1
|
Cifuentes-Mendiola SE, Solis-Suarez DL, Martínez-Dávalos A, Godínez-Victoria M, García-Hernández AL. CD4 + T-cell activation of bone marrow causes bone fragility and insulin resistance in type 2 diabetes. Bone 2022; 155:116292. [PMID: 34896656 DOI: 10.1016/j.bone.2021.116292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) causes an increased risk of bone fractures. However, the pathophysiology of diabetic bone fragility is not completely understood. It has been proposed that an inflammatory microenvironment in bone could be a major mechanism by inducing uncontrolled bone resorption, inadequate bone formation and consequently more porous bones. We propose that activated T-cells in the bone marrow cause a pro-inflammatory microenvironment in bone, and cause bone fragility in T2DM. We induced T2DM in C57BL/6 male mice through a hypercaloric diet rich in carbohydrates and low doses of streptozocin. In T2DM mice we inhibited systemic activation of T-cells with a fusion protein between the extracellular domain of Cytotoxic T-Lymphocyte Antigen 4 and the Fc domain of human immunoglobulin G (CTLA4-Ig). We analysed the effects of T2DM or CTLA4-Ig in lymphocyte cell subsets and antigen-presenting cells in peripheral blood and femoral bone marrow; and their effect on the metabolic phenotype, blood and bone cytokine concentration, femoral bone microarchitecture and biomechanical properties, and the number of osteoblast-like cells in the femoral endosteum. We performed a Pearson multiple correlation analysis between all variables in order to understand the global mechanism. Results demonstrated that CTLA4-Ig decreased the number of activated CD4+ T-cells in the femoral bone marrow and consequently decreased TNF-α and RANK-L concentration in bone, notably improved femoral bone microarchitecture and biomechanical properties, increased the number of osteoblast-like cells, and reduces osteoclastic activity compared to T2DM mice that did not receive the inhibitor. Interestingly, we observed that blood glucose levels and insulin resistance may be related to the increase in activated CD4+ T-cells in the bone marrow. We conclude that bone marrow activated CD4+ T-cells cause poor bone quality and insulin resistance in T2DM.
Collapse
Affiliation(s)
- S E Cifuentes-Mendiola
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, CP 54714, Mexico; Postgraduate in Biological Sciences, National Autonomous University of Mexico, Mexico, Mexico
| | - D L Solis-Suarez
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, CP 54714, Mexico
| | - A Martínez-Dávalos
- Physics Institute, National Autonomous University of Mexico, Circuito de la Investigación Científica, Ciudad Universitaria, 04510 México City, Mexico
| | - M Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico, Mexico
| | - A L García-Hernández
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, CP 54714, Mexico.
| |
Collapse
|
2
|
Vergallo C, Torrieri G, Provenzani R, Miettinen S, Moslova K, Varjosalo M, Cristiano MC, Fresta M, Celia C, Santos HA, Cilurzo F, Di Marzio L. Design, synthesis and characterization of a PEGylated stanozolol for potential therapeutic applications. Int J Pharm 2019; 573:118826. [PMID: 31715352 DOI: 10.1016/j.ijpharm.2019.118826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 01/21/2023]
Abstract
Stanozolol (STZ) is a drug used to treat serious disorders like aplastic anemia and hereditary angioedema. It is also indicated as an adjunct therapy for the treatment of vascular disorders and growth failures. Encouraging results obtained using animal models demonstrated that STZ increases bone formation and mineralization, thus improving both density and biomechanical properties. Like natural androgens, such as TST and 5α-dihydrotestosterone (5α-DHT), STZ binds androgen receptor (AR) to activate AR-mediated signaling. Despite its therapeutic effects, this synthetic anabolic-androgenic steroid (AAS), or 5α-DHT derivative, due to its high lipophilicity, is poor soluble in water. Thus, to increase the water solubility and stability of STZ, as well as its bioavailability and efficacy, an innovative PEGylated STZ (STZ conjugated with (MeO-PEG-NH2)10kDa, (MeO-PEG-NH)10kDa-STZ) was synthesized. As confirmed by chromatography (RP-HPLC) and spectrometry (ATR-FTIR, 1H NMR, elemental CHNS(O) analysis, MALDI-TOF/TOF) analyses, a very pure, stable and soluble compound was obtained. Acetylcholinesterase (AChE) competitive ELISA demonstrated that the resulting PEGylated STZ competes against biological TST, especially at lower concentrations. Cytotoxicity of increasing concentrations (1, 10, 25 or 50 µM) of STZ and/or (MeO-PEG-NH)10kDa-STZ was also evaluated for up 80 h by performing the MTT assay on human osteosarcoma Saos-2 cells, which express AR and are responsive to STZ. PEGylation mitigated cytotoxicity of STZ, by increasing the cell viability values, especially at higher drug concentrations. Furthermore, these results suggest that (MeO-PEG-NH)10kDa-STZ is a promising and reliable drug to be used in clinical conditions in which TST is required.
Collapse
Affiliation(s)
- Cristian Vergallo
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, I-66100 Chieti, Italy
| | - Giulia Torrieri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Riccardo Provenzani
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sini Miettinen
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Karina Moslova
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, Via "S. Venuta" s.n.c., I-88100 Catanzaro, Italy
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Via "S. Venuta" s.n.c., I-88100 Catanzaro, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, I-66100 Chieti, Italy.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland(g).
| | - Felisa Cilurzo
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, I-66100 Chieti, Italy.
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, I-66100 Chieti, Italy
| |
Collapse
|
3
|
Ghiacci G, Lumetti S, Manfredi E, Mori D, Macaluso GM, Sala R. Stanozolol promotes osteogenic gene expression and apposition of bone mineral in vitro. J Appl Oral Sci 2018; 27:e20180014. [PMID: 30427473 PMCID: PMC6223784 DOI: 10.1590/1678-7757-2018-0014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
Stanozolol (ST) is a synthetic androgen with high anabolic potential. Although it is known that androgens play a positive role in bone metabolism, ST action on bone cells has not been sufficiently tested to support its clinical use for bone augmentation procedures. Objective: This study aimed to assess the effects of ST on osteogenic activity and gene expression in SaOS-2 cells. Material and Methods: SaOS-2 deposition of mineralizing matrix in response to increasing doses of ST (0-1000 nM) was evaluated through Alizarin Red S and Calcein Green staining techniques at 6, 12 and 24 days. Gene expression of runt-related transcription factor 2 (RUNX2), vitamin D receptor (VDR), osteopontin (SPP1) and osteonectin (ON) was analyzed by RT-PCR. Results: ST significantly influenced SaOS-2 osteogenic activity: stainings showed the presence of rounded calcified nodules, which increased both in number and in size over time and depending on ST dose. RT-PCR highlighted ST modulation of genes related to osteogenic differentiation. Conclusions: This study provided encouraging results, showing ST promoted the osteogenic commitment of SaOS-2 cells. Further studies are required to validate these data in primary osteoblasts and to investigate ST molecular pathway of action.
Collapse
Affiliation(s)
- Giulia Ghiacci
- Università degli Studi di Parma, Dipartimento di Medicina e Chirurgia, Centro Universitario di Odontoiatria, Parma. Italy. Università degli Studi di Parma, Dipartimento di Medicina e Chirurgia, Centro Universitario di Odontoiatria, Parma. Italy
| | - Simone Lumetti
- Università degli Studi di Parma, Dipartimento di Medicina e Chirurgia, Centro Universitario di Odontoiatria, Parma. Italy. Università degli Studi di Parma, Dipartimento di Medicina e Chirurgia, Centro Universitario di Odontoiatria, Parma. Italy
| | - Edoardo Manfredi
- Università degli Studi di Parma, Dipartimento di Medicina e Chirurgia, Centro Universitario di Odontoiatria, Parma. Italy. Università degli Studi di Parma, Dipartimento di Medicina e Chirurgia, Centro Universitario di Odontoiatria, Parma. Italy
| | - Daniele Mori
- Università degli Studi di Parma, Dipartimento di Medicina e Chirurgia, Unità di Patologia Generale, Parma. Italy
| | - Guido Maria Macaluso
- Università degli Studi di Parma, Dipartimento di Medicina e Chirurgia, Centro Universitario di Odontoiatria, Parma. Italy. Università degli Studi di Parma, Dipartimento di Medicina e Chirurgia, Centro Universitario di Odontoiatria, Parma. Italy.,Istituto dei Materiali per l'Elettronica ed il Magnetismo (IMEM) - CNR, Parma. Italy
| | - Roberto Sala
- Università degli Studi di Parma, Dipartimento di Medicina e Chirurgia, Unità di Patologia Generale, Parma. Italy
| |
Collapse
|
4
|
Bin X, Lin C, Huang X, Zhou Q, Wang L, Xian CJ. FGF-2 Gene Polymorphism in Osteoporosis among Guangxi's Zhuang Chinese. Int J Mol Sci 2017; 18:ijms18071358. [PMID: 28653999 PMCID: PMC5535851 DOI: 10.3390/ijms18071358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/17/2017] [Accepted: 06/22/2017] [Indexed: 12/28/2022] Open
Abstract
Osteoporosis is a complex multifactorial disorder of gradual bone loss and increased fracture risk. While previous studies have shown the importance of many genetic factors in determining peak bone mass and fragility fractures and in suggesting involvement of fibroblast growth factor-2 (FGF-2) in bone metabolism and bone mass, the relationship of FGF-2 genetic diversity with bone mass/osteoporosis has not yet been revealed. The current study investigated the potential relevance of FGF-2 gene polymorphism in osteoporosis among a Zhuang ethnic Chinese cohort of 623, including 237 normal bone mass controls, 227 osteopenia, and 159 osteoporosis of different ages. Bone density was examined by calcaneus ultrasound attenuation measurement, and single nucleotide polymorphisms (SNPs) and linkage disequilibrium analyses were performed on five SNP loci of FGF-2 gene. Significant differences were found in bone mass in males between the 45-year-old and ≥70-year-old groups (p < 0.01), and in females among 55, 60, 65 and 70-year-old groups (p < 0.05). Males had higher bone mass values than females in the same age (over 55-year-old) (p < 0.05). The proportions of individuals with normal bone mass decreased with age (65.2% to 40% in males, and 50% to 0% in females), whereas prevalence of osteoporosis increased with age (15.4% to 30% in men, and 7.7% to 82% in women). Out of five FGF-2 SNP loci, the TA genotype of rs308442 in the osteoporosis group (40.2%) was higher than in the control group (29.5%) (p < 0.05). The TA genotype was significantly correlated with the risk of osteoporosis (odds ratio OR = 1.653), 95% confidence interval (CI): 1.968-1.441). Strong linkage disequilibrium in FGF-2 gene was also detected between rs12644427 and rs3747676, between rs12644427 and rs3789138, and between rs3747676 and rs3789138 (D' > 0.8, and r² > 0.33). Thus, the rs308442 locus of FGF-2 gene is closely correlated to osteoporosis in this Zhuang ethnic Chinese cohort, and the TA may be the risk genotype of osteoporosis.
Collapse
Affiliation(s)
- Xiaoyun Bin
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chaowen Lin
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Xiufeng Huang
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Qinghui Zhou
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Liping Wang
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Cory J Xian
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
5
|
Shapses SA, Pop LC, Wang Y. Obesity is a concern for bone health with aging. Nutr Res 2017; 39:1-13. [PMID: 28385284 DOI: 10.1016/j.nutres.2016.12.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/16/2016] [Accepted: 12/27/2016] [Indexed: 02/08/2023]
Abstract
Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population.
Collapse
Affiliation(s)
- Sue A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ.
| | - L Claudia Pop
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Yang Wang
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
6
|
Potikanond S, Rattanachote P, Pintana H, Suntornsaratoon P, Charoenphandhu N, Chattipakorn N, Chattipakorn S. Obesity does not aggravate osteoporosis or osteoblastic insulin resistance in orchiectomized rats. J Endocrinol 2016; 228:85-95. [PMID: 26675491 DOI: 10.1530/joe-15-0333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2015] [Indexed: 01/03/2023]
Abstract
The present study aimed to test the hypothesis that testosterone deprivation impairs osteoblastic insulin signaling, decreases osteoblast survival, reduces bone density, and that obesity aggravates those deleterious effects in testosterone-deprived rats. Twenty four male Wistar rats underwent either a bilateral orchiectomy (O, n=12) or a sham operation (S, n=12). Then the rats in each group were further divided into two subgroups fed with either a normal diet (ND) or a high-fat diet (HF) for 12 weeks. At the end of the protocol, blood samples were collected to determine metabolic parameters and osteocalcin ratios. The tibiae were collected to determine bone mass using microcomputed tomography and for osteoblast isolation. The results showed that rats fed with HF (sham-operated HF-fed rats (HFS) and ORX HF-fed rats (HFO)) developed peripheral insulin resistance and had decreased trabecular bone density. In ND-fed rats, only the ORX ND-fed rats (NDO) group had decreased trabecular bone density. In addition, osteoblastic insulin resistance, as indicated by a decrease in tyrosine phosphorylation of the insulin receptor and Akt, were observed in all groups except the sham-operated ND-fed rats (NDS) rats. Those groups, again with the exception of the NDS rats, also had decreased osteoblastic survival. No differences in the levels of osteoblastic insulin resistance and osteoblastic survival were found among the NDO, HFS, and HFO groups. These findings suggest that either testosterone deprivation or obesity alone can impair osteoblastic insulin signaling and decrease osteoblastic survival leading to the development of osteoporosis. However, obesity does not aggravate those deleterious effects in the bone of testosterone-deprived rats.
Collapse
Affiliation(s)
- Saranyapin Potikanond
- Department of PharmacologyFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pinyada Rattanachote
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiranya Pintana
- Center of Calcium and Bone Research (COCAB)Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Narattaphol Charoenphandhu
- Cardiac Electrophysiology Unit Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Department of Oral Biology and Diagnostic SciencesFaculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|