1
|
Contreras-Bolívar V, Andreo-López MC, Muñoz-Torres M. Characterization of bone disease in cystic fibrosis. Med Clin (Barc) 2024:S0025-7753(24)00390-7. [PMID: 39019666 DOI: 10.1016/j.medcli.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 07/19/2024]
Abstract
With the increased life expectancy of people with cystic fibrosis (CF), clinical attention has focused on prevention and treatment of non-pulmonary comorbidities. CF-related bone disease (CFBD) is a common complication and leads to increased fracture rates. Dual energy X-ray absorptiometry (DXA) is the recommended and gold standard technique to identify and monitor bone health. However, DXA has limitations because of its two-dimensional nature. Complementary tools to DXA are available, such as trabecular bone score (TBS) and vertebral fracture assessment (VFA). Quantitative computed tomography (QCT), magnetic resonance imaging (MRI) and quantitative ultrasound (QUS) may also be useful.
Collapse
Affiliation(s)
- Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain; CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| | - María Carmen Andreo-López
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain.
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain; CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain; Department of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
2
|
Wilschanski M, Munck A, Carrion E, Cipolli M, Collins S, Colombo C, Declercq D, Hatziagorou E, Hulst J, Kalnins D, Katsagoni CN, Mainz JG, Ribes-Koninckx C, Smith C, Smith T, Van Biervliet S, Chourdakis M. ESPEN-ESPGHAN-ECFS guideline on nutrition care for cystic fibrosis. Clin Nutr 2024; 43:413-445. [PMID: 38169175 DOI: 10.1016/j.clnu.2023.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Nutritional status is paramount in Cystic Fibrosis (CF) and is directly correlated with morbidity and mortality. The first ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with CF were published in 2016. An update to these guidelines is presented. METHODS The study was developed by an international multidisciplinary working group in accordance with officially accepted standards. Literature since 2016 was reviewed, PICO questions were discussed and the GRADE system was utilized. Statements were discussed and submitted for on-line voting by the Working Group and by all ESPEN members. RESULTS The Working Group updated the nutritional guidelines including assessment and management at all ages. Supplementation of vitamins and pancreatic enzymes remains largely the same. There are expanded chapters on pregnancy, CF-related liver disease, and CF-related diabetes, bone disease, nutritional and mineral supplements, and probiotics. There are new chapters on nutrition with highly effective modulator therapies and nutrition after organ transplantation.
Collapse
Affiliation(s)
- Michael Wilschanski
- Pediatric Gastroenterology, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | - Anne Munck
- Cystic Fibrosis Centre, Hopital Necker-Enfants Malades, AP-HP, Paris, France
| | - Estefania Carrion
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Canada
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Sarah Collins
- CF Therapies Team, Royal Brompton & Harefield Hospital, London, UK
| | - Carla Colombo
- University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Dimitri Declercq
- Cystic Fibrosis Reference Centre, Ghent University Hospital and Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elpis Hatziagorou
- Cystic Fibrosis Unit, 3rd Pediatric Dept, Hippokration Hospital, Aristotle University of Thessaloniki, Greece
| | - Jessie Hulst
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Canada; Department of Pediatrics and Department of Nutritional Sciences, The University of Toronto, Toronto, Canada
| | - Daina Kalnins
- Department of Clinical Dietetics, The Hospital for Sick Children, Toronto, Canada
| | - Christina N Katsagoni
- Department of Clinical Nutrition, Agia Sofia Children's Hospital, Athens, Greece; EFAD, European Specialist Dietetic Networks (ESDN) for Gastroenterology, Denmark
| | - Jochen G Mainz
- Brandenburg Medical School, University Hospital. Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Carmen Ribes-Koninckx
- Pediatric Gastroenterology and Paediatric Cystic Fibrosis Unit. La Fe Hospital & La Fe Research Institute, Valencia, Spain
| | - Chris Smith
- Department of Dietetics, Royal Alexandra Children's Hospital, Brighton, UK
| | - Thomas Smith
- Independent Patient Consultant Working at Above-disease Level, UK
| | | | - Michael Chourdakis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
3
|
Nayir Buyuksahin H, Dogru D, Gözmen O, Ozon A, Portakal O, Emiralioglu N, Haliloglu M, Kılıc K, Vardar Yaglı N, Yıldırım D, Dag O, Guzelkas I, Yalcın E, Ozcelik U, Kiper N. Cystic fibrosis related bone disease in children: Can it be predicted? Clin Nutr 2023; 42:1631-1636. [PMID: 37487275 DOI: 10.1016/j.clnu.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND&AIMS Cystic fibrosis (CF) -related bone disease (CFBD) is an important complication of CF, and low BMD in childhood is a precursor of CFBD. Here, we aimed to investigate bone turnover biomarkers, including osteocalcin (OC), receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) in relation to low BMD in children with CF (cwCF). We also evaluated factors which could affect bone turnover with particular emphasis on fat-free mass (FFM), forced expiratory volume in 1 s (FEV1), hand grip strength (HGS), and functional capacity and physical activity. METHODS Sixteen cwCF aged 8-18 years with moderate low BMD (group1) and 64 cwCF with normal BMD (group2) were enrolled. Serum RANKL, OC, and OPG were determined by immunoenzymatic assays. Multiple parameters including pancreatic status, lung functions, body mass index (BMI), FFM measured by bioelectric impedance analysis (BIA), 6-minute walk test, vitamin D, nutritional intake, HGS, functional capacity and physical activity, serum and urine biomarkers were compared between the two groups. RESULTS We found similar serum levels of RANKL (p = 0.501), OC (p = 0.445), OPG (p = 0.380), and RANKL/OPG ratio (p = 0.449) between group1 and group2 in cwCF. BMI z-score (p < 0.001), FFMI z-score (p < 0.001), FEV1 z-score (p = 0.007), and right-HGS (%pred) (p = 0.009) significantly differed between the two groups. Multivariate linear regression revealed that the only factors that predicted BMD were FFMI z-score and HGS %pred. CONCLUSION Serum OC, OPG, RANKL and RANKL/OPG ratio did not predict BMD in cwCF. FFMI z-score and HGS %pred measured by non-invasive and practical methods were the best predictors of BMD.
Collapse
Affiliation(s)
- Halime Nayir Buyuksahin
- Division of Pulmonology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Deniz Dogru
- Division of Pulmonology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Onur Gözmen
- Division of Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alev Ozon
- Division of Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Oytun Portakal
- Department of Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Nagehan Emiralioglu
- Division of Pulmonology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mithat Haliloglu
- Division of Pediatric Radiology, Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kübra Kılıc
- Department of Physiotherapy and Rehabilitation, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Naciye Vardar Yaglı
- Department of Physiotherapy and Rehabilitation, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Damla Yıldırım
- Department of Nutrition and Dietetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Osman Dag
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ismail Guzelkas
- Division of Pulmonology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ebru Yalcın
- Division of Pulmonology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ugur Ozcelik
- Division of Pulmonology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nural Kiper
- Division of Pulmonology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Fonseca Ó, Gomes MS, Amorim MA, Gomes AC. Cystic Fibrosis Bone Disease: The Interplay between CFTR Dysfunction and Chronic Inflammation. Biomolecules 2023; 13:425. [PMID: 36979360 PMCID: PMC10046889 DOI: 10.3390/biom13030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Cystic fibrosis is a monogenic disease with a multisystemic phenotype, ranging from predisposition to chronic lung infection and inflammation to reduced bone mass. The exact mechanisms unbalancing the maintenance of an optimal bone mass in cystic fibrosis patients remain unknown. Multiple factors may contribute to severe bone mass reduction that, in turn, have devastating consequences in the patients' quality of life and longevity. Here, we will review the existing evidence linking the CFTR dysfunction and cell-intrinsic bone defects. Additionally, we will also address how the proinflammatory environment due to CFTR dysfunction in immune cells and chronic infection impairs the maintenance of an adequate bone mass in CF patients.
Collapse
Affiliation(s)
- Óscar Fonseca
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS–Instuto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4030-313 Porto, Portugal
| | | | - Ana Cordeiro Gomes
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
5
|
Gomes AC, Sousa DM, Oliveira TC, Fonseca Ó, Pinto RJ, Silvério D, Fernandes AI, Moreira AC, Silva T, Teles MJ, Pereira L, Saraiva M, Lamghari M, Gomes MS. Serum amyloid A proteins reduce bone mass during mycobacterial infections. Front Immunol 2023; 14:1168607. [PMID: 37153579 PMCID: PMC10161249 DOI: 10.3389/fimmu.2023.1168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Osteopenia has been associated to several inflammatory conditions, including mycobacterial infections. How mycobacteria cause bone loss remains elusive, but direct bone infection may not be required. Methods Genetically engineered mice and morphometric, transcriptomic, and functional analyses were used. Additionally, inflammatory mediators and bone turnover markers were measured in the serum of healthy controls, individuals with latent tuberculosis and patients with active tuberculosis. Results and discussion We found that infection with Mycobacterium avium impacts bone turnover by decreasing bone formation and increasing bone resorption, in an IFNγ- and TNFα-dependent manner. IFNγ produced during infection enhanced macrophage TNFα secretion, which in turn increased the production of serum amyloid A (SAA) 3. Saa3 expression was upregulated in the bone of both M. avium- and M. tuberculosis-infected mice and SAA1 and 2 proteins (that share a high homology with murine SAA3 protein) were increased in the serum of patients with active tuberculosis. Furthermore, the increased SAA levels seen in active tuberculosis patients correlated with altered serum bone turnover markers. Additionally, human SAA proteins impaired bone matrix deposition and increased osteoclastogenesis in vitro. Overall, we report a novel crosstalk between the cytokine-SAA network operating in macrophages and bone homeostasis. These findings contribute to a better understanding of the mechanisms of bone loss during infection and open the way to pharmacological intervention. Additionally, our data and disclose SAA proteins as potential biomarkers of bone loss during infection by mycobacteria.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- *Correspondence: Ana Cordeiro Gomes,
| | - Daniela Monteiro Sousa
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | | | - Óscar Fonseca
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Mestrado em Bioquímica Clínica, Universidade de Aveiro, , Aveiro, Portugal
| | - Ricardo J. Pinto
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Diogo Silvério
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Isabel Fernandes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana C. Moreira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Tânia Silva
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria José Teles
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CHUSJ – Centro Hospitalar de São João, Porto, Portugal
- EPIUnit, ISPUP - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Luísa Pereira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IMBC – Instituto de Biologia Molecular e Celular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Salomé Gomes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
IL-8 correlates with reduced baseline femoral neck bone mineral density in adults with cystic fibrosis: a single center retrospective study. Sci Rep 2021; 11:15405. [PMID: 34321599 PMCID: PMC8319414 DOI: 10.1038/s41598-021-94883-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/09/2021] [Indexed: 11/08/2022] Open
Abstract
Cystic fibrosis (CF) is a multi-system disease that is characterized by lung disease due to recurrent airway infection and inflammation. Endocrine complications, such as CF bone disease (CFBD), are increasingly identified as patients are living longer. The cause of CFBD is multifactorial with chronic systemic inflammation theorized to be a contributing factor. Thus, we attempted to identify inflammatory biomarkers that are associated with CFBD. We conducted a retrospective observational study of 56 adult patients with CF with an average percentage predictive forced expiratory volume in one second (ppFEV1) of 73.7% (standard deviation: 30.0) who underwent baseline serum analysis for osteoprotegerin (OPG) and pro-inflammatory biomarkers (IL-1β, IL-6, IL-8 and TNF-α), and had repeated dual-energy x-ray absorptiometry (DXA) scans separated by at least 2 years to examine correlations between serum biomarkers and bone mineral density (BMD) measurements. Univariate linear regression model analysis demonstrated that serum IL-1β and IL-8, but not other pro-inflammatory markers, were negatively correlated with baseline BMD results. However, after accounting for confounding variables, only the relationship between IL-8 and left femoral neck BMD remained statistically significant. Additionally, IL-8 level was associated with BMD decline over time. These results suggest that IL-8 might play a unique role in the pathophysiology of CFBD relative to other pro-inflammatory cytokines but further study is warranted before firm conclusions can be made.
Collapse
|
7
|
Jin F, Geng F, Xu D, Li Y, Li T, Yang X, Liu S, Zhang H, Wei Z, Li S, Gao X, Cai W, Mao N, Yi X, Liu H, Sun Y, Yang F, Xu H. Ac-SDKP Attenuates Activation of Lung Macrophages and Bone Osteoclasts in Rats Exposed to Silica by Inhibition of TLR4 and RANKL Signaling Pathways. J Inflamm Res 2021; 14:1647-1660. [PMID: 33948088 PMCID: PMC8088302 DOI: 10.2147/jir.s306883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/15/2021] [Indexed: 01/16/2023] Open
Abstract
Background Silica-induced inflammatory activation is associated with silicosis and various non-respiratory conditions. The present study was designed to examine the anti-inflammatory effects of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) on lung macrophages and bone osteoclasts after silica inhalation in rats. Methods Wistar rats and NR8383 and RAW 264.7 cell lines were used in the present study. The receptor activator of nuclear factor kappa-B ligand (RANKL) and toll-like receptor 4 (TLR4) signaling pathways was measured in the lung tissue of rats or NR8383/RAW 264.7 cells exposed to silica. The microarchitecture of the trabecular bone in the tibia and femur was evaluated in silicotic rats. Furthermore, the roles of Ac-SDKP on silicotic rats, silica-treated NR8383/RAW 264.7 cells, and RANKL-induced osteoclast differentiation were studied. Results The data indicated that silica inhalation might activate the RANKL and TLR4 signaling pathways in lung macrophages, thus inducing the lung inflammatory and proteolytic phenotype of macrophages and osteoclasts in lung and bone. Ac-SDKP maintained the lung elastin level by inhibiting lung inflammation and macrophage activation via the RANKL and TLR4 signaling pathways. Ac-SDKP also attenuated the reduction in femoral bone mineral density in silicotic rats by inhibiting osteoclast differentiation via the RANKL signaling pathway. Conclusion Our findings support the hypothesis that inhalation of crystalline silica induces activation of lung macrophages and bone osteoclasts via the RANKL and TLR4 signaling pathways. Ac-SDKP has the potential to stabilize lung homeostasis and bone metabolism.
Collapse
Affiliation(s)
- Fuyu Jin
- Basic Medical College, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Fei Geng
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Dingjie Xu
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Yaqian Li
- Basic Medical College, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Tian Li
- Basic Medical College, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Xinyu Yang
- Basic Medical College, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Shupeng Liu
- Basic Medical College, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Hui Zhang
- Basic Medical College, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Zhongqiu Wei
- Basic Medical College, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Shifeng Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Xuemin Gao
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Wenchen Cai
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Na Mao
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Xue Yi
- Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Xianmen, Fujian Province, 361023, People's Republic of China
| | - Heliang Liu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Ying Sun
- Basic Medical College, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Fang Yang
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| | - Hong Xu
- Basic Medical College, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China.,School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, 063210, People's Republic of China
| |
Collapse
|
8
|
Putman MS, Greenblatt LB, Bruce M, Joseph T, Lee H, Sawicki G, Uluer A, Sicilian L, Neuringer I, Gordon CM, Bouxsein ML, Finkelstein JS. The Effects of Ivacaftor on Bone Density and Microarchitecture in Children and Adults with Cystic Fibrosis. J Clin Endocrinol Metab 2021; 106:e1248-e1261. [PMID: 33258950 PMCID: PMC7947772 DOI: 10.1210/clinem/dgaa890] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Cystic fibrosis (CF) transmembrane conductance (CFTR) dysfunction may play a role in CF-related bone disease (CFBD). Ivacaftor is a CFTR potentiator effective in improving pulmonary and nutritional outcomes in patients with the G551D-CFTR mutation. The effects of ivacaftor on bone health are unknown. OBJECTIVE To determine the impact of ivacaftor on bone density and microarchitecture in children and adults with CF. DESIGN Prospective observational multiple cohort study. SETTING Outpatient clinical research center within a tertiary academic medical center. PATIENTS OR OTHER PARTICIPANTS Three cohorts of age-, race-, and gender-matched subjects were enrolled: 26 subjects (15 adults and 11 children) with CF and the G551D-CFTR mutation who were planning to start or had started treatment with ivacaftor within 3 months (Ivacaftor cohort), 26 subjects with CF were not treated with ivacaftor (CF Control cohort), and 26 healthy volunteers. INTERVENTIONS All treatments, including Ivacaftor, were managed by the subjects' pulmonologists. MAIN OUTCOME MEASURES Bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT), areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) and bone turnover markers at baseline, 1, and 2 years. RESULTS Cortical volume, area, and porosity at the radius and tibia increased significantly in adults in the Ivacaftor cohort. No significant differences were observed in changes in aBMD, trabecular microarchitecture, or estimated bone strength in adults or in any outcome measures in children. CONCLUSIONS Treatment with ivacaftor was associated with increases in cortical microarchitecture in adults with CF. Further studies are needed to understand the implications of these findings.
Collapse
Affiliation(s)
- Melissa S Putman
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA
- Correspondence and Reprint Requests: Melissa S. Putman, Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114. E-mail:
| | - Logan B Greenblatt
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Bruce
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Taisha Joseph
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hang Lee
- Massachusetts General Hospital Biostatistics Center, Boston, MA, USA
| | - Gregory Sawicki
- Division of Pulmonology, Boston Children’s Hospital, Boston, MA, USA
| | - Ahmet Uluer
- Division of Pulmonology, Boston Children’s Hospital, Boston, MA, USA
- Division of Pulmonology and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Leonard Sicilian
- Division of Pulmonology and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Isabel Neuringer
- Division of Pulmonology and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Catherine M Gordon
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA
- Division of Adolescent and Young Adult Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Mary L Bouxsein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Joel S Finkelstein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
9
|
Whittier DE, Boyd SK, Burghardt AJ, Paccou J, Ghasem-Zadeh A, Chapurlat R, Engelke K, Bouxsein ML. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int 2020; 31:1607-1627. [PMID: 32458029 PMCID: PMC7429313 DOI: 10.1007/s00198-020-05438-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The application of high-resolution peripheral quantitative computed tomography (HR-pQCT) to assess bone microarchitecture has grown rapidly since its introduction in 2005. As the use of HR-pQCT for clinical research continues to grow, there is an urgent need to form a consensus on imaging and analysis methodologies so that studies can be appropriately compared. In addition, with the recent introduction of the second-generation HrpQCT, which differs from the first-generation HR-pQCT in scan region, resolution, and morphological measurement techniques, there is a need for guidelines on appropriate reporting of results and considerations as the field adopts newer systems. METHODS A joint working group between the International Osteoporosis Foundation, American Society of Bone and Mineral Research, and European Calcified Tissue Society convened in person and by teleconference over several years to produce the guidelines and recommendations presented in this document. RESULTS An overview and discussion is provided for (1) standardized protocol for imaging distal radius and tibia sites using HR-pQCT, with the importance of quality control and operator training discussed; (2) standardized terminology and recommendations on reporting results; (3) factors influencing accuracy and precision error, with considerations for longitudinal and multi-center study designs; and finally (4) comparison between scanner generations and other high-resolution CT systems. CONCLUSION This article addresses the need for standardization of HR-pQCT imaging techniques and terminology, provides guidance on interpretation and reporting of results, and discusses unresolved issues in the field.
Collapse
Affiliation(s)
- D E Whittier
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - S K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - A J Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - J Paccou
- Department of Rheumatology, MABlab UR 4490, CHU Lille, Univ. Lille, 59000, Lille, France
| | - A Ghasem-Zadeh
- Departments of Endocrinology and Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Lyon, France
- Hôpital Edouard Herriot, Hospice Civils de Lyon, Lyon, France
| | - K Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bioclinica, Inc., Hamburg, Germany
| | - M L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The increased life span of patients with cystic fibrosis has lead to the detection of new complications. Osteopenia is present in up to 50% of adult patients with cystic fibrosis, and osteoporosis in 10-34% and can cause a difficult management problem. RECENT FINDINGS In children, defects in bone health become apparent generally at adolescence because of suboptimall bone peak mass achievement. Malnutrition, inflammation, vitamin D and vitamin K deficiency, altered sex hormone production, glucocorticoid therapy, and physical inactivity potentiate poor bone health. SUMMARY Monitoring bone mineral density and preventive care of osteoporosis are necessary from childhood to minimize cystic fibrosis-related bone disease in adult cystic fibrosis patients.
Collapse
|
11
|
Guérin S, Durieu I, Sermet-Gaudelus I. Cystic Fibrosis-Related Bone Disease: Current Knowledge and Future Directions. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Jardel S, Reynaud Q, Durieu I. Long-term extrapulmonary comorbidities after lung transplantation in cystic fibrosis: Update of specificities. Clin Transplant 2018; 32:e13269. [DOI: 10.1111/ctr.13269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Sabine Jardel
- Department of Internal Medicine, Adult Cystic Fibrosis Care Center; Hospices Civils de Lyon; Lyon France
- EA HESPER 7425; Université Claude Bernard Lyon 1; Lyon France
| | - Quitterie Reynaud
- Department of Internal Medicine, Adult Cystic Fibrosis Care Center; Hospices Civils de Lyon; Lyon France
- EA HESPER 7425; Université Claude Bernard Lyon 1; Lyon France
| | - Isabelle Durieu
- Department of Internal Medicine, Adult Cystic Fibrosis Care Center; Hospices Civils de Lyon; Lyon France
- EA HESPER 7425; Université Claude Bernard Lyon 1; Lyon France
| |
Collapse
|
13
|
Braun C, Bacchetta J, Braillon P, Chapurlat R, Drai J, Reix P. Children and adolescents with cystic fibrosis display moderate bone microarchitecture abnormalities: data from high-resolution peripheral quantitative computed tomography. Osteoporos Int 2017; 28:3179-3188. [PMID: 28795206 DOI: 10.1007/s00198-017-4179-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Abstract
UNLABELLED We investigated whether bone microstructure assessed by high-resolution peripheral quantitative tomography (HR-pQCT) could be altered in children and teenagers with cystic fibrosis (CF). In comparison to their healthy counterparts, bone microstructure was mildly affected at the tibial level only. INTRODUCTION Cystic fibrosis-related bone disease (CFBD) may alter bone health, ultimately predisposing patients to bone fractures. Our aim was to assess bone microstructure using high-resolution peripheral quantitative tomography (HR-pQCT) in a cohort of children and teenagers with CF in comparison to age-, puberty-, and gender-matched healthy volunteers (HVs). METHODS In this single-center, prospective, cross-sectional study, we evaluated the HR-pQCT bone parameters of CF patients and compared them to those of the healthy volunteers. RESULTS At a median age of 15.4 [range, 10.5-17.9] years, 37 CF patients (21 boys) with 91% [range, 46-138%] median forced expiratory volume in 1 s were included. At the ultradistal tibia, CF patients had a smaller bone cross-sectional area (579 [range, 399-1087] mm2) than HVs (655 [range, 445-981] mm2) (p = 0.027), related to a decreased trabecular area, without any significant differences for height. No other differences were found (trabecular number, separation, thickness, or distribution) at the radial or tibial levels. Bone structure was different in patients receiving ursodeoxycholic acid and those bearing two F508del mutations. CONCLUSION In our cohort of children and teenagers with good nutritional and lung function status, bone microstructure evaluated with HR-pQCT was not severely affected. Minimal microstructure abnormalities observed at the tibial level may be related to the cystic fibrosis transmembrane conductance regulator defect alone; the long-term consequences of such impairment will require further evaluation.
Collapse
Affiliation(s)
- C Braun
- Pediatric Cystic Fibrosis Center, Hospices Civils de Lyon, Lyon, France.
- University Claude-Bernard Lyon 1, Lyon, France.
- Centre de Ressources et de Compétences de la Mucoviscidose, Hôpital Femme Mère Enfant, 69677, Bron, France.
| | - J Bacchetta
- University Claude-Bernard Lyon 1, Lyon, France
- INSERM UMR 1033, Lyon, France
- Rare Renal Diseases Reference Center Néphrogones, Hospices Civils de Lyon, Lyon, France
| | - P Braillon
- University Claude-Bernard Lyon 1, Lyon, France
- Pediatric Radiology Department, Hospices Civils de Lyon, Lyon, France
| | - R Chapurlat
- University Claude-Bernard Lyon 1, Lyon, France
- INSERM UMR 1033, Lyon, France
- Pediatric Radiology Department, Hospices Civils de Lyon, Lyon, France
| | - J Drai
- Rheumatology Department, Hospices Civils de Lyon, Lyon, France
| | - P Reix
- Pediatric Cystic Fibrosis Center, Hospices Civils de Lyon, Lyon, France
- University Claude-Bernard Lyon 1, Lyon, France
- Biochemistry Department, Hospices Civils de Lyon, Lyon, France
- UMR 5558 (EMET). CNRS, LBBE, Université de Lyon, Villeurbanne, France
| |
Collapse
|