1
|
Moratti CF, Yang SNN, Scott C, Coleman NV. Development of a whole-cell biosensor for ethylene oxide and ethylene. Microb Biotechnol 2024; 17:e14511. [PMID: 38925606 PMCID: PMC11197473 DOI: 10.1111/1751-7915.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Ethylene and ethylene oxide are widely used in the chemical industry, and ethylene is also important for its role in fruit ripening. Better sensing systems would assist risk management of these chemicals. Here, we characterise the ethylene regulatory system in Mycobacterium strain NBB4 and use these genetic parts to create a biosensor. The regulatory genes etnR1 and etnR2 and cognate promoter Petn were combined with a fluorescent reporter gene (fuGFP) in a Mycobacterium shuttle vector to create plasmid pUS301-EtnR12P. Cultures of M. smegmatis mc2-155(pUS301-EtnR12P) gave a fluorescent signal in response to ethylene oxide with a detection limit of 0.2 μM (9 ppb). By combining the epoxide biosensor cells with another culture expressing the ethylene monooxygenase, the system was converted into an ethylene biosensor. The co-culture was capable of detecting ethylene emission from banana fruit. These are the first examples of whole-cell biosensors for epoxides or aliphatic alkenes. This work also resolves long-standing questions concerning the regulation of ethylene catabolism in bacteria.
Collapse
Affiliation(s)
- Claudia F. Moratti
- School of Life and Environmental SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Sui Nin Nicholas Yang
- School of Life and Environmental SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Colin Scott
- CSIRO Advanced Engineering Biology Future Science Platform, Black Mountain Research & Innovation ParkCanberraAustralian Capital TerritoryAustralia
| | - Nicholas V. Coleman
- School of Natural Sciences and ARC Centre of Excellence in Synthetic BiologyMacquarie UniversityNorth RydeNew South WalesAustralia
| |
Collapse
|
2
|
Liang Y, Zhou X, Wu Y, Wu Y, Gao S, Zeng X, Yu Z. Rhizobiales as the Key Member in the Synergistic Tris (2-chloroethyl) Phosphate (TCEP) Degradation by Two Bacterial Consortia. WATER RESEARCH 2022; 218:118464. [PMID: 35461102 DOI: 10.1016/j.watres.2022.118464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) is of growing concern because of its ubiquitous occurrence, potential toxicity, and persistence in the environment. In this study, two efficient TCEP degradation consortia (AT1 and AT3) were developed and were able to completely hydrolyze TCEP within 20-25 h. Rhizobiales was identified as the key degrader in both consortia, because Rhizobiales-related phosphoesterase genes were enriched by one to two orders of magnitude when the carbon source was changed from acetate to TCEP. In addition, the increase in Rhizobiales abundance was related to the development of TCEP degradation. The isolation of Xanthobacter strains confirmed the efficient TCEP and bis(2-chloroethyl) phosphate (BCEP) degradation of Rhizobiales. The higher abundances of phosphoesterase genes affiliated with Rhizobiales genera (Bradyrhizobium and Ancylobacter), Cytophagales genus (Spirosoma), Sphingobacteriales genus (Pedobacter), and Burkholderia genus (Methylibium), may be related to the faster TCEP degradation in AT3, while the higher abundance of Rhizobiales genus (Hyphomicrobium)-related phosphodiesterase (PDE) genes may contribute to the faster BCEP degradation in AT1. The stepwise hydrolysis of TCEP was likely catalyzed by different bacterial guilds, which was confirmed by the coculture of TCEP- and BCEP-degrading isolates and highlighted the importance of synergistic interactions during TCEP degradation.
Collapse
Affiliation(s)
- Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xiangyu Zhou
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| |
Collapse
|
3
|
Moratti CF, Scott C, Coleman NV. Synthetic Biology Approaches to Hydrocarbon Biosensors: A Review. Front Bioeng Biotechnol 2022; 9:804234. [PMID: 35083206 PMCID: PMC8784404 DOI: 10.3389/fbioe.2021.804234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Monooxygenases are a class of enzymes that facilitate the bacterial degradation of alkanes and alkenes. The regulatory components associated with monooxygenases are nature's own hydrocarbon sensors, and once functionally characterised, these components can be used to create rapid, inexpensive and sensitive biosensors for use in applications such as bioremediation and metabolic engineering. Many bacterial monooxygenases have been identified, yet the regulation of only a few of these have been investigated in detail. A wealth of genetic and functional diversity of regulatory enzymes and promoter elements still remains unexplored and unexploited, both in published genome sequences and in yet-to-be-cultured bacteria. In this review we examine in detail the current state of research on monooxygenase gene regulation, and on the development of transcription-factor-based microbial biosensors for detection of alkanes and alkenes. A new framework for the systematic characterisation of the underlying genetic components and for further development of biosensors is presented, and we identify focus areas that should be targeted to enable progression of more biosensor candidates to commercialisation and deployment in industry and in the environment.
Collapse
Affiliation(s)
- Claudia F. Moratti
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| | - Nicholas V. Coleman
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Clark DD. Characterization of the recombinant (R)- and (S)-hydroxypropyl-coenzyme M dehydrogenases: A case study to augment the teaching of enzyme kinetics and stereoselectivity. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 47:124-132. [PMID: 30592559 DOI: 10.1002/bmb.21202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/23/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
A homologous pair of stereospecific NAD-dependent enzymes, (R)- and (S)-hydroxypropyl-coenzyme M dehydrogenase, are part of a bacterial pathway of short-chain alkene and epoxide metabolism. Their discovery and study, which spans multiple publications over more than a decade, is a data rich story that combines both classical and contemporary experimental biochemistry. A subset of the data for characterization of the recombinant enzymes was used as a case study to augment the teaching of enzyme kinetics and stereoselectivity in an undergraduate biochemistry course at California State University-Chico. © 2018 International Union of Biochemistry and Molecular Biology, 47(2): 124-132, 2019.
Collapse
Affiliation(s)
- Daniel D Clark
- Department of Chemistry and Biochemistry, California State University-Chico, Chico, California, 95929
| |
Collapse
|
5
|
Suzuki T, Yazawa T, Morishita N, Maruyama A, Fuse H. Genetic and Physiological Characteristics of a Novel Marine Propylene-Assimilating Halieaceae Bacterium Isolated from Seawater and the Diversity of Its Alkene and Epoxide Metabolism Genes. Microbes Environ 2019; 34:33-42. [PMID: 30651420 PMCID: PMC6440738 DOI: 10.1264/jsme2.me18053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Gram-negative marine propylene-assimilating bacterium, strain PE-TB08W, was isolated from surface seawater. A structural gene analysis using the 16S rRNA gene showed 96, 94, and 95% similarities to Halioglobus species, Haliea sp. ETY-M, and Haliea sp. ETY-NAG, respectively. A phylogenetic tree analysis showed that strain PE-TB08W belonged to the EG19 (Chromatocurvus)-Congregibacter-Haliea cluster within the Halieaceae (formerly Alteromonadaceae) family. Thus, strain PE-TB08W was characterized as a newly isolated Halieaceae bacterium; we suggest that this strain belongs to a new genus. Other bacterial characteristics were investigated and revealed that strain PE-TB08W assimilated propylene, n-butane, 1-butene, propanol, and 1-butanol (C3 and C4 gaseous hydrocarbons and primary alcohols), but not various other alcohols, including methane, ethane, ethylene, propane, and i-butane. The putative alkene monooxygenase (amo) gene in this strain was a soluble methane monooxygenase-type (sMMO) gene that is ubiquitous in alkene-assimilating bacteria for the initial oxidation of alkenes. In addition, two epoxide carboxylase systems containing epoxyalkane, the co-enzyme M transferase (EaCoMT) gene, and the co-enzyme M biosynthesis gene, were found in the upstream region of the sMMO gene cluster. Both of these genes were similar to those in Xanthobacter autotrophicus Py2 and were inductively expressed by propylene. These results have a significant impact on the genetic relationship between terrestrial and marine alkene-assimilating bacteria.
Collapse
Affiliation(s)
- Toshihiro Suzuki
- Department of Fermentation Sciences, Faculty of Applied Biosciences, Tokyo University of Agriculture
| | - Tomoki Yazawa
- College of Systems Engineering and Science, Shibaura Institute of Technology
| | - Naonori Morishita
- College of Systems Engineering and Science, Shibaura Institute of Technology
| | - Akihiko Maruyama
- Microbial and Genetic Resources Research Group, Bioproduction Research Institute of Advanced Industrial Science and Technology (AIST)
| | - Hiroyuki Fuse
- College of Systems Engineering and Science, Shibaura Institute of Technology
| |
Collapse
|
6
|
Partovi SE, Mus F, Gutknecht AE, Martinez HA, Tripet BP, Lange BM, DuBois JL, Peters JW. Coenzyme M biosynthesis in bacteria involves phosphate elimination by a functionally distinct member of the aspartase/fumarase superfamily. J Biol Chem 2018; 293:5236-5246. [PMID: 29414784 DOI: 10.1074/jbc.ra117.001234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/23/2018] [Indexed: 11/06/2022] Open
Abstract
For nearly 30 years, coenzyme M (CoM) was assumed to be present solely in methanogenic archaea. In the late 1990s, CoM was reported to play a role in bacterial propene metabolism, but no biosynthetic pathway for CoM has yet been identified in bacteria. Here, using bioinformatics and proteomic approaches in the metabolically versatile bacterium Xanthobacter autotrophicus Py2, we identified four putative CoM biosynthetic enzymes encoded by the xcbB1, C1, D1, and E1 genes. Only XcbB1 was homologous to a known CoM biosynthetic enzyme (ComA), indicating that CoM biosynthesis in bacteria involves enzymes different from those in archaea. We verified that the ComA homolog produces phosphosulfolactate from phosphoenolpyruvate (PEP), demonstrating that bacterial CoM biosynthesis is initiated similarly as the phosphoenolpyruvate-dependent methanogenic archaeal pathway. The bioinformatics analysis revealed that XcbC1 and D1 are members of the aspartase/fumarase superfamily (AFS) and that XcbE1 is a pyridoxal 5'-phosphate-containing enzyme with homology to d-cysteine desulfhydrases. Known AFS members catalyze β-elimination reactions of succinyl-containing substrates, yielding fumarate as the common unsaturated elimination product. Unexpectedly, we found that XcbC1 catalyzes β-elimination on phosphosulfolactate, yielding inorganic phosphate and a novel metabolite, sulfoacrylic acid. Phosphate-releasing β-elimination reactions are unprecedented among the AFS, indicating that XcbC1 is an unusual phosphatase. Direct demonstration of phosphosulfolactate synthase activity for XcbB1 and phosphate β-elimination activity for XcbC1 strengthened their hypothetical assignment to a CoM biosynthetic pathway and suggested functions also for XcbD1 and E1. Our results represent a critical first step toward elucidating the CoM pathway in bacteria.
Collapse
Affiliation(s)
- Sarah E Partovi
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | | | - Andrew E Gutknecht
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | - Hunter A Martinez
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | - Brian P Tripet
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | - Bernd Markus Lange
- the Institute of Biological Chemistry and.,M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164
| | - Jennifer L DuBois
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717 and
| | | |
Collapse
|
7
|
Johnston A, Crombie AT, El Khawand M, Sims L, Whited GM, McGenity TJ, Colin Murrell J. Identification and characterisation of isoprene-degrading bacteria in an estuarine environment. Environ Microbiol 2017; 19:3526-3537. [PMID: 28654185 PMCID: PMC6849523 DOI: 10.1111/1462-2920.13842] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/31/2017] [Accepted: 06/19/2017] [Indexed: 11/30/2022]
Abstract
Approximately one‐third of volatile organic compounds (VOCs) emitted to the atmosphere consists of isoprene, originating from the terrestrial and marine biosphere, with a profound effect on atmospheric chemistry. However, isoprene provides an abundant and largely unexplored source of carbon and energy for microbes. The potential for isoprene degradation in marine and estuarine samples from the Colne Estuary, UK, was investigated using DNA‐Stable Isotope Probing (DNA‐SIP). Analysis at two timepoints showed the development of communities dominated by Actinobacteria including members of the genera Mycobacterium, Rhodococcus, Microbacterium and Gordonia. Representative isolates, capable of growth on isoprene as sole carbon and energy source, were obtained from marine and estuarine locations, and isoprene‐degrading strains of Gordonia and Mycobacterium were characterised physiologically and their genomes were sequenced. Genes predicted to be required for isoprene metabolism, including four‐component isoprene monooxygenases (IsoMO), were identified and compared with previously characterised examples. Transcriptional and activity assays of strains growing on isoprene or alternative carbon sources showed that growth on isoprene is an inducible trait requiring a specific IsoMO. This study is the first to identify active isoprene degraders in estuarine and marine environments using DNA‐SIP and to characterise marine isoprene‐degrading bacteria at the physiological and molecular level.
Collapse
Affiliation(s)
- Antonia Johnston
- School of Environmental Science, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrew T Crombie
- School of Environmental Science, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Myriam El Khawand
- School of Environmental Science, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Leanne Sims
- School of Environmental Science, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Gregg M Whited
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, CA 94304, USA
| | - Terry J McGenity
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - J Colin Murrell
- School of Environmental Science, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,Earth and Life Systems Alliance, Norwich Research Park, Norwich, UK
| |
Collapse
|
8
|
A Review on the Genetics of Aliphatic and Aromatic Hydrocarbon Degradation. Appl Biochem Biotechnol 2015; 178:224-50. [DOI: 10.1007/s12010-015-1881-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
|
9
|
Utility of gel-free, label-free shotgun proteomics approaches to investigate microorganisms. Appl Microbiol Biotechnol 2011; 90:407-16. [DOI: 10.1007/s00253-011-3172-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
|