niches were known uropathogens. Six of 10 individuals met diagnostic criteria for CAUTI at least once during the 12-month observation period, but no evidence of this or antibiotic treatment/response was discernable in our monthly samples. The microbiomes of each participant were unique and remained similar over time and across niches. Longitudinal EQUC or 16S rRNA gene sequencing data could be useful to clinicians when diagnosing or treating possible CAUTI.IMPORTANCECatheter-associated urinary tract infections (CAUTIs) are serious but preventable nosocomial infections. The most common risk factor for developing CAUTI is prolonged use of indwelling urinary catheters (IUCs). This study provides the first longitudinal description of the urinary microbiomes of geriatric males with chronic IUCs, in the absence of urinary signs and symptoms, as a first step toward enhancing our knowledge of the impact of chronic IUCs on the composition and stability of the urinary microbiota. This is an understudied area, particularly for males.
Collapse
Affiliation(s)
- Emma Stewart
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Baylie R. Hochstedler-Kramer
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Nina M. Clark
- Division of Infectious Diseases, Loyola University Medical Center, Maywood, Illinois, USA
- Infectious Disease and Immunology Research Institute, Loyola University Chicago, Maywood, Illinois, USA
| | - Jorge P. Parada
- Division of Infectious Diseases, Loyola University Medical Center, Maywood, Illinois, USA
- Infectious Disease and Immunology Research Institute, Loyola University Chicago, Maywood, Illinois, USA
| | - Ahmer Farooq
- Department of Urology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Chirag Doshi
- Department of Urology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Infectious Disease and Immunology Research Institute, Loyola University Chicago, Maywood, Illinois, USA
| | - Fritzie S. Albarillo
- Division of Infectious Diseases, Loyola University Medical Center, Maywood, Illinois, USA
- Infectious Disease and Immunology Research Institute, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
3
|
Dutta R, Stothers L, Ackerman AL. Manipulating the Gut Microbiome in Urinary Tract Infection-Prone Patients. Urol Clin North Am 2024; 51:525-536. [PMID: 39349020 DOI: 10.1016/j.ucl.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Although antibiotics remain the mainstay of urinary tract infection treatment, many affected women can be caught in a vicious cycle in which antibiotics given to eradicate one infection predispose them to develop another. This effect is primarily mediated by disturbances in the gut microbiome that both directly enrich for uropathogenic overgrowth and induce systemic alterations in inflammation, tissue permeability, and metabolism that also decrease host resistance to infection recurrences. Here, we discuss nonantibiotic approaches to manipulating the gut microbiome to reverse the systemic consequences of antibiotics, including cranberry supplementation and other dietary approaches, probiotic administration, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Rahul Dutta
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA
| | - Lynn Stothers
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA
| | - A Lenore Ackerman
- Division of Urogynecology and Reconstructive Pelvic Surgery, David Geffen School of Medicine at UCLA, Box 951738, Los Angeles, CA 90095-1738, USA.
| |
Collapse
|
4
|
Appleberry H, Anjum H, Cage T, Jarm K, Khan H, Proctor L, Saroca J, Wolfe AJ, Putonti C, Kula A. Draft genomes of one Staphylococcus haemolyticus and five Staphylococcus lugdunensis strains isolated from catheterized urine samples of females. Microbiol Resour Announc 2024; 13:e0049724. [PMID: 39162452 PMCID: PMC11384740 DOI: 10.1128/mra.00497-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/07/2024] [Indexed: 08/21/2024] Open
Abstract
Although Staphylococcus haemolyticus and Staphylococcus lugdunensis are members of the normal human flora, they also can cause infection. Here, we present the draft genomes of five strains of S. lugdunensis and one strain of S. haemolyticus isolated from transurethral catheterized urine samples from different females experiencing lower urinary tract symptoms.
Collapse
Affiliation(s)
- Helen Appleberry
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Haaris Anjum
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Taleah Cage
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Kayla Jarm
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Haashir Khan
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Lizzie Proctor
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Junelle Saroca
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Alex Kula
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Kula A, Arman M, Appleberry H, Wolfe AJ, Putonti C. Draft genomes of Klebsiella aerogenes, Klebsiella huaxiensis, and Klebsiella michiganensis isolates from the urinary tract. Microbiol Resour Announc 2024; 13:e0049224. [PMID: 39162486 PMCID: PMC11385447 DOI: 10.1128/mra.00492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/07/2024] [Indexed: 08/21/2024] Open
Abstract
Several Klebsiella spp. can be the cause of urinary tract infections. Here we present the draft genome assemblies for four urinary isolates of three Klebsiella spp.: Klebsiella aerogenes UMB7541, Klebsiella michiganensis UMB11142 and UMB11423, and Klebsiella huaxiensis UMB11391 to further explore the genetic diversity of Klebsiella in the urinary tract.
Collapse
Affiliation(s)
- Alex Kula
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Muna Arman
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Helen Appleberry
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
6
|
Kula A, Khan A, Martinez M, Terry J, Appleberry H, Wolfe AJ, Putonti C. Draft genomes of Neisseria perflava UMB0578, Proteus mirabilis UMB8339, and Enterococcus faecalis UMB7967 isolated from urine samples. Microbiol Resour Announc 2024; 13:e0049824. [PMID: 39162471 PMCID: PMC11385105 DOI: 10.1128/mra.00498-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
The urinary tract of females harbors a variety of microorganisms, both for those with and without symptoms. Here, we present the draft genome sequences of three isolates from urine samples-Neisseria perflava UMB0578, Proteus mirabilis UMB8339, and Enterococcus faecalis UMB7967.
Collapse
Affiliation(s)
- Alex Kula
- Department of Biology, Loyola University, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University, Chicago, Illinois, USA
| | - Ali Khan
- Department of Biology, Loyola University, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University, Chicago, Illinois, USA
- Department of Chemistry and Biochemistry, Loyola University, Chicago, Illinois, USA
| | - Megan Martinez
- Bioinformatics Program, Loyola University, Chicago, Illinois, USA
| | - Jevan Terry
- Department of Biology, Loyola University, Chicago, Illinois, USA
| | - Helen Appleberry
- Department of Biology, Loyola University, Chicago, Illinois, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Catherine Putonti
- Department of Biology, Loyola University, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
7
|
Kula A, Chilton G, Damaso J, Golzar Y, Rushnaiwala F, Appleberry H, Wolfe AJ, Putonti C. Draft genome sequences of four Corynebacterium amycolatum strains isolated from female urine samples. Microbiol Resour Announc 2024; 13:e0048724. [PMID: 39083712 PMCID: PMC11384733 DOI: 10.1128/mra.00487-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Corynebacterium amycolatum is an emerging pathogen of the urinary tract. Here, we present the draft genomes for four strains isolated from urine collected from symptomatic and asymptomatic female participants.
Collapse
Affiliation(s)
- Alex Kula
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Grace Chilton
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - James Damaso
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Yusef Golzar
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Fatima Rushnaiwala
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Helen Appleberry
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, USA
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, USA
| |
Collapse
|
8
|
Jeries LM, Sysoeva TA, Karstens L, Kelly MS. Synthesis of current pediatric urinary microbiome research. Front Pediatr 2024; 12:1396408. [PMID: 38957777 PMCID: PMC11217333 DOI: 10.3389/fped.2024.1396408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
The human urinary bladder hosts a complex microbial community of low biomass referred to as the urobiome. While the composition of the urobiome has been investigated in adults for over a decade now, only a few studies have considered the presence and composition of the urobiome in children. It is critical to explore how the urobiome develops throughout the life span and how it changes in the presence of various health conditions. Therefore, we set to review the available data on pediatric urobiome composition and its development with age and disease. In addition, we focused on identifying and reporting specific gaps in our knowledge of the pediatric urobiome that we hope will be addressed by future studies in this swiftly developing field with fast-improving methods and consensus.
Collapse
Affiliation(s)
- Layla M. Jeries
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Tatyana A. Sysoeva
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Lisa Karstens
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, United States
| | - Maryellen S. Kelly
- Division of Healthcare of Women and Children, School of Nursing, Duke University, Durham, NC, United States
- Department of Urology, Duke University Hospital, Durham, NC, United States
| |
Collapse
|
9
|
Chai TC, Wolfe AJ, Brubaker L. The Urinary Microbiome: Improving Diagnostics and Management of Urinary Tract Infections in Adult Females. Infect Dis Clin North Am 2024; 38:241-253. [PMID: 38729665 DOI: 10.1016/j.idc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
This article discusses the urinary microbiome in relation to urinary tract infection (UTI) in women. It makes biologic sense that the microbiota of different niches (bladder, vagina, and gut) interact with each other in health, as well as during a UTI event; however, these relationships remain poorly understood. Future research should close knowledge gaps regarding the interactions between the urinary microbiota and the host, amongst the microbiota of adjacent niches, and between the microbes within the same microbiota. The new knowledge should result in improved UTI treatment in the age of antibiotic stewardship.
Collapse
Affiliation(s)
- Toby C Chai
- Department of Urology, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, 725 Albany Street, Suite 3B, Boston, MA 02118, USA.
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Building 115, Room 215, Maywood, IL 60153, USA
| | - Linda Brubaker
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Urogynecology and Reconstructive Pelvic Surgery, University of California, 9300 Campus Point, Mail Code 7433, La Jolla, CA 92037-7433, USA
| |
Collapse
|
10
|
Kenneally C, Murphy CP, Sleator RD, Culligan EP. Turbidimetric bioassays: A solution to antimicrobial activity detection in asymptomatic bacteriuria isolates against uropathogenic Escherichia coli. Microbiologyopen 2024; 13:e1411. [PMID: 38706434 PMCID: PMC11070844 DOI: 10.1002/mbo3.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Traditional bacteriocin screening methods often face limitations due to diffusion-related challenges in agar matrices, which can prevent the peptides from reaching their target organism. Turbidimetric techniques offer a solution to these issues, eliminating diffusion-related problems and providing an initial quantification of bacteriocin efficacy in producer organisms. This study involved screening the cell-free supernatant (CFS) from eight uncharacterized asymptomatic bacteriuria (ABU) isolates and Escherichia coli 83972 for antimicrobial activity against clinical uropathogenic E. coli (UPEC) strains using turbidimetric growth methods. ABU isolates exhibiting activity against five or more UPEC strains were further characterized (PUTS 37, PUTS 58, PUTS 59, S-07-4, and SK-106-1). The inhibition of the CFS by proteinase K suggested that the antimicrobial activity was proteinaceous in nature, potentially bacteriocins. The activity of E. coli PUTS 58 and SK-106-1 was enhanced in an artificial urine medium, with both inhibiting all eight UPECs. A putative microcin H47 operon was identified in E. coli SK-106-1, along with a previously identified microcin V and colicin E7 in E. coli PUTS 37 and PUTS 58, respectively. These findings indicate that ABU bacteriocin-producers could serve as viable prophylactics and therapeutics in the face of increasing antibiotic resistance among uropathogens.
Collapse
Affiliation(s)
- Ciara Kenneally
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Craig P. Murphy
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Roy D. Sleator
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Eamonn P. Culligan
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| |
Collapse
|
11
|
Hochstedler-Kramer BR, Ene A, Putonti C, Wolfe AJ. Comparative genomic analysis of clinical Enterococcus faecalis distinguishes strains isolated from the bladder. BMC Genomics 2023; 24:752. [PMID: 38062354 PMCID: PMC10701997 DOI: 10.1186/s12864-023-09818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Enterococcus faecalis is the most commonly isolated enterococcal species in clinical infection. This bacterium is notorious for its ability to share genetic content within and outside of its species. With this increased proficiency for horizontal gene transfer, tremendous genomic diversity within this species has been identified. Many researchers have hypothesized E. faecalis exhibits niche adaptation to establish infections or colonize various parts of the human body. Here, we hypothesize that E. faecalis strains isolated from the human bladder will carry unique genomic content compared to clinical strains isolated from other sources. RESULTS This analysis includes comparison of 111 E. faecalis genomes isolated from bladder, urogenital, blood, and fecal samples. Phylogenomic comparison shows no association between isolation source and lineage; however, accessory genome comparison differentiates blood and bladder genomes. Further gene enrichment analysis identifies gene functions, virulence factors, antibiotic resistance genes, and plasmid-associated genes that are enriched or rare in bladder genomes compared to urogenital, blood, and fecal genomes. Using these findings as training data and 682 publicly available genomes as test data, machine learning classifiers successfully distinguished between bladder and non-bladder strains with high accuracy. Genes identified as important for this differentiation were often related to transposable elements and phage, including 3 prophage species found almost exclusively in bladder and urogenital genomes. CONCLUSIONS E. faecalis strains isolated from the bladder contain unique genomic content when compared to strains isolated from other body sites. This genomic diversity is most likely due to horizontal gene transfer, as evidenced by lack of phylogenomic clustering and enrichment of transposable elements and prophages. Investigation into how these enriched genes influence host-microbe interactions may elucidate gene functions required for successful bladder colonization and disease establishment.
Collapse
Affiliation(s)
- Baylie R Hochstedler-Kramer
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, 60153, IL, USA
| | - Adriana Ene
- Bioinformatics Program, Loyola University Chicago, Chicago, 60660, IL, USA
| | - Catherine Putonti
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, 60153, IL, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, 60660, IL, USA
- Department of Biology, Loyola University Chicago, Chicago, 60660, IL, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, 60153, IL, USA.
| |
Collapse
|
12
|
Deen NS, Ahmed A, Tasnim NT, Khan N. Clinical relevance of expanded quantitative urine culture in health and disease. Front Cell Infect Microbiol 2023; 13:1210161. [PMID: 37593764 PMCID: PMC10428011 DOI: 10.3389/fcimb.2023.1210161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
"Expanded quantitative urine culture (EQUC)" is an enhanced culture protocol for the detection of viable microbes in urine specimens. Using a large volume of urine and different sets of cultural conditions, EQUC is able to uncover a wide range of bacteria and fungi (yeasts) that were otherwise undetected by the standard urinary culture. In addition to common urinary pathogens, EQUC has been shown to detect emerging and new pathogens, and commensal microbiota. Although the usefulness of EQUC protocol in clinical set up has not yet been fully established, recent studies have demonstrated that EQUC can provide valuable information regarding symptom resolution, treatment responses and diagnosis of major urinary disorders including urinary tract infections, urinary incontinence and other lower urinary tract symptoms. EQUC may also help in evaluating the utility of beneficial microbiota as biotherapeutics. This narrative minireview describes the current research findings regarding the clinical utility of EQUC in characterizing the role of urinary microbiome and uropathogens in health and disease. The literature which are written in English, available on "PubMed" and contain any of the terms- "expanded quantitative urine culture", "enhanced quantitative urine culture" and "EQUC" in the abstracts were used as the source articles to prepare this minireview.
Collapse
Affiliation(s)
- Nadia S. Deen
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | | | | |
Collapse
|
13
|
Chieng CCY, Kong Q, Liou NSY, Khasriya R, Horsley H. The clinical implications of bacterial pathogenesis and mucosal immunity in chronic urinary tract infection. Mucosal Immunol 2023; 16:61-71. [PMID: 36642381 DOI: 10.1016/j.mucimm.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Urinary tract infections (UTIs) exert a significant health and economic cost globally. Approximately one in four people with a previous history of UTI continue to develop recurrent or chronic infections. Research on UTI has primarily concentrated on pathogen behavior, with the focus gradually shifting to encompass the host immune response. However, these are centered on mouse models of Escherichia coli infection, which may not fully recapitulate the infective etiology and immune responses seen in humans. The emerging field of the urobiome also inadvertently confounds the discrimination of true UTI-causing pathogens from commensals. This review aims to present a novel perspective on chronic UTI by linking microbiology with immunology, which is commonly divergent in this field of research. It also describes the challenges in understanding chronic UTI pathogenesis and the human bladder immune response, largely conjectured from murine studies. Lastly, it outlines the shortcomings of current diagnostic methods in identifying individuals with chronic UTI and consequently treating them, potentially aggravating their disease due to mismanagement of prior episodes. This discourse highlights the need to consider these knowledge gaps and encourages more relevant studies of UTIs in humans.
Collapse
Affiliation(s)
| | - Qingyang Kong
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Natasha S Y Liou
- Department of Renal Medicine, University College London, London, United Kingdom; EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Rajvinder Khasriya
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Harry Horsley
- Department of Renal Medicine, University College London, London, United Kingdom.
| |
Collapse
|
14
|
Crintea A, Carpa R, Mitre AO, Petho RI, Chelaru VF, Nădășan SM, Neamti L, Dutu AG. Nanotechnology Involved in Treating Urinary Tract Infections: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:555. [PMID: 36770516 PMCID: PMC9919202 DOI: 10.3390/nano13030555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Considered as the most frequent contaminations that do not require hospitalization, urinary tract infections (UTIs) are largely known to cause significant personal burdens on patients. Although UTIs overall are highly preventable health issues, the recourse to antibiotics as drug treatments for these infections is a worryingly spread approach that should be addressed and gradually overcome in a contemporary, modernized healthcare system. With a virtually alarming global rise of antibiotic resistance overall, nanotechnologies may prove to be the much-needed 'lifebuoy' that will eventually suppress this prejudicial phenomenon. This review aims to present the most promising, currently known nano-solutions, with glimpses on clinical and epidemiological aspects of the UTIs, prospective diagnostic instruments, and non-antibiotic treatments, all of these engulfed in a comprehensive overview.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Medical Biochemistry, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Department of Pathophysiology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Robert Istvan Petho
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Vlad-Florin Chelaru
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Sebastian-Mihail Nădășan
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Lidia Neamti
- Department of Medical Biochemistry, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alina Gabriela Dutu
- Department of Medical Biochemistry, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Neugent ML, Kumar A, Hulyalkar NV, Lutz KC, Nguyen VH, Fuentes JL, Zhang C, Nguyen A, Sharon BM, Kuprasertkul A, Arute AP, Ebrahimzadeh T, Natesan N, Xing C, Shulaev V, Li Q, Zimmern PE, Palmer KL, De Nisco NJ. Recurrent urinary tract infection and estrogen shape the taxonomic ecology and function of the postmenopausal urogenital microbiome. Cell Rep Med 2022; 3:100753. [PMID: 36182683 PMCID: PMC9588997 DOI: 10.1016/j.xcrm.2022.100753] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/28/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Postmenopausal women are severely affected by recurrent urinary tract infection (rUTI). The urogenital microbiome is a key component of the urinary environment. However, changes in the urogenital microbiome underlying rUTI susceptibility are unknown. Here, we perform shotgun metagenomics and advanced culture on urine from a controlled cohort of postmenopausal women to identify urogenital microbiome compositional and function changes linked to rUTI susceptibility. We identify candidate taxonomic biomarkers of rUTI susceptibility in postmenopausal women and an enrichment of lactobacilli in postmenopausal women taking estrogen hormone therapy. We find robust correlations between Bifidobacterium and Lactobacillus and urinary estrogens in women without urinary tract infection (UTI) history. Functional analyses reveal distinct metabolic and antimicrobial resistance gene (ARG) signatures associated with rUTI. Importantly, we find that ARGs are enriched in the urogenital microbiomes of women with rUTI history independent of current UTI status. Our data suggest that rUTI and estrogen shape the urogenital microbiome in postmenopausal women.
Collapse
Affiliation(s)
- Michael L Neugent
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Neha V Hulyalkar
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kevin C Lutz
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Vivian H Nguyen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Jorge L Fuentes
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cong Zhang
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Amber Nguyen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Belle M Sharon
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Amy Kuprasertkul
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda P Arute
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tahmineh Ebrahimzadeh
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Nitya Natesan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vladimir Shulaev
- Department of Biological Sciences, The University of North Texas, Denton, TX, USA; Advanced Environmental Research Institute, The University of North Texas, Denton, TX, USA
| | - Qiwei Li
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Philippe E Zimmern
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Nicole J De Nisco
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA; Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Huang L, Li X, Zheng B, Li P, Wei D, Huang C, Sun L, Li H. Differential Urinary Microbiota Composition Between Women With and Without Recurrent Urinary Tract Infection. Front Microbiol 2022; 13:888681. [PMID: 35722326 PMCID: PMC9200618 DOI: 10.3389/fmicb.2022.888681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022] Open
Abstract
Background Recurrent urinary tract infection (RUTI) is common and burdensome in women. Due to the low concentration or slow-growing of uropathogens in RUTI, standard urine cultures (SUCs) are often negative. Next-generation sequencing (NGS) of bacterial 16S rRNA gene is more sensitive and could be used to reveal the differential microbiota between patients with RUTI and asymptomatic controls. Methods Women (aged ≥ 18 years) with clinically diagnosed RUTI with negative SUC and age-matched women asymptomatic controls with normal urinalysis were enrolled. Their midstream voided urine specimens were collected and processed for NGS (Illumina MiSeq) targeting the bacterial 16S rRNA gene V3-V4 region. The dataset was clustered into operational taxonomic units (OTUs) using QIIME. Taxonomic analysis, alpha diversity, beta diversity, multivariate statistical analysis, and linear discriminant analysis effect size (LEfSe) for differential analysis were performed and compared between patients with RUTI and asymptomatic controls. Results A total of 90 patients with RUTI and 62 asymptomatic controls were enrolled in this study. Among them, 74.4% (67/90) and 71.0% (44/62) were successfully amplified and sequenced their bacterial 16S rRNA gene. In the alpha diversity analysis, the chao1 index and observed species index were significantly lower in the RUTI group than in the control group (P = 0.015 and 0.028, respectively). In the beta diversity analysis, there was a significant difference between the 2 groups [Analysis of similarities (ANOSIM), R = 0.209, P = 0.001]. The relative abundance of 36 bacterial taxa was significantly higher, and another 24 kinds of bacteria were significantly lower in the RUTI group compared with the control group [LEfSe analysis, P < 0.05, linear discriminative analysis (LDA) score > 3], suggesting that Ralstonia, Prevotella, Dialister, and Corynebacterium may play an important role in RUTI. Conclusion The urinary microbiota of women with clinically diagnosed RUTI were significantly different from age-matched asymptomatic controls.
Collapse
Affiliation(s)
- Lei Huang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
- *Correspondence: Lei Huang,
| | - Xiangyan Li
- Department of Anti-infection, Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Bo Zheng
- Department of Anti-infection, Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Pengtao Li
- Beijing Yitong Qijun Technology Co., Ltd., Beijing, China
| | - Dali Wei
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Chenwei Huang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Liying Sun
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| |
Collapse
|
17
|
Hernández-Hernández D, Padilla-Fernández B, Ortega-González MY, Castro-Díaz DM. Recurrent Urinary Tract Infections and Asymptomatic Bacteriuria in Adults. CURRENT BLADDER DYSFUNCTION REPORTS 2021; 17:1-12. [PMID: 34868442 PMCID: PMC8634747 DOI: 10.1007/s11884-021-00638-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Purpose of review Our goal was to summarize recent evidence regarding recurrent urinary tract infections and asymptomatic bacteriuria in different adult populations. Recent findings Several research groups are focused on the description of resident bacterial flora in the bladder and urinary dysbiosis in the microbiome era. Even the definitions might change in light of these discoveries. However, the role of urinary microbiome and bacterial interference has still to be determined. Summary Systematic treatment of asymptomatic bacteriuria is not recommended and even classic indications such as asymptomatic bacteriuria in pregnant women are controversial. In fact, its treatment is associated with a higher probability of symptomatic UTI and a higher prevalence of antibiotic-resistant bacteria. Improving the diagnosis of asymptomatic bacteriuria and optimizing the management of recurrent urinary tract infections, especially through non-antibiotics measures, are needed in order to minimise antimicrobial resistance.
Collapse
Affiliation(s)
| | - Bárbara Padilla-Fernández
- Department of Urology, Complejo Hospitalario Universitario de Canarias, La Laguna, Tenerife Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | | | - David Manuel Castro-Díaz
- Department of Urology, Complejo Hospitalario Universitario de Canarias, La Laguna, Tenerife Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
18
|
Burnett LA, Hochstedler BR, Weldon K, Wolfe AJ, Brubaker L. Recurrent urinary tract infection: Association of clinical profiles with urobiome composition in women. Neurourol Urodyn 2021; 40:1479-1489. [PMID: 34036621 DOI: 10.1002/nau.24707] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 05/02/2021] [Indexed: 01/01/2023]
Abstract
AIMS Clinical profiles of women with recurrent urinary tract infection (RUTI) are correlated with their urinary microbes. METHODS This IRB-approved, cross-sectional study enrolled adult women with RUTI. Urine samples (catheterized and voided) underwent culture by expanded quantitative urine culture (EQUC) and standard urine culture (SUC) methods. A validated symptom questionnaire, relevant clinical variables, and EQUC were used to identify symptom clusters and detect associations with specific urinary microbes. RESULTS Most (36/43) participants were postmenopausal; the average age was 67 years. 51% reported vaginal estrogen use; 51% reported sexual activity. Although single symptoms were not associated with specific urinary microbes, EQUC results were correlated with five distinct clinical profile clusters: Group A: odor, cloudiness, and current vaginal estrogen use (no culture result association). Group B: frequency, low back pain, incomplete emptying, and vaginal estrogen (significantly increased proportion of Lactobacillus-positive cultures). Group C: pain/burning, odor, cloudiness, and urgency (high proportions of UTI-associated microbe-positive cultures). Group D: frequency, urgency, pain/burning, and current vaginal estrogen use (increased number of no growth cultures). Group E: frequency, urgency, pain/burning, odor, overactive bladder, and sexually active (significantly increased proportion of Klebsiella-positive cultures). CONCLUSIONS Distinct clinical profiles are associated with specific urinary microbes in women with RUTI. Refined assessments of clinical profiles may provide useful insights that could inform diagnostic and therapeutic considerations.
Collapse
Affiliation(s)
- Lindsey A Burnett
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Baylie R Hochstedler
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Kelly Weldon
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Linda Brubaker
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|