1
|
Jahani B, Vaidya R, Jin JM, Aboytes DA, Broz KS, Krothapalli S, Pujari B, Baig WM, Tang SY. Assessment of bovine cortical bone fracture behavior using impact microindentation as a surrogate of fracture toughness. JBMR Plus 2024; 8:ziad012. [PMID: 38505533 PMCID: PMC10945719 DOI: 10.1093/jbmrpl/ziad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 03/21/2024] Open
Abstract
The fracture behavior of bone is critically important for evaluating its mechanical competence and ability to resist fractures. Fracture toughness is an intrinsic material property that quantifies a material's ability to withstand crack propagation under controlled conditions. However, properly conducting fracture toughness testing requires the access to calibrated mechanical load frames and the destructive testing of bone samples, and therefore fracture toughness tests are clinically impractical. Impact microindentation mimicks certain aspects of fracture toughness measurements, but its relationship with fracture toughness remains unknown. In this study, we aimed to compare measurements of notched fracture toughness and impact microindentation in fresh and boiled bovine bone. Skeletally mature bovine bone specimens (n = 48) were prepared, and half of them were boiled to denature the organic matrix, while the other half remained preserved in frozen conditions. All samples underwent a notched fracture toughness test to determine their resistance to crack initiation (KIC) and an impact microindentation test using the OsteoProbe to obtain the Bone Material Strength index (BMSi). Boiling the bone samples increased the denatured collagen content, while mineral density and porosity remained unaffected. The boiled bones also showed significant reduction in both KIC (P < .0001) and the average BMSi (P < .0001), leading to impaired resistance of bone to crack propagation. Remarkably, the average BMSi exhibited a high correlation with KIC (r = 0.86; P < .001). A ranked order difference analysis confirmed the excellent agreement between the 2 measures. This study provides the first evidence that impact microindentation could serve as a surrogate measure for bone fracture behavior. The potential of impact microindentation to assess bone fracture resistance with minimal sample disruption could offer valuable insights into bone health without the need for cumbersome testing equipment and sample destruction.
Collapse
Affiliation(s)
- Babak Jahani
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Rachana Vaidya
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - James M Jin
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Donald A Aboytes
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Kaitlyn S Broz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Siva Krothapalli
- School of Medicine, St Louis University, MO 63104, United States
| | - Bhanuteja Pujari
- School of Medicine, St Louis University, MO 63104, United States
| | - Walee M Baig
- Department of Biology and Environmental Health, Missouri Southern State University, Joplin, MO 64801, United States
| | - Simon Y Tang
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| |
Collapse
|
2
|
Schoeb M, Avci TM, Winter EM, Appelman‐Dijkstra NM. Safety Outcomes of Impact Microindentation: A Prospective Observational Study in the Netherlands. JBMR Plus 2023; 7:e10799. [PMID: 37808395 PMCID: PMC10556274 DOI: 10.1002/jbm4.10799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 10/10/2023] Open
Abstract
Impact microindentation (IMI) is a technique to assess bone material properties of the cortical bone at the tibia in a transcutaneous, microinvasive, way. IMI is increasingly used in studies evaluating the contribution of tissue material properties to bone fragility in humans, and is approved for use in the clinic in Europe and the United States. Previous data show that IMI is well tolerated during and immediately after the procedure. The aim of this prospective observational study was to evaluate the longer-term safety and acceptability of an IMI measurement using the handheld OsteoProbe device®. Included were patients who were scheduled for a measurement at the Leiden University Medical Center from September 2019 to December 2020 and willing to participate. Patients were asked to review the procedure right after the measurement, and by telephone interviews 1 week and 1 month thereafter. The primary outcome was the 30-day complication rate after the measurement. Included were 106 patients (71 women) with a median age of 59 years (range, 20 to 86 years). Only three minor events were reported by 1-week follow-up, with an overall 30-day event rate of 2.8%. These were a very small hematoma in two patients, and a small bruise in one patient, all of which resolved without medical intervention. No other safety-related concerns were observed, and all 106 patients would undergo the measurement again if needed. The vast majority had no pain at baseline, 1-week and 1-month follow-up (80.2%, 88.4% and 94.3%, respectively). In this first and large longitudinal study we demonstrated that although minimally-invasive, IMI using the OsteoProbe® device at the tibia did not lead to any complications, and was well accepted by patients. Results strongly suggest that IMI can be safely used in studies as well as in the clinic in the hands of an experienced operator. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Manuela Schoeb
- Center for Bone Quality, Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| | - Telli M. Avci
- Center for Bone Quality, Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| | - Elizabeth M. Winter
- Center for Bone Quality, Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| | - Natasha M. Appelman‐Dijkstra
- Center for Bone Quality, Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
3
|
Jahani B, Vaidya R, Jin JM, Aboytes DA, Broz KS, Khrotapalli S, Pujari B, Baig WM, Tang SY. Assessment of bovine cortical bone fracture behavior using impact microindentation as a surrogate of fracture toughness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552351. [PMID: 37609257 PMCID: PMC10441309 DOI: 10.1101/2023.08.07.552351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The fracture behavior of bone is critically important for assessing its mechanical competence and ability to resist fractures. Fracture toughness, which quantifies a material's resistance to crack propagation under controlled geometry, is regarded as the gold standard for evaluating a material's resistance to fracture. However properly conducting this test requires access to calibrated mechanical load frames the destruction of the bone samples, making it impractical for obtaining clinical measurement of bone fracture. Impact microindentation offers a potential alternative by mimicking certain aspects of fracture toughness measurements, but its relationship with mechanistic fracture toughness remains unknown. In this study, we aimed to compare measurements of notched fracture toughness and impact microindentation in fresh and boiled bovine bone. Skeletally mature bovine bone specimens (n=48) were prepared, and half of them were boiled to denature the organic matrix, while the other half remained preserved in frozen conditions. Notched fracture toughness tests were conducted on all samples to determine Initiation toughness (KIC), and an impact microindentation test using the OsteoProbe was performed to obtain the Bone Material Strength index. Boiling the bone samples resulted increased the denatured collagen without affecting mineral density or porosity. The boiled bones also showed significant reduction in both KIC (p < 0.0001) and the average Bone Material Strength index (p < 0.0001), leading to impaired resistance of bone to crack propagation. Remarkably, the average Bone Material Strength index exhibited a high correlation with KIC (r = 0.86; p < 0.001). The ranked order difference analysis confirmed excellent agreement between the two measures. This study provides the first evidence that impact microindentation could serve as a surrogate measure for bone fracture behavior. The potential of impact microindentation to non-destructively assess bone fracture resistance could offer valuable insights into bone health without the need for elaborate testing equipment and sample destruction.
Collapse
Affiliation(s)
- Babak Jahani
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rachana Vaidya
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - James M. Jin
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Donald A. Aboytes
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kaitlyn S. Broz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | - Simon Y. Tang
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Jaiswal R, Zoulakis M, Axelsson KF, Darelid A, Rudäng R, Sundh D, Litsne H, Johansson L, Lorentzon M. Increased Bone Material Strength Index Is Positively Associated With the Risk of Incident Osteoporotic Fractures in Older Swedish Women. J Bone Miner Res 2023; 38:860-868. [PMID: 37088885 DOI: 10.1002/jbmr.4816] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
No previous studies have investigated the association between the bone material strength index (BMSi; an indicator of bone material properties obtained by microindentation) and the risk of incident fracture. The primary purpose of this prospective cohort study was to evaluate if BMSi is associated with incident osteoporotic fracture in older women and, secondarily, with prevalent fractures, anthropometric traits, or measurements of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA). In a population-based cohort, 647 women aged 75 to 80 years underwent bone microindentation using the OsteoProbe device. Data on clinical risk factors (CRFs), prevalent fractures, and incident fractures were collected using questionnaires, medical records, and a regional X-ray archive. BMD and vertebral fracture assessment (VFA) were assessed by DXA (Hologic, Discovery A). Associations between BMSi, anthropometrics, BMD, and prevalent fractures were investigated using correlation and linear and logistic regression. Cox proportional hazards and competing risks analysis by Fine and Gray were used to study the association between BMSi and the risk of fracture and mortality. BMSi was weakly associated with age (r = -0.13, p < 0.001) and BMI (r = -0.21, p < 0.001) and with BMD of lumbar spine (β = 0.09, p = 0.02) and total hip (β = 0.08, p = 0.05), but only after adjustments. No significant associations were found between BMSi and prevalent fractures (self-reported and/or VFA identified, n = 332). During a median follow-up time of 6.0 years, 121 major osteoporotic fractures (MOF), 151 any fractures, and 50 deaths occurred. Increasing BMSi (per SD) was associated with increased risk of MOF (hazard ratio [HR] = 1.29, 95% confidence interval [CI] 1.07-1.56), any fracture (HR = 1.29, 95% CI 1.09-1.53), and mortality (HR = 1.44, 95% CI 1.07-1.93). The risk of fracture did not materially change with adjustment for confounders, CRFs, femoral neck BMD, or when considering the competing risk of death. In conclusion, unexpectedly increasing BMSi was associated with greater fracture risk. The clinical relevance and potential mechanisms of this finding require further study. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Raju Jaiswal
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Michail Zoulakis
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kristian F Axelsson
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Närhälsan Norrmalm, Health Centre, Skövde, Sweden
| | - Anna Darelid
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Robert Rudäng
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Sundh
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Litsne
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Lisa Johansson
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
5
|
Uniyal P, Sharma A, Kumar N. Investigation on the sensitivity of indentation devices for detection of fatigue loading induced damage in bovine cortical bone. J Biomech 2022; 143:111274. [PMID: 36049386 DOI: 10.1016/j.jbiomech.2022.111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Daily physiological activities subject our skeletal system to cyclic loading with varying frequencies and magnitudes. These loadings interact with the microstructure of bone and create microdamage, which can cause stress-induced injuries if not repaired on the time. The early detection is required to prevent the complications associated with these fractures. In the present study, to examine fatigue loading-induced damage in cortical bone, the sensitivity of four different indentation devices was investigated. For this, cortical bone samples were fatigued in four-point bending configuration at 0.5 Hz, 2 Hz and 4 Hz frequencies. Following the fatigue loading, cyclic reference point indentation (cRPI), impact reference point indentation (iRPI), Vickers microhardness and nanoindentation tests were performed on the bone samples. Results show that indentation devices are sensitive to detect fatigue loading induced damage only in 0.5 Hz group samples on compressive region. On the other hand, the sensitivity of indentation devices for tensile stress-induced damage is not clear. Also, histological examination of fatigued bone samples shows a significant increase in the crack density and crack length with fatigue loading only for the 0.5 Hz group samples. The present study provides insight into the sensitivity of different indentation devices to fatigue loading induced damage, which could be helpful in the development of new devices for the early diagnosis of stress induced injuries.
Collapse
Affiliation(s)
- Piyush Uniyal
- Department of Biomedical Engineering, IIT Ropar, India
| | - Akshay Sharma
- Department of Mechanical Engineering, IIT Ropar, India
| | - Navin Kumar
- Department of Biomedical Engineering, IIT Ropar, India; Department of Mechanical Engineering, IIT Ropar, India.
| |
Collapse
|
6
|
Hepp N, Folkestad L, Møllebæk S, Frederiksen AL, Duno M, Jørgensen NR, Hermann AP, Jensen JEB. Bone-microarchitecture and bone-strength in a sample of adults with hypophosphatasia and a matched reference population assessed by HR-pQCT and impact microindentation. Bone 2022; 160:116420. [PMID: 35421614 DOI: 10.1016/j.bone.2022.116420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hypophosphatasia (HPP) is an autosomal recessive or dominate disease affecting bone mineralization, and adults with HPP are in risk to develop metatarsal stress fractures and femoral pseudofractures. Given to the scarce data on the bone quality and its association to the fracture risk in adults with HPP, this study aimed to evaluate bone turnover, bone strength and structure in adults with HPP. METHODS In this cross-sectional study, we included 14 adults with genetically verified HPP and 14 sex-, age-, BMI-, and menopausal status-matched reference individuals. We analyzed bone turnover markers, and measured bone material strength index (BMSi) by impact microindentation. Bone geometry, volumetric density and bone microarchitecture as well as failure load at the distal radius and tibia were evaluated using a second-generation high-resolution peripheral quantitative computed tomography system. RESULTS Bone turnover markers did not differ between patients with HPP and reference individuals. BMSi did not differ between the groups (67.90 [63.75-76.00] vs 65.45 [58.43-69.55], p = 0.149). Parameters of bone geometry and volumetric density did not differ between adults with HPP and the reference group. Patients with HPP had a tendency toward higher trabecular separation (0.664 [0.613-0.724] mm vs 0.620 [0.578-0.659] mm, p = 0.054) and inhomogeneity of trabecular network (0.253 [0.235-0.283] mm vs 0.229 [0.208-0.252] mm, p = 0.056) as well as lower trabecular bone volume fraction (18.8 [16.4-22.7] % vs 22.8 [20.6-24.7] %, p = 0.054) at the distal radius. In addition, compound heterozygous adults with HPP had a significantly higher cortical porosity at the distal radius than reference individuals (1.5 [0.9-2.2] % vs 0.7 [0.6-0.7] %, p = 0.041). CONCLUSIONS BMSi is not reduced in adults with HPP. Increased cortical porosity may contribute to the occurrence of femoral pseudofractures in compound heterozygous adults with HPP. However, further studies investigating larger cohorts of adults with HPP using methods of bone histomorphometry are recommended to adequately assess the bone quality in adults with HPP.
Collapse
Affiliation(s)
- Nicola Hepp
- Dept. of Endocrinology, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, 2650 Hvidovre, Denmark; Dept. of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3 B, 2200 Copenhagen, Denmark.
| | - Lars Folkestad
- Dept. of Endocrinology and Metabolism, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark; Dept. of Clinical Research, University of Southern Denmark, Winsløwparken 19, 5000 Odense C, Denmark
| | - Simone Møllebæk
- Dept. of Endocrinology and Metabolism, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark
| | - Anja Lisbeth Frederiksen
- Dept. of Clinical Genetics, Aalborg University Hospital, Ladegaardsgade 5, 9000 Aalborg C, Denmark; Dept. of Clinical Research, Aalborg University, Fredrik Bajers Vej 7K, 9220 Aalborg Ø, Denmark
| | - Morten Duno
- Dept. of Clinical Genetics, University Hospital Copenhagen Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Dept. of Clinical Biochemistry, Rigshospitalet, Valdemar Hansens Vej 13, 2600 Glostrup, Denmark; Dept. of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3 B, 2200 Copenhagen, Denmark
| | - Anne Pernille Hermann
- Dept. of Endocrinology and Metabolism, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark
| | - Jens-Erik Beck Jensen
- Dept. of Endocrinology, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, 2650 Hvidovre, Denmark; Dept. of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3 B, 2200 Copenhagen, Denmark
| |
Collapse
|
7
|
Schoeb M, Winter EM, Malgo F, Schipper IB, van der Wal RJP, Papapoulos SE, Appelman-Dijkstra NM. Bone material strength index as measured by in vivo impact microindentation is normal in subjects with high-energy trauma fractures. Osteoporos Int 2022; 33:1511-1519. [PMID: 35307747 PMCID: PMC9187533 DOI: 10.1007/s00198-022-06368-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
UNLABELLED Bone material properties were assessed using impact microindentation in patients with high-energy trauma fractures. Compared to patients with low-energy trauma fractures, bone material strength index was significantly higher in patients with high-energy trauma fractures, and did not differ between patients with osteopenia and those with osteoporosis within each trauma group. INTRODUCTION Impact microindentation (IMI) is a technique to assess tissue-level properties of bone at the tibia. Bone material strength index (BMSi), measured by IMI, is decreased in patients with low-energy trauma fractures, independently of areal bone mineral density (aBMD), but there is no information about BMSi in patients with high-energy trauma fractures. In the present study, we evaluated tissue-level properties of bone with IMI in patients with high-energy trauma fractures. METHODS BMSi was measured 3.0 months (IQR 2.0-5.8) after the fracture in 40 patients with high-energy trauma and 40 age- and gender-matched controls with low-energy trauma fractures using the OsteoProbe® device. RESULTS Mean age of high- and low-energy trauma patients was 57.7 ± 9.1 and 57.2 ± 7.7 years, respectively (p = 0.78). Fracture types were comparable in high- vs low-energy trauma patients. Lumbar spine (LS)-aBMD, but not femoral neck (FN)-aBMD, was higher in high- than in low-energy trauma patients (LS 0.96 ± 0.13 vs 0.89 ± 0.13 g/cm2, p = 0.02; FN 0.75 ± 0.09 vs 0.72 ± 0.09 g/cm2, p = 0.09). BMSi was significantly higher in high- than in low-energy trauma patients (84.4 ± 5.0 vs 78.0 ± 4.6, p = 0.001), also after adjusting for aBMD (p = 0.003). In addition, BMSi did not differ between patients with osteopenia and those with osteoporosis within each trauma group. CONCLUSION Our data demonstrate that BMSi and LS-aBMD, but not FN-aBMD, are significantly higher in high-energy trauma patients compared to matched controls with similar fractures from low-energy trauma. Further studies of non-osteoporotic patients with high-energy trauma fracture with measurements of BMSi are warranted to determine whether IMI might help in identifying those with reduced bone strength.
Collapse
Affiliation(s)
- M Schoeb
- LUMC Center for Bone Quality, Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - E M Winter
- LUMC Center for Bone Quality, Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - F Malgo
- LUMC Center for Bone Quality, Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - I B Schipper
- Center for Bone Quality, Department of Trauma Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - R J P van der Wal
- Center for Bone Quality, Department of Orthopaedic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - S E Papapoulos
- LUMC Center for Bone Quality, Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - N M Appelman-Dijkstra
- LUMC Center for Bone Quality, Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
8
|
Holloway-Kew KL, Rufus-Membere P, Anderson KB, Tembo MC, Sui SX, Hyde NK, Diez-Perez A, Kotowicz MA, Pasco JA. Associations between parameters of peripheral quantitative computed tomography and bone material strength index. Bone 2022; 155:116268. [PMID: 34856422 DOI: 10.1016/j.bone.2021.116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bone material strength index (BMSi) is measured in vivo using impact microindentation (IMI). However, the associations between BMSi and other bone measures are not clear. This study investigated whether bone parameters derived by peripheral quantitative computed tomography (pQCT) are associated with BMSi. METHODS Participants were men (n = 373, ages 34-96 yr) from the Geelong Osteoporosis Study. BMSi was measured using an OsteoProbe (Active Life Scientific, USA). Bone measures were obtained at both the radius (n = 348) and tibia (n = 342) using pQCT (XCT 2000 Stratec Medizintechnik, Germany). Images were obtained at 4% and 66% of radial and tibial length. Associations between pQCT parameters and BMSi were tested using Spearman's correlation and multivariable regression used to determine independent associations after adjustment for potential confounders. Models were checked for interaction terms. RESULTS Weak associations were observed between total bone density (radius 4%; r = +0.108, p = 0.046, tibia 4%; r = +0.115, p = 0.035), cortical density (tibia 4%; r = +0.123, p = 0.023) and BMSi. The associations were independent of weight, height, and glucocorticoid use (total bone density: radius 4%; β = 0.020, p = 0.006, tibia 4%; β = 0.020, p = 0.027 and cortical density: radius 4%; β = 4.160, p = 0.006, tibia 4%; β = 0.038, p = 0.010). Associations with bone mass were also observed at the 66% radial and tibial site, independent of age, weight, and glucocorticoid use (β = 4.160, p = 0.053, β = 1.458, p = 0.027 respectively). Total area at the 66% tibial site was also associated with BMSi (β = 0.010, p = 0.012), independent of weight and glucocorticoid use. No interaction terms were identified. CONCLUSION There were weak associations detected between some pQCT-derived bone parameters and BMSi.
Collapse
Affiliation(s)
- Kara L Holloway-Kew
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia.
| | - Pamela Rufus-Membere
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Kara B Anderson
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Monica C Tembo
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Sophia X Sui
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Natalie K Hyde
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Adolfo Diez-Perez
- Department of Internal Medicine, Hospital del Mar-IMIM, Autonomous University of Barcelona and CIBERFES, Instituto Carlos III, Spain
| | - Mark A Kotowicz
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia; Barwon Health, Geelong, Australia; Department of Medicine, The University of Melbourne - Western Health, St Albans, Australia
| | - Julie A Pasco
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia; Barwon Health, Geelong, Australia; Department of Medicine, The University of Melbourne - Western Health, St Albans, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Prahran, Australia
| |
Collapse
|
9
|
Schoeb M, Winter EM, Sleddering MA, Lips MA, Schepers A, Snel M, Appelman-Dijkstra NM. Bone Material Strength Index as Measured by Impact Microindentation is Low in Patients with Primary Hyperparathyroidism. J Clin Endocrinol Metab 2021; 106:e2527-e2534. [PMID: 33780545 PMCID: PMC8266436 DOI: 10.1210/clinem/dgab207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 12/26/2022]
Abstract
CONTEXT In primary hyperparathyroidism (PHPT) bone mineral density (BMD) is typically decreased in cortical bone and relatively preserved in trabecular bone. An increased fracture rate is observed however not only at peripheral sites but also at the spine, and fractures occur at higher BMD values than expected. We hypothesized that components of bone quality other than BMD are affected in PHPT as well. OBJECTIVE To evaluate bone material properties using impact microindentation (IMI) in PHPT patients. METHODS In this cross-sectional study, the Bone Material Strength index (BMSi) was measured by IMI at the midshaft of the tibia in 37 patients with PHPT (28 women), 11 of whom had prevalent fragility fractures, and 37 euparathyroid controls (28 women) matched for age, gender, and fragility fracture status. RESULTS Mean age of PHPT patients and controls was 61.8 ± 13.3 and 61.0 ± 11.8 years, respectively, P = .77. Calcium and PTH levels were significantly higher in PHPT patients but BMD at the lumbar spine (0.92 ± 0.15 vs 0.89 ± 0.11, P = .37) and the femoral neck (0.70 ± 0.11 vs 0.67 ± 0.07, P = .15) were comparable between groups. BMSi however was significantly lower in PHPT patients than in controls (78.2 ± 5.7 vs 82.8 ± 4.5, P < .001). In addition, BMSi was significantly lower in 11 PHPT patients with fragility fractures than in the 26 PHPT patients without fragility fractures (74.7 ± 6.0 vs 79.6 ± 5.0, P = .015). CONCLUSION Our data indicate that bone material properties are altered in PHPT patients and most affected in those with prevalent fractures. IMI might be a valuable additional tool in the evaluation of bone fragility in patients with PHPT.
Collapse
Affiliation(s)
- Manuela Schoeb
- Center for Bone Quality, Department of Internal Medicine and division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elizabeth M Winter
- Center for Bone Quality, Department of Internal Medicine and division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria A Sleddering
- Center for Bone Quality, Department of Internal Medicine and division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirjam A Lips
- Center for Bone Quality, Department of Internal Medicine and division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abbey Schepers
- Center for Bone Quality and Center for Endocrine Tumors, Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke Snel
- Center for Bone Quality, Department of Internal Medicine and division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Natasha M Appelman-Dijkstra
- Center for Bone Quality, Department of Internal Medicine and division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Correspondence: Natasha M. Appelman-Dijkstra, LUMC Center for Bone Quality, Department of Internal Medicine, Division Endocrinology, Albinusdreef 2, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
10
|
Abel RL, Stavri R, Gray M, Hansen U. Clinical Importance of Bone Matrix Damage Mechanisms for Fracture Prevention. Curr Osteoporos Rep 2021; 19:318-326. [PMID: 33876386 PMCID: PMC8310512 DOI: 10.1007/s11914-021-00678-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW Bone matrix exhibits great complexity in its composition, structure and mechanics. Here, we provide a review of recent research articles and appraise the evidence that bone matrix quality is clinically important and possibly targetable for fracture prevention. RECENT FINDINGS Deformation of mineralised collagen fibrils determines bone fracture mechanics. Slipping and separation at the mineral-fibril and fibril-fibril interfaces, respectively, are the structural mechanisms for plastic deformation and microcrack nucleation. Existing technologies for assessing bone tissue in vivo cannot measure matrix structure or fracture mechanics but have shown limited use in clinical settings for identifying fragility or following treatment outcomes based on composition. Matrix is biomechanically and clinically important, but the knowledge has not translated into clinical practice. The structural mechanisms by which a load is transferred from mineralised collagen fibrils to the whole bone via microcracking have been proven too complex to measure in vivo. The mineral-fibril or fibril-fibril interfaces might be suitable targets for diagnosing fragility or delivering molecules that reduce fracture risk by strengthening the mineral bonds while maintaining flexibility in the fibrils.
Collapse
Affiliation(s)
- Richard L Abel
- MSk Laboratory, Sir Michael Uren Hub, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK.
| | - Richard Stavri
- MSk Laboratory, Sir Michael Uren Hub, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK
| | - Marena Gray
- MSk Laboratory, Sir Michael Uren Hub, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK
| | - Ulrich Hansen
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
11
|
Rokidi S, Bravenboer N, Gamsjaeger S, Chavassieux P, Zwerina J, Paschalis E, Papapoulos S, Appelman-Dijkstra N. Impact microindentation measurements correlate with cortical bone material properties measured by Fourier transform infrared imaging in humans. Bone 2020; 137:115437. [PMID: 32473316 DOI: 10.1016/j.bone.2020.115437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 11/27/2022]
Abstract
Bone Material Strength index (BMSi) measured by Impact Microindentation is generally lower in subjects with fragility fractures independently of BMD values. We recently reported that in humans, BMSi values are strongly associated with material properties of subperiosteal mineralized bone surface (local mineral content, nanoporosity, pyridinoline content). In the present study we investigated the relationship of BMSi with material properties of the whole bone cortex, by analyzing thin sections of iliac crest biopsies (N = 12) from patients with different skeletal disorders and a wide range of BMD with or without fractures, by Fourier transform infrared imaging (FTIRI). The calculated parameters were: i) mineral and organic matrix content and their ratio (MM), ii) mineral maturity/crystallinity (MMC) and iii) the ratio of pyridinoline (Pyd) and divalent collagen cross-links (XLR). Results were expressed as images, which were converted to histogram distributions. For each histogram the characteristics recorded were: mean value, mode (most often occurring value), skewness, and kurtosis and their association with BMSi values was examined by correlation analysis. BMSi values were significantly correlated only with MM mean and mode values (r = 0.736, p = 0.0063, and r = 0.855, p = 0.0004, respectively), and with XLR mode values (r = -0.632, p = 0.0274). The results of the present study demonstrate that BMSi values are strongly associated with MM, a metric that corrects the mineral content for the organic matrix content, and may also depend on organic matrix quality. These and our previous observations strongly suggest that BMSi assesses material properties of cortical bone.
Collapse
Affiliation(s)
- Stamatia Rokidi
- Ludwig Boltzmann Institute of Osteology at 1st Medical Department, Hanusch Hospital of Österreichische Gesundheitskasse (ÖGK) and Research Funds of the Austrian Workers Compensation Board (AUVA) Trauma Centre Meidling, Vienna, Austria
| | - Natalie Bravenboer
- Leiden Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at 1st Medical Department, Hanusch Hospital of Österreichische Gesundheitskasse (ÖGK) and Research Funds of the Austrian Workers Compensation Board (AUVA) Trauma Centre Meidling, Vienna, Austria
| | | | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at 1st Medical Department, Hanusch Hospital of Österreichische Gesundheitskasse (ÖGK) and Research Funds of the Austrian Workers Compensation Board (AUVA) Trauma Centre Meidling, Vienna, Austria
| | - Eleftherios Paschalis
- Ludwig Boltzmann Institute of Osteology at 1st Medical Department, Hanusch Hospital of Österreichische Gesundheitskasse (ÖGK) and Research Funds of the Austrian Workers Compensation Board (AUVA) Trauma Centre Meidling, Vienna, Austria.
| | - Socrates Papapoulos
- Leiden Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|