1
|
Cui Z, Zheng M, Ding M, Dai W, Wang Z, Chen T. Efficient production of acetoin from lactate by engineered Escherichia coli whole-cell biocatalyst. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12560-x. [PMID: 37178309 DOI: 10.1007/s00253-023-12560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Acetoin, an important and high-value added bio-based platform chemical, has been widely applied in fields of foods, cosmetics, chemical synthesis, and agriculture. Lactate is a significant intermediate short-chain carboxylate in the anaerobic breakdown of carbohydrates that comprise ~ 18% and ~ 70% in municipal wastewaters and some food processing wastewaters, respectively. In this work, a series of engineered Escherichia coli strains were constructed for efficient production of acetoin from cheaper and abundant lactate through heterogenous co-expression of fusion protein (α-acetolactate synthetase and α-acetolactate decarboxylase), lactate dehydrogenase and NADH oxidase, and blocking acetate synthesis pathways. After optimization of whole-cell bioconversion conditions, the engineered strain BL-11 produced 251.97 mM (22.20 g/L) acetoin with a yield of 0.434 mol/mol in shake flasks. Moreover, a titer of 648.97mM (57.18 g/L) acetoin was obtained in 30 h with a yield of 0.484 mol/mol lactic acid in a 1-L bioreactor. To the best of our knowledge, this is the first report on the production of acetoin from renewable lactate through whole-cell bioconversion with both high titer and yield, which demonstrates the economy and efficiency of acetoin production from lactate. Key Points • The lactate dehydrogenases from different organisms were expressed, purified, and assayed. • It is the first time that acetoin was produced from lactate by whole-cell biocatalysis. • The highest titer of 57.18 g/L acetoin was obtained with high theoretical yield in a 1-L bioreactor.
Collapse
Affiliation(s)
- Zhenzhen Cui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Meiyu Zheng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mengnan Ding
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wei Dai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhiwen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
2
|
Cloning and characterization of a L-lactate dehydrogenase gene from Ruminococcaceae bacterium CPB6. World J Microbiol Biotechnol 2020; 36:182. [PMID: 33170386 DOI: 10.1007/s11274-020-02958-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Lactate are proved to be attractive electron donor for the production of n-caproic acid (CA) that is a high value-added fuel precursor and chemical feedstock, but little is known about molecular mechanism of lactate transformation. In the present study, the gene for L-lactate dehydrogenase (LDH, EC.1.1.1.27) from a Ruminococcaceae strain CPB6 was cloned and expressed in Escherichia coli BL21 (DE3) with plasmid pET28a. The recombinant LDH exhibited molecular weight of 36-38 kDa in SDS-PAGE. The purified LDH was found to have the maximal oxidation activity of 29.6 U/mg from lactate to pyruvate at pH 6.5, and the maximal reduction activity of 10.4 U/mg from pyruvate to lactate at pH 8.5, respectively. Strikingly, its oxidative activity predominates over reductive activity, leading to a 17-fold increase for the utilization of lactate in E. coli/pET28a-LDH than E. coli/pET28a. The CPB6 LDH gene encodes a 315 amino acid protein sharing 42.19% similarity with Clostridium beijerinckii LDH, and lower similarity with LDHs of other organisms. Significant difference were observed between the CPB6 LDH and C. beijerinckii and C. acetobutylicum LDH in the predicted tertiary structure and active center. Further, X-ray crystal structure analysis need to be performed to verify the specific active center of the CPB6 LDH and its role in the conversion of lactate into CA.
Collapse
|
3
|
A preliminary study on the proinflammatory mechanisms of Treponema pallidum outer membrane protein Tp92 in human macrophages and HMEC-1 cells. Microb Pathog 2017; 110:176-183. [DOI: 10.1016/j.micpath.2017.06.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
|
4
|
Affiliation(s)
- Volker F. Wendisch
- Bielefeld University; Genetics of Prokaryotes, Faculty of Biology and CeBiTec; Postfach 100131 33501 Bielefeld Germany
| |
Collapse
|
5
|
Zhang Y, Jiang T, Sheng B, Long Y, Gao C, Ma C, Xu P. Coexistence of two d-lactate-utilizing systems in Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:699-707. [PMID: 27264531 DOI: 10.1111/1758-2229.12429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 06/05/2023]
Abstract
It is advantageous for rhizosphere-dwelling microorganisms to utilize organic acids such as lactate. Pseudomonas putida KT2440 is one of the most widely studied rhizosphere-dwelling model organisms. The P. putida KT2440 genome contains an NAD-dependent d-lactate dehydrogenase encoding gene, but mutation of this gene does not play a role in d-lactate utilization. Instead, it was found that d-lactate utilization in P. putida KT2440 proceeds via a multidomain NAD-independent d-lactate dehydrogenase with a C-terminal domain containing several Fe-S cluster-binding motifs (Fe-S d-iLDH) and glycolate oxidase, which is widely distributed in various microorganisms. Both Fe-S d-iLDH and glycolate oxidase were identified to be membrane-bound proteins. Neither Fe-S d-iLDH nor glycolate oxidase is constitutively expressed but both of them can be induced by either enantiomer of lactate in P. putida KT2440. This study shows a case in which an environmental microbe contains two types of enzymes specific for d-lactate utilization.
Collapse
Affiliation(s)
- Yingxin Zhang
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Tianyi Jiang
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, People's Republic of China
| | - Binbin Sheng
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Yangdanyu Long
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
6
|
Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans. Appl Environ Microbiol 2014; 80:7134-41. [PMID: 25217009 DOI: 10.1128/aem.01864-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/04/2014] [Indexed: 11/20/2022] Open
Abstract
Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production-NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)-were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6.
Collapse
|
7
|
Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity. Protein Expr Purif 2014; 95:219-25. [DOI: 10.1016/j.pep.2013.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 01/26/2023]
|
8
|
Zahoor A, Lindner SN, Wendisch VF. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol J 2012; 3:e201210004. [PMID: 24688664 PMCID: PMC3962153 DOI: 10.5936/csbj.201210004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/19/2012] [Accepted: 10/24/2012] [Indexed: 01/05/2023] Open
Abstract
Corynebacterium glutamicum is well known as the amino acid-producing workhorse of fermentation industry, being used for multi-million-ton scale production of glutamate and lysine for more than 60 years. However, it is only recently that extensive research has focused on engineering it beyond the scope of amino acids. Meanwhile, a variety of corynebacterial strains allows access to alternative carbon sources and/or allows production of a wide range of industrially relevant compounds. Some of these efforts set new standards in terms of titers and productivities achieved whereas others represent a proof-of-principle. These achievements manifest the position of C. glutamicum as an important industrial microorganism with capabilities far beyond the traditional amino acid production. In this review we focus on the state of the art of metabolic engineering of C. glutamicum for utilization of alternative carbon sources, (e.g. coming from wastes and unprocessed sources), and construction of C. glutamicum strains for production of new products such as diamines, organic acids and alcohols
Collapse
Affiliation(s)
- Ahmed Zahoor
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, 33615 Bielefeld, Germany
| | - Steffen N Lindner
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, 33615 Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, 33615 Bielefeld, Germany
| |
Collapse
|
9
|
Gao C, Jiang T, Dou P, Ma C, Li L, Kong J, Xu P. NAD-independent L-lactate dehydrogenase is required for L-lactate utilization in Pseudomonas stutzeri SDM. PLoS One 2012; 7:e36519. [PMID: 22574176 PMCID: PMC3344892 DOI: 10.1371/journal.pone.0036519] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 04/03/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Various Pseudomonas strains can use L-lactate as their sole carbon source for growth. However, the L-lactate-utilizing enzymes in Pseudomonas have never been identified and further studied. METHODOLOGY/PRINCIPAL FINDINGS An NAD-independent L-lactate dehydrogenase (L-iLDH) was purified from the membrane fraction of Pseudomonas stutzeri SDM. The enzyme catalyzes the oxidation of L-lactate to pyruvate by using FMN as cofactor. After cloning its encoding gene (lldD), L-iLDH was successfully expressed, purified from a recombinant Escherichia coli strain, and characterized. An lldD mutant of P. stutzeri SDM was constructed by gene knockout technology. This mutant was unable to grow on L-lactate, but retained the ability to grow on pyruvate. CONCLUSIONS/SIGNIFICANCE It is proposed that L-iLDH plays an indispensable function in Pseudomonas L-lactate utilization by catalyzing the conversion of L-lactate into pyruvate.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Tianyi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Peipei Dou
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Lixiang Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products. Appl Microbiol Biotechnol 2011; 93:95-106. [DOI: 10.1007/s00253-011-3686-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/22/2011] [Accepted: 10/28/2011] [Indexed: 11/25/2022]
|