1
|
Yao Q, Xie T, Fu Y, Wan J, Zhang W, Gao X, Huang J, Sun D, Zhang F, Bei W, Lei L, Liu F. The CpxA/CpxR two-component system mediates regulation of Actinobacillus pleuropneumoniae cold growth. Front Microbiol 2022; 13:1079390. [PMID: 36619992 PMCID: PMC9816388 DOI: 10.3389/fmicb.2022.1079390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction To survive in various hostile environments, two-component system is an adaptive mechanism for diverse bacteria. Activity of the CpxA/CpxR two-component system contributes to coping with different stimuli, such as pH, osmotic and heat stress. Methods However, the role of the CpxA/CpxR system in cold resistance is little-known. In this study, we showed that CpxA/CpxRwas critical for A. pleuropneumoniae growth under cold stress. Results β-Galactosidaseanalysis showed that CpxA/CpxR positively regulated the predicted cold stress gene cspC. The mutant for cold stress gene cspC was impaired in the optimal growth of A. pleuropneumoniae under cold stress. Furthermore, electrophoretic mobility shift assays demonstrated that CpxR-P could directly regulate the transcription of the cold stress gene cspC. Discussion These results presented in this study illustrated that the CpxA/CpxR system plays an important role in cold resistance by upregulating expression of CspC. The data give new insights into how A. pleuropneumoniae survives in cold stress.
Collapse
Affiliation(s)
- Qing Yao
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Tingting Xie
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Yu Fu
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Jiajia Wan
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Wendie Zhang
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Xuejun Gao
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Jing Huang
- School of Foreign Languages, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Diangang Sun
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fuxian Zhang
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liancheng Lei
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China,College of Veterinary Medicine, Jilin University, Changchun, China,Liancheng Lei, ✉
| | - Feng Liu
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China,*Correspondence: Feng Liu, ✉
| |
Collapse
|
2
|
de Araújo HL, Martins BP, Vicente AM, Lorenzetti APR, Koide T, Marques MV. Cold Regulation of Genes Encoding Ion Transport Systems in the Oligotrophic Bacterium Caulobacter crescentus. Microbiol Spectr 2021; 9:e0071021. [PMID: 34479415 PMCID: PMC8552747 DOI: 10.1128/spectrum.00710-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we characterize the response of the free-living oligotrophic alphaproteobacterium Caulobacter crescentus to low temperatures by global transcriptomic analysis. Our results showed that 656 genes were upregulated and 619 were downregulated at least 2-fold after a temperature downshift. The identified differentially expressed genes (DEG) belong to several functional categories, notably inorganic ion transport and metabolism, and a subset of these genes had their expression confirmed by reverse transcription quantitative real-time PCR (RT-qPCR). Several genes belonging to the ferric uptake regulator (Fur) regulon were downregulated, indicating that iron homeostasis is relevant for adaptation to cold. Several upregulated genes encode proteins that interact with nucleic acids, particularly RNA: cspA, cspB, and the DEAD box RNA helicases rhlE, dbpA, and rhlB. Moreover, 31 small regulatory RNAs (sRNAs), including the cell cycle-regulated noncoding RNA (ncRNA) CcnA, were upregulated, indicating that posttranscriptional regulation is important for the cold stress response. Interestingly, several genes related to transport were upregulated under cold stress, including three AcrB-like cation/multidrug efflux pumps, the nitrate/nitrite transport system, and the potassium transport genes kdpFABC. Further characterization showed that kdpA is upregulated in a potassium-limited medium and at a low temperature in a SigT-independent way. kdpA mRNA is less stable in rho and rhlE mutant strains, but while the expression is positively regulated by RhlE, it is negatively regulated by Rho. A kdpA-deleted strain was generated, and its viability in response to osmotic, acidic, or cold stresses was determined. The implications of such variation in the gene expression for cold adaptation are discussed. IMPORTANCE Low-temperature stress is an important factor for nucleic acid stability and must be circumvented in order to maintain the basic cell processes, such as transcription and translation. The oligotrophic lifestyle presents further challenges to ensure the proper nutrient uptake and osmotic balance in an environment of slow nutrient flow. Here, we show that in Caulobacter crescentus, the expression of the genes involved in cation transport and homeostasis is altered in response to cold, which could lead to a decrease in iron uptake and an increase in nitrogen and high-affinity potassium transport by the Kdp system. This previously uncharacterized regulation of the Kdp transporter has revealed a new mechanism for adaptation to low temperatures that may be relevant for oligotrophic bacteria.
Collapse
Affiliation(s)
- Hugo L. de Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bianca P. Martins
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre M. Vicente
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alan P. R. Lorenzetti
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marilis V. Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Woldemeskel SA, Goley ED. Shapeshifting to Survive: Shape Determination and Regulation in Caulobacter crescentus. Trends Microbiol 2017; 25:673-687. [PMID: 28359631 DOI: 10.1016/j.tim.2017.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 01/05/2023]
Abstract
Bacterial cell shape is a genetically encoded and inherited feature that is optimized for efficient growth, survival, and propagation of bacteria. In addition, bacterial cell morphology is adaptable to changes in environmental conditions. Work in recent years has demonstrated that individual features of cell shape, such as length or curvature, arise through the spatial regulation of cell wall synthesis by cytoskeletal proteins. However, the mechanisms by which these different morphogenetic factors are coordinated and how they may be globally regulated in response to cell cycle and environmental cues are only beginning to emerge. Here, we have summarized recent advances that have been made to understand morphology in the dimorphic Gram-negative bacterium Caulobacter crescentus.
Collapse
Affiliation(s)
- Selamawit Abi Woldemeskel
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Ranawat P, Rawat S. Stress response physiology of thermophiles. Arch Microbiol 2017; 199:391-414. [DOI: 10.1007/s00203-016-1331-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
5
|
Burbank LP, Stenger DC. A Temperature-Independent Cold-Shock Protein Homolog Acts as a Virulence Factor in Xylella fastidiosa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:335-344. [PMID: 26808446 DOI: 10.1094/mpmi-11-15-0260-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization.
Collapse
Affiliation(s)
- Lindsey P Burbank
- Agricultural Research Service, United States Department of Agriculture, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave, Parlier, CA 93648-9757, U.S.A
| | - Drake C Stenger
- Agricultural Research Service, United States Department of Agriculture, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave, Parlier, CA 93648-9757, U.S.A
| |
Collapse
|
6
|
da Silva CAPT, Lourenço RF, Mazzon RR, Ribeiro RA, Marques MV. Transcriptomic analysis of the stationary phase response regulator SpdR in Caulobacter crescentus. BMC Microbiol 2016; 16:66. [PMID: 27072651 PMCID: PMC4830024 DOI: 10.1186/s12866-016-0682-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/29/2016] [Indexed: 01/08/2023] Open
Abstract
Background As bacterial cells enter stationary phase, they adjust their growth rate to comply with nutrient restriction and acquire increased resistance to several stresses. These events are regulated by controlling gene expression at this phase, changing the mode of exponential growth into that of growth arrest, and increasing the expression of proteins involved in stress resistance. The two-component system SpdR/SpdS is required for the activation of transcription of the Caulobacter crescentus cspD gene at the onset of stationary phase. Results In this work, we showed that both SpdR and SpdS are also induced upon entry into stationary phase, and this induction is partly mediated by ppGpp and it is not auto-regulated. Global transcriptional analysis at early stationary phase of a spdR null mutant strain compared to the wild type strain was carried out by DNA microarray. Twenty-three genes showed at least twofold decreased expression in the spdR deletion mutant strain relative to its parental strain, including cspD, while five genes showed increased expression in the mutant. The expression of a set of nine genes was evaluated by quantitative real time PCR, validating the microarray data, and indicating an important role for SpdR at stationary phase. Several of the differentially expressed genes can be involved in modulating gene expression, including four transcriptional regulators, and the RNA regulatory protein Hfq. The ribosomal proteins NusE and NusG, which also have additional regulatory functions in transcription and translation, were also downregulated in the spdR mutant, as well as the ParE1 toxin. The purified SpdR protein was shown to bind to the regulatory region of CC0517 by Electrophoretic Mobility Shift Assay, and the SpdR-regulated gene CC0731 was shown to be expressed at a lower level in the null cspD mutant, suggesting that at least part of the effect of SpdR on the expression of this gene is indirect. Conclusions The results indicate that SpdR regulates several genes encoding proteins of regulatory function, which in turn may be required for the expression of other genes important for the transition to stationary phase. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0682-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina A P T da Silva
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000, São Paulo, SP, Brazil
| | - Rogério F Lourenço
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Ricardo R Mazzon
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000, São Paulo, SP, Brazil.,Present address: Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, Caixa postal 476, 88040-900, Florianópolis, SC, Brazil
| | - Rodolfo A Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000, São Paulo, SP, Brazil
| | - Marilis V Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Santos JS, da Silva CAPT, Balhesteros H, Lourenço RF, Marques MV. CspC regulates the expression of the glyoxylate cycle genes at stationary phase in Caulobacter. BMC Genomics 2015; 16:638. [PMID: 26311251 PMCID: PMC4551563 DOI: 10.1186/s12864-015-1845-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/14/2015] [Indexed: 11/29/2022] Open
Abstract
Background The Cold Shock proteins are RNA binding proteins involved in various cellular processes, including adaptation to low temperature, nutritional stress, cell growth and stationary phase. They may have an impact on gene expression by interfering with RNA stability and acting as transcription antiterminators. Caulobacter crescentus cspC is an essential gene encoding a stationary phase-induced protein of the Cold Shock Protein family and this work had as goal investigating the basis for the requirement of this gene for survival at this phase. In this work we investigate the role of CspC in C. crescentus stationary phase and discuss the molecular mechanisms that could be involved. Results The expression of cspC increased significantly at stationary phase in complex media and in glucose depletion, indicating a putative role in responding to carbon starvation. Global transcriptional profiling experiments comparing cspC and the wild type strain both at exponential and stationary phases as well as comparing exponential and stationary phase in wild type strain were carried out by DNA microarray analysis. The results showed that the absence of cspC affected the transcription of 11 genes at exponential phase and 60 genes at stationary phase. Among the differentially expressed genes it is worth noting those encoding respiratory enzymes and genes for sulfur metabolism, which were upregulated, and those encoding enzymes of the glyoxylate cycle, which were severely downregulated in the mutant at stationary phase. mRNA decay experiments showed that the aceA mRNA, encoding isocitrate lyase, was less stable in the cspC mutant, indicating that this effect was at least partially due to posttranscriptional regulation. These observations were supported by the observed arrested growth phenotype of the cspC strain when grown in acetate as the sole carbon source, and by the upregulation of genes for assimilatory sulfate reduction and methionine biosynthesis. Conclusions The stationary phase-induced RNA binding protein CspC has an important role in gene expression at this phase, and is necessary for maximal expression of the glyoxylate cycle genes. In the case of aceA, its downregulation may be attributed to the shorter half-life of the mRNA in the cspC mutant, indicating that one of the possible regulatory mechanisms is via altering RNA stabilization. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1845-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana S Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000, São Paulo, SP, Brazil.
| | - Carolina A P T da Silva
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000, São Paulo, SP, Brazil.
| | - Heloise Balhesteros
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000, São Paulo, SP, Brazil.
| | - Rogério F Lourenço
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Marilis V Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
CspA encodes a major cold shock protein in Himalayan psychrotolerant Pseudomonas strains. Interdiscip Sci 2014; 6:140-8. [DOI: 10.1007/s12539-013-0015-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/16/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
|
9
|
Liu B, Zhang Y, Zhang W. RNA-Seq-based analysis of cold shock response in Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein encoding gene. PLoS One 2014; 9:e93289. [PMID: 24667527 PMCID: PMC3965559 DOI: 10.1371/journal.pone.0093289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although cold shock responses and the roles of cold shock proteins in microorganisms containing multiple cold shock protein genes have been well characterized, related studies on bacteria possessing a single cold shock protein gene have not been reported. Thermoanaerobacter tengcongensis MB4, a thermophile harboring only one known cold shock protein gene (TtescpC), can survive from 50° to 80 °C, but has poor natural competence under cold shock at 50 °C. We therefore examined cold shock responses and their effect on natural competence in this bacterium. RESULTS The transcriptomes of T. tengcongensis before and after cold shock were analyzed by RNA-seq and over 1200 differentially expressed genes were successfully identified. These genes were involved in a wide range of biological processes, including modulation of DNA replication, recombination, and repair; energy metabolism; production of cold shock protein; synthesis of branched amino acids and branched-chain fatty acids; and sporulation. RNA-seq analysis also suggested that T. tengcongensis initiates cell wall and membrane remodeling processes, flagellar assembly, and sporulation in response to low temperature. Expression profiles of TtecspC and failed attempts to produce a TtecspC knockout strain confirmed the essential role of TteCspC in the cold shock response, and also suggested a role of this protein in survival at optimum growth temperature. Repression of genes encoding ComEA and ComEC and low energy metabolism levels in cold-shocked cells are the likely basis of poor natural competence at low temperature. CONCLUSION Our study demonstrated changes in global gene expression under cold shock and identified several candidate genes related to cold shock in T. tengcongensis. At the same time, the relationship between cold shock response and poor natural competence at low temperature was preliminarily elucidated. These findings provide a foundation for future studies on genetic and molecular mechanisms associated with cold shock and acclimation at low temperature.
Collapse
Affiliation(s)
- Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
10
|
Cold shock genes cspA and cspB from Caulobacter crescentus are posttranscriptionally regulated and important for cold adaptation. J Bacteriol 2012; 194:6507-17. [PMID: 23002229 DOI: 10.1128/jb.01422-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cold shock proteins (CSPs) are nucleic acid binding chaperones, first described as being induced to solve the problem of mRNA stabilization after temperature downshift. Caulobacter crescentus has four CSPs: CspA and CspB, which are cold induced, and CspC and CspD, which are induced only in stationary phase. In this work we have determined that the synthesis of both CspA and CspB reaches the maximum levels early in the acclimation phase. The deletion of cspA causes a decrease in growth at low temperature, whereas the strain with a deletion of cspB has a very subtle and transient cold-related growth phenotype. The cspA cspB double mutant has a slightly more severe phenotype than that of the cspA mutant, suggesting that although CspA may be more important to cold adaptation than CspB, both proteins have a role in this process. Gene expression analyses were carried out using cspA and cspB regulatory fusions to the lacZ reporter gene and showed that both genes are regulated at the transcriptional and posttranscriptional levels. Deletion mapping of the long 5'-untranslated region (5'-UTR) of each gene identified a common region important for cold induction, probably via translation enhancement. In contrast to what was reported for other bacteria, these cold shock genes have no regulatory regions downstream from ATG that are important for cold induction. This work shows that the importance of CspA and CspB to C. crescentus cold adaptation, mechanisms of regulation, and pattern of expression during the acclimation phase apparently differs in many aspects from what has been described so far for other bacteria.
Collapse
|
11
|
Phadtare S. Escherichia coli cold-shock gene profiles in response to over-expression/deletion of CsdA, RNase R and PNPase and relevance to low-temperature RNA metabolism. Genes Cells 2012; 17:850-74. [PMID: 22957931 DOI: 10.1111/gtc.12002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/01/2012] [Indexed: 12/12/2022]
Abstract
Cold-shock response is elicited by the transfer of exponentially growing cells from their optimum temperature to a significantly lower growth temperature and is characterized by the induction of several cold-shock proteins. These proteins, which presumably possess a variety of different activities, are critical for survival and continued growth at low temperature. One of the main consequences of cold shock is stabilization of the secondary structures in nucleic acids leading to hindrance of RNA degradation. Cold-shock proteins, such as RNA helicase CsdA, and 3'-5' processing exoribonucleases, such as PNPase and RNase R, are presumably involved in facilitating the RNA metabolism at low temperature. As a step toward elucidating the individual contributions of these proteins to low-temperature RNA metabolism, the global transcript profiles of cells lacking CsdA, RNase R and PNPase proteins as well as cells individually over-expressing these proteins as compared to the wild-type cells were analyzed at 15 °C. The analysis showed distinct sets of genes, which are possible targets of each of these proteins. This analysis will help further our understanding of the low-temperature RNA metabolism.
Collapse
Affiliation(s)
- Sangita Phadtare
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, CABM, 679 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
Schleicher TR, Nyholm SV. Characterizing the host and symbiont proteomes in the association between the Bobtail squid, Euprymna scolopes, and the bacterium, Vibrio fischeri. PLoS One 2011; 6:e25649. [PMID: 21998678 PMCID: PMC3187790 DOI: 10.1371/journal.pone.0025649] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 09/07/2011] [Indexed: 11/26/2022] Open
Abstract
The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host expels an exudate from the light organ consisting of 95% of the symbiont population in addition to host hemocytes and shed epithelial cells. We analyzed the host and symbiont proteomes of adult squid exudate and surrounding light organ epithelial tissue using 1D- and 2D-polyacrylamide gel electrophoresis and multidimensional protein identification technology (MudPIT) in an effort to understand the contribution of both partners to the maintenance of this association. These proteomic analyses putatively identified 1581 unique proteins, 870 proteins originating from the symbiont and 711 from the host. Identified host proteins indicate a role of the innate immune system and reactive oxygen species (ROS) in regulating the symbiosis. Symbiont proteins detected enhance our understanding of the role of quorum sensing, two-component signaling, motility, and detoxification of ROS and reactive nitrogen species (RNS) inside the light organ. This study offers the first proteomic analysis of the symbiotic microenvironment of the adult light organ and provides the identification of proteins important to the regulation of this beneficial association.
Collapse
Affiliation(s)
- Tyler R. Schleicher
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
13
|
SpdR, a response regulator required for stationary-phase induction of Caulobacter crescentus cspD. J Bacteriol 2010; 192:5991-6000. [PMID: 20833806 DOI: 10.1128/jb.00440-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cold shock protein (CSP) family includes small polypeptides that are induced upon temperature downshift and stationary phase. The genome of the alphaproteobacterium Caulobacter crescentus encodes four CSPs, with two being induced by cold shock and two at the onset of stationary phase. In order to identify the environmental signals and cell factors that are involved in cspD expression at stationary phase, we have analyzed cspD transcription during growth under several nutrient conditions. The results showed that expression of cspD was affected by the medium composition and was inversely proportional to the growth rate. The maximum levels of expression were decreased in a spoT mutant, indicating that ppGpp may be involved in the signalization for carbon starvation induction of cspD. A Tn5 mutant library was screened for mutants with reduced cspD expression, and 10 clones that showed at least a 50% reduction in expression were identified. Among these, a strain with a transposon insertion into a response regulator of a two-component system showed no induction of cspD at stationary phase. This protein (SpdR) was able to acquire a phosphate group from its cognate histidine kinase, and gel mobility shift assay and DNase I footprinting experiments showed that it binds to an inverted repeat sequence of the cspD regulatory region. A mutated SpdR with a substitution of the conserved aspartyl residue that is the probable phosphorylation site is unable to bind to the cspD regulatory region and to complement the spdR mutant phenotype.
Collapse
|