1
|
Sopova J, Krasnova O, Vasilieva G, Zhuk A, Lesnyak O, Karelkin V, Neganova I. SNPs in GPCR Genes and Impaired Osteogenic Potency in Osteoporotic Patient Lines-Based Study. Int J Mol Sci 2024; 25:13594. [PMID: 39769358 PMCID: PMC11677449 DOI: 10.3390/ijms252413594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
G-protein-coupled receptors (GPCRs) have emerged as critical regulators of bone development and remodeling. In this study, we aimed to identify specific GPCR mutations in osteoporotic patients via next-generation sequencing (NGS). We performed NGS sequencing of six genomic DNA samples taken from osteoporotic patients and two genomic DNA samples from healthy donors. Next, we searched for single-nucleotide polymorphisms (SNPs) in GPCR genes that are associated with osteoporosis. For three osteoporotic patients and one healthy donor, bone biopsies were used to generate patient-specific mesenchymal stem cell (MSC) lines, and their ability to undergo osteodifferentiation was analyzed. We found that MSCs derived from osteoporotic patients have a different response to osteoinductive factors and impaired osteogenic differentiation using qPCR and histochemical staining assays. The NGS analysis revealed specific combinations of SNPs in GPCR genes in these patients, where SNPs in ADRB2 (rs1042713), GIPR (rs1800437), CNR2 (rs2501431, rs3003336), and WLS (rs3762371) were associated with impaired osteogenic differentiation capacity. By integrating NGS data with functional assessments of patient-specific cell lines, we linked GPCR mutations to impaired bone formation, providing a foundation for developing personalized therapeutic strategies. SNP analysis is recognized as a proactive approach to osteoporosis management, enabling earlier interventions and targeted preventive measures for individuals at risk. Furthermore, SNP analysis contributes to the development of robust, holistic risk prediction models that enhance the accuracy of risk assessments across the population. This integration of genetic data into public health strategies facilitates healthcare initiatives. This approach could guide treatment decisions tailored to the patient's genetic profile and provide a foundation for developing personalized therapeutic strategies.
Collapse
Affiliation(s)
- Julia Sopova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
- Laboratory of Amyloid Biology, Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Olga Krasnova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Giomar Vasilieva
- Institute of Applied Computer Science, ITMO University, St. Petersburg 197101, Russia
| | - Anna Zhuk
- Laboratory of Amyloid Biology, Saint-Petersburg State University, St. Petersburg 199034, Russia
- Institute of Applied Computer Science, ITMO University, St. Petersburg 197101, Russia
| | - Olga Lesnyak
- Department of Family Medicine, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg 195298, Russia
| | - Vitaliy Karelkin
- Vreden National Medical Research Center of Traumatology and Orthopedics, St. Petersburg 195427, Russia
| | - Irina Neganova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
2
|
Petrosyan E, Fares J, Ahuja CS, Lesniak MS, Koski TR, Dahdaleh NS, El Tecle NE. Genetics and pathogenesis of scoliosis. NORTH AMERICAN SPINE SOCIETY JOURNAL 2024; 20:100556. [PMID: 39399722 PMCID: PMC11470263 DOI: 10.1016/j.xnsj.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024]
Abstract
Background Scoliosis is defined as a lateral spine curvature of at least 10° with vertebral rotation, as seen on a posterior-anterior radiograph, often accompanied by reduced thoracic kyphosis. Scoliosis affects all age groups: idiopathic scoliosis is the most common spinal disorder in children and adolescents, while adult degenerative scoliosis typically affects individuals over fifty. In the United States, approximately 3 million new cases of scoliosis are diagnosed annually, with a predicted increase in part due to global aging. Despite its prevalence, the etiopathogenesis of scoliosis remains unclear. Methods This comprehensive review analyzes the literature on the etiopathogenetic evidence for both idiopathic and adult degenerative scoliosis. PubMed and Google Scholar databases were searched for studies on the genetic factors and etiopathogenetic mechanisms of scoliosis development and progression, with the search limited to articles in English. Results For idiopathic scoliosis, genetic factors are categorized into three groups: genes associated with susceptibility, disease progression, and both. We identify gene groups related to different biological processes and explore multifaceted pathogenesis of idiopathic scoliosis, including evolutionary adaptations to bipedalism and developmental and homeostatic spinal aberrations. For adult degenerative scoliosis, we segregate genetic and pathogenic evidence into categories of angiogenesis and inflammation, extracellular matrix degradation, neural associations, and hormonal influences. Finally, we compare findings in idiopathic scoliosis and adult degenerative scoliosis, discuss current limitations in scoliosis research, propose a new model for scoliosis etiopathogenesis, and highlight promising areas for future studies. Conclusions Scoliosis is a complex, multifaceted disease with largely enigmatic origins and mechanisms of progression, keeping it under continuous scientific scrutiny.
Collapse
Affiliation(s)
- Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Christopher S. Ahuja
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Tyler R. Koski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Nader S. Dahdaleh
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Najib E. El Tecle
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
3
|
Ye G, Huang Y, Yin L, Wang J, Huang X, Bin X. Association between LEPR polymorphism and susceptibility of osteoporosis in Chinese Mulao people. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:10-16. [PMID: 35086395 DOI: 10.1080/21691401.2021.2020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To explore the association between the single nucleotide polymorphism (SNP) of leptin receptor (LEPR) gene and the susceptibility to osteoporosis (OP) among Chinese Mulao people. A total of 738 people were involved. Bone mineral density (BMD) was examined by calcaneus ultrasound attenuation measurement. Six SNPs of LEPR were detected. The genotypes, allele frequencies, linkage disequilibrium, and haplotype were analyzed. BMD decreased with age and males had higher BMD than women. The proportion of normal bone mass decreased with age, and morbidity of OP increased. Three out of six SNPs showed a difference between OP and normal group. Individuals with AA genotype of rs1137100 in OP group outnumber the normal group, AA increased the risk of OP. In rs2767485, CT increased the risk of OP, C allele may be susceptible to OP. TT genotype of rs465555 was susceptible genotype of OP, T locus may be associated with OP. Strong linkage disequilibrium was detected among rs1137100, rs1137101, and rs4655555. Four haplotypes were constructed, among which, AACGCT and GGTGTA increased the risk of OP by 3.9 and 4.2 times, respectively, whereas, GGCGTA reduced 74% of OP susceptibility. The rs1137100, rs2767485, and rs465555 of LEPR were associated with OP in Chinese Mulao people.
Collapse
Affiliation(s)
- Guangbin Ye
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China.,Medical College of Guangxi University, Nanning, China
| | | | - Lianfei Yin
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiufeng Huang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Xiaoyun Bin
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
4
|
Zhao Y, Shao G, Liu X, Li Z. Assessment of the Therapeutic Potential of Melatonin for the Treatment of Osteoporosis Through a Narrative Review of Its Signaling and Preclinical and Clinical Studies. Front Pharmacol 2022; 13:866625. [PMID: 35645810 PMCID: PMC9130700 DOI: 10.3389/fphar.2022.866625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
Melatonin is a bioamine produced primarily in the pineal gland, although peripheral sites, including the gut, may also be its minor source. Melatonin regulates various functions, including circadian rhythm, reproduction, temperature regulation, immune system, cardiovascular system, energy metabolism, and bone metabolism. Studies on cultured bone cells, preclinical disease models of bone loss, and clinical trials suggest favorable modulation of bone metabolism by melatonin. This narrative review gives a comprehensive account of the current understanding of melatonin at the cell/molecular to the systems levels. Melatonin predominantly acts through its cognate receptors, of which melatonin receptor 2 (MT2R) is expressed in mesenchymal stem cells (MSCs), osteoblasts (bone-forming), and osteoclasts (bone-resorbing). Melatonin favors the osteoblastic fate of MSCs, stimulates osteoblast survival and differentiation, and inhibits osteoclastogenic differentiation of hematopoietic stem cells. Produced from osteoblastic cells, osteoprotegerin (OPG) and receptor activator of nuclear factor kappa B ligand (RANKL) critically regulate osteoclastogenesis and melatonin by suppressing the osteoclastogenic RANKL, and upregulating the anti-osteoclastogenic OPG exerts a strong anti-resorptive effect. Although the anti-inflammatory role of melatonin favors osteogenic function and antagonizes the osteoclastogenic function with the participation of SIRT signaling, various miRNAs also mediate the effects of the hormone on bone cells. In rodent models of osteoporosis, melatonin has been unequivocally shown to have an anti-osteoporotic effect. Several clinical trials indicate the bone mass conserving effect of melatonin in aging/postmenopausal osteoporosis. This review aims to determine the possibility of melatonin as a novel class of anti-osteoporosis therapy through the critical assessment of the available literature.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Guoxi Shao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xingang Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengwei Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Krishnan RH, Sadu L, Das UR, Satishkumar S, Pranav Adithya S, Saranya I, Akshaya R, Selvamurugan N. Role of p300, a histone acetyltransferase enzyme, in osteoblast differentiation. Differentiation 2022; 124:43-51. [DOI: 10.1016/j.diff.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022]
|
6
|
Min W, Tang N, Zou Z, Chen Y, Zhang X, Huang Y, Wang J, Zhang Y, Zhou B, Sun X. A panel of rhythm gene polymorphisms is involved in susceptibility to type 2 diabetes mellitus and bipolar disorder. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1555. [PMID: 34790761 PMCID: PMC8576714 DOI: 10.21037/atm-21-4803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022]
Abstract
Background Biological rhythm is closely related to health. We aimed to identify the potential correlations of rhythm gene polymorphisms to type 2 diabetes mellitus (DM) or bipolar disorder (BD), which both have many abnormal rhythmic activities, in a sample of Chinese Han origin. Methods A total of 136 patients with BD, 166 patients with DM, and 130 healthy controls were collected. We screened 28 single nucleotide polymorphisms (SNPs) located in rhythm genes CLOCK, ARNTL, PER2, PER3, CRY1, and CRY2 respectively. Snapshot typing technology was used for genotyping. Results Both the rs10832022-G and rs11022765-A allele frequencies of the ARNTL gene were significantly higher in patients with DM than in those with BD (corrected P=0.03, 0.004, respectively). The frequency of rs10832022-G, rs1022765-A, and rs11022762-T haplotypes, which was significantly lower in patients with BD than in controls (P=0.003, OR =0.579), was significantly higher in patients with DM than in those with BD (P=0.0002, OR =1.878). The rs2292910-CC genotypic frequency of the CRY2 gene was significantly higher in patients with BD than in controls (OR of regression =2.203, P=0.01), while the frequency of the AA genotype was significantly lower than in patients with DM (P=0.01). The frequency of rs1972874-G and rs36124720-G haplotype of the PER2 gene was significantly higher in patients with DM than in controls (P=0.01, OR =1.577). Conclusions Our study preliminarily suggested that both BD and type 2 DM could be considered as dysrhythmias with different rhythmic genetic backgrounds, which contribute to the early prediction of an individual’s susceptibility to different rhythm disorders and early intervention.
Collapse
Affiliation(s)
- Wenjiao Min
- Psychosomatic Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Mental Health Center, West China University Hospital, Sichuan University, Chengdu, China
| | - Nie Tang
- Department of Endocrinology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhili Zou
- Psychosomatic Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yuexin Chen
- Mental Health Center, West China University Hospital, Sichuan University, Chengdu, China
| | - Xu Zhang
- Psychosomatic Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yulan Huang
- Psychosomatic Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jinyu Wang
- Psychosomatic Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yaoyin Zhang
- Psychosomatic Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Bo Zhou
- Psychosomatic Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xueli Sun
- Mental Health Center, West China University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Liang ZT, Guo CF, Li J, Zhang HQ. The role of endocrine hormones in the pathogenesis of adolescent idiopathic scoliosis. FASEB J 2021; 35:e21839. [PMID: 34387890 DOI: 10.1096/fj.202100759r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/11/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common spinal deformity characterized by changes in the three-dimensional structure of the spine. It usually initiates during puberty, the peak period of human growth when the secretion of numerous hormones is changing, and it is more common in females than in males. Accumulating evidence shows that the abnormal levels of many hormones including estrogen, melatonin, growth hormone, leptin, adiponectin and ghrelin, may be related to the occurrence and development of AIS. The purpose of this review is to provide a summary and critique of the research published on each hormone over the past 20 years, and to highlight areas for future study. It is hoped that the presentation will help provide a better understanding of the role of endocrine hormones in the pathogenesis of AIS.
Collapse
Affiliation(s)
- Zhuo-Tao Liang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao-Feng Guo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiong Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Qi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Tang Z, Xu T, Li Y, Fei W, Yang G, Hong Y. Inhibition of CRY2 by STAT3/miRNA-7-5p Promotes Osteoblast Differentiation through Upregulation of CLOCK/BMAL1/P300 Expression. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:865-876. [PMID: 31982773 PMCID: PMC6994415 DOI: 10.1016/j.omtn.2019.12.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/11/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Accumulating evidence indicates that cryptochrome circadian regulatory (CRY) proteins have emerged as crucial regulators of osteogenic differentiation. However, the associated mechanisms are quite elusive. In this study, we show that knockdown of CRY2 downregulated the expression of runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN) to facilitate osteoblast differentiation. Further study identified that CRY2 was directly targeted by microRNA (miR)-7-5p, which was highly induced during osteoblast differentiation. The expression of Runx2, ALP, collagen type I alpha 1 (Col1a1), and OCN was upregulated by overexpression of miR-7-5p and induction of osteoblast differentiation. Moreover, signal transducer and activator of transcription 3 (STAT3) transcriptionally activated miR-7-5p to significantly enhance the expression of above osteogenic marker genes and mineral formation. However, overexpression of CRY2 abolished the osteogenic differentiation induced by miR-7-5p overexpression. Silencing of CRY2 unraveled the binding of CRY2 with the circadian locomotor output cycles kaput (CLOCK)/brain and muscle ARNT-like 1 (BMAL1) complex to release CLOCK/BMAL1, which facilitated the binding of CLOCK/BMAL1 to the promoter region of the P300 E-box to stimulate the transcription of P300. P300 subsequently promoted the acetylation of histone 3 and the formation of a transcriptional complex with Runx2 to enhance osteogenesis. Taken together, our study revealed that CRY2 is repressed by STAT3/miR-7-5p to promote osteogenic differentiation through CLOCK/BMAL1/P300 signaling. The involved molecules may be potentially targeted for treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhenghui Tang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; School of Life Sciences, Shanghai University, Shanghai 200244, China
| | - Tianyuan Xu
- Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Yinghua Li
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Wenchao Fei
- Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Gong Yang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yang Hong
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China; Department of Orthopedics, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China.
| |
Collapse
|
9
|
The role of GPCRs in bone diseases and dysfunctions. Bone Res 2019; 7:19. [PMID: 31646011 PMCID: PMC6804689 DOI: 10.1038/s41413-019-0059-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
The superfamily of G protein-coupled receptors (GPCRs) contains immense structural and functional diversity and mediates a myriad of biological processes upon activation by various extracellular signals. Critical roles of GPCRs have been established in bone development, remodeling, and disease. Multiple human GPCR mutations impair bone development or metabolism, resulting in osteopathologies. Here we summarize the disease phenotypes and dysfunctions caused by GPCR gene mutations in humans as well as by deletion in animals. To date, 92 receptors (5 glutamate family, 67 rhodopsin family, 5 adhesion, 4 frizzled/taste2 family, 5 secretin family, and 6 other 7TM receptors) have been associated with bone diseases and dysfunctions (36 in humans and 72 in animals). By analyzing data from these 92 GPCRs, we found that mutation or deletion of different individual GPCRs could induce similar bone diseases or dysfunctions, and the same individual GPCR mutation or deletion could induce different bone diseases or dysfunctions in different populations or animal models. Data from human diseases or dysfunctions identified 19 genes whose mutation was associated with human BMD: 9 genes each for human height and osteoporosis; 4 genes each for human osteoarthritis (OA) and fracture risk; and 2 genes each for adolescent idiopathic scoliosis (AIS), periodontitis, osteosarcoma growth, and tooth development. Reports from gene knockout animals found 40 GPCRs whose deficiency reduced bone mass, while deficiency of 22 GPCRs increased bone mass and BMD; deficiency of 8 GPCRs reduced body length, while 5 mice had reduced femur size upon GPCR deletion. Furthermore, deficiency in 6 GPCRs induced osteoporosis; 4 induced osteoarthritis; 3 delayed fracture healing; 3 reduced arthritis severity; and reduced bone strength, increased bone strength, and increased cortical thickness were each observed in 2 GPCR-deficiency models. The ever-expanding number of GPCR mutation-associated diseases warrants accelerated molecular analysis, population studies, and investigation of phenotype correlation with SNPs to elucidate GPCR function in human diseases.
Collapse
|
10
|
Janjić K, Agis H. Chronodentistry: the role & potential of molecular clocks in oral medicine. BMC Oral Health 2019; 19:32. [PMID: 30760278 PMCID: PMC6375164 DOI: 10.1186/s12903-019-0720-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Molecular clocks help organisms to adapt important physiological functions to periodically changing conditions in the environment. These include the adaption of the 24 h sleep-wake rhythm to changes of day and night. The circadian clock is known to act as a key regulator in processes of health and disease in different organs. The knowledge on the circadian clock led to the development of chronopharmacology and chronotherapy. These fields aim to investigate how efficiency of medication and therapies can be improved based on circadian clock mechanisms. In this review we aim to highlight the role of the circadian clock in oral tissues and its potential in the different fields of dentistry including oral and maxillofacial surgery, restorative dentistry, endodontics, periodontics and orthodontics to trigger the evolving field of chronodentistry.
Collapse
Affiliation(s)
- Klara Janjić
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
11
|
Insights into the Role of Circadian Rhythms in Bone Metabolism: A Promising Intervention Target? BIOMED RESEARCH INTERNATIONAL 2018; 2018:9156478. [PMID: 30363685 PMCID: PMC6180976 DOI: 10.1155/2018/9156478] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/09/2018] [Indexed: 11/18/2022]
Abstract
Numerous physiological processes of mammals, including bone metabolism, are regulated by the circadian clock system, which consists of a central regulator, the suprachiasmatic nucleus (SCN), and the peripheral oscillators of the BMAL1/CLOCK-PERs/CRYs system. Various bone turnover markers and bone metabolism-regulating hormones such as melatonin and parathyroid hormone (PTH) display diurnal rhythmicity. According to previous research, disruption of the circadian clock due to shift work, sleep restriction, or clock gene knockout is associated with osteoporosis or other abnormal bone metabolism, showing the importance of the circadian clock system for maintaining homeostasis of bone metabolism. Moreover, common causes of osteoporosis, including postmenopausal status and aging, are associated with changes in the circadian clock. In our previous research, we found that agonism of the circadian regulators REV-ERBs inhibits osteoclast differentiation and ameliorates ovariectomy-induced bone loss in mice, suggesting that clock genes may be promising intervention targets for abnormal bone metabolism. Moreover, osteoporosis interventions at different time points can provide varying degrees of bone protection, showing the importance of accounting for circadian rhythms for optimal curative effects in clinical treatment of osteoporosis. In this review, we summarize current knowledge about circadian rhythms and bone metabolism.
Collapse
|
12
|
Yeh CM, Su SC, Lin CW, Yang WE, Chien MH, Reiter RJ, Yang SF. Melatonin as a potential inhibitory agent in head and neck cancer. Oncotarget 2017; 8:90545-90556. [PMID: 29163852 PMCID: PMC5685773 DOI: 10.18632/oncotarget.20079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/26/2017] [Indexed: 12/29/2022] Open
Abstract
Melatonin is a molecule secreted by the pineal gland; it is an important regulator of sleep and circadian rhythms. Through multiple interrelated mechanisms, melatonin exhibits various inhibitory properties at different stages of tumor progression. Many studies have explored the oncostatic effects of melatonin on hormone-dependent tumors. In this review, we highlight recent advances in understanding the effects of melatonin on the development of head and neck cancers, including molecular mechanisms identified through experimental and clinical observations. Because melatonin exerts a wide range of effects, melatonin may influence many mechanisms that influence the development of cancer. These include cell proliferation, apoptosis, angiogenesis, extracellular matrix remodeling through matrix metalloproteinases, and genetic polymorphism. Thus, the evidence discussed in this article will serve as a basis for basic and clinical research to promote the use of melatonin for understanding and controlling the development of head and neck cancers.
Collapse
Affiliation(s)
- Chia-Ming Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|