1
|
Sharma G, Sharma N, Ohri P. Harmonizing hydrogen sulfide and nitric oxide: A duo defending plants against salinity stress. Nitric Oxide 2024; 144:1-10. [PMID: 38185242 DOI: 10.1016/j.niox.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
In the face of escalating salinity stress challenges in agricultural systems, this review article delves into the harmonious partnership between hydrogen sulfide (H2S) and nitric oxide (NO) as they collectively act as formidable defenders of plants. Once considered as harmful pollutants, H2S and NO have emerged as pivotal gaseous signal molecules that profoundly influence various facets of plant life. Their roles span from enhancing seed germination to promoting overall growth and development. Moreover, these molecules play a crucial role in bolstering stress tolerance mechanisms and maintaining essential plant homeostasis. This review navigates through the intricate signaling pathways associated with H2S and NO, elucidating their synergistic effects in combating salinity stress. We explore their potential to enhance crop productivity, thereby ensuring food security in saline-affected regions. In an era marked by pressing environmental challenges, the manipulation of H2S and NO presents promising avenues for sustainable agriculture, offering a beacon of hope for the future of global food production.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
2
|
Wang Y, Hu C, Wang X, Shi G, Lei Z, Tang Y, Zhang H, Wuriyanghan H, Zhao X. Selenium-induced rhizosphere microorganisms endow salt-sensitive soybeans with salt tolerance. ENVIRONMENTAL RESEARCH 2023; 236:116827. [PMID: 37544471 DOI: 10.1016/j.envres.2023.116827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Soil salinization is a prevalent abiotic stress that adversely affects soybean production. Rhizosphere microorganisms have been shown to modulate the rhizosphere microenvironment of plants, leading to improved stress resistance. Selenium is known to optimize the rhizosphere microbial community, however, it remains uncertain whether selenium-induced rhizosphere microorganisms can enhance plant salt tolerance. In this study, we selected two soybean varieties, including salt-tolerant and salt-sensitive, and conducted pot experiments to explore the impact of selenium application on the structure and composition of the rhizosphere microbial community of soybean plants under salt stress. Four salt-tolerant bacteria from salt-tolerant soybean rhizosphere soil fertilized with selenium under salt stress were isolated, and their effects on improving salt tolerance in salt-sensitive soybean were also investigated. Our results showed that selenium application enhanced soybean salt tolerance by optimizing the structure of the plant rhizosphere microbial community and improving soil enzyme activities in both salt-tolerant and salt-sensitive varieties. Moreover, compared with salt-only treatment, inoculation of the four bacteria led to a significant increase in the plant height (7.2%-19.8%), aboveground fresh weight (57.3%-73.5%), SPAD value (8.4%-30.3%), and K+ content (4.5%-12.1%) of salt-sensitive soybean, while reducing the content of proline (84.5%-94%), MDA (26.5%-49.3%), and Na+ (7.1%-21.3%). High-throughput sequencing of the 16 S ribosomal RNA gene indicated that the four bacteria played a crucial role in changing the community structure of salt-sensitive soybean and mitigating the effects of salt stress. This study highlighted the importance of selenium combined with beneficial microorganisms in the plant rhizosphere in alleviating salinity stress.
Collapse
Affiliation(s)
- Yin Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Forage and Endemic Crop Biology (Inner Mongolia University), Ministry of Education, 49 Xilinguole Road, Hohhot, 010020, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guangyu Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biology (Inner Mongolia University), Ministry of Education, 49 Xilinguole Road, Hohhot, 010020, China.
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
The Role of Nitric Oxide in Plant Responses to Salt Stress. Int J Mol Sci 2022; 23:ijms23116167. [PMID: 35682856 PMCID: PMC9181674 DOI: 10.3390/ijms23116167] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The gas nitric oxide (NO) plays an important role in several biological processes in plants, including growth, development, and biotic/abiotic stress responses. Salinity has received increasing attention from scientists as an abiotic stressor that can seriously harm plant growth and crop yields. Under saline conditions, plants produce NO, which can alleviate salt-induced damage. Here, we summarize NO synthesis during salt stress and describe how NO is involved in alleviating salt stress effects through different strategies, including interactions with various other signaling molecules and plant hormones. Finally, future directions for research on the role of NO in plant salt tolerance are discussed. This summary will serve as a reference for researchers studying NO in plants.
Collapse
|
4
|
Yi Y, Shan Y, Liu S, Yang Y, Liu Y, Yin Y, Hou Z, Luan P, Li R. Antagonistic Strain Bacillus amyloliquefaciens XZ34-1 for Controlling Bipolaris sorokiniana and Promoting Growth in Wheat. Pathogens 2021; 10:pathogens10111526. [PMID: 34832680 PMCID: PMC8619621 DOI: 10.3390/pathogens10111526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022] Open
Abstract
Common root rot, caused by Bipolaris sorokiniana, is one of the most prevalent diseases of wheat and has led to major declines in wheat yield and quality worldwide. Here, strain XZ34-1 was isolated from soil and identified as Bacillus amyloliquefaciens based on the morphological, physiological, biochemical characteristics and 16S rDNA sequence. Culture filtrate (CF) of strain XZ34-1 showed a high inhibition rate against B.sorokiniana and had a broad antifungal spectrum. It also remarkably inhibited the mycelial growth and spore germination of B. sorokiniana. In pot control experiments, the incidence and disease index of common root rot in wheat seedlings were decreased after treatment with CF, and the biological control efficacy was significant, up to 78.24%. Further studies showed XZ34-1 could produce antifungal bioactive substances and had the potential of promoting plant growth. Lipopeptide genes detection with PCR indicated that strain XZ34-1 may produce lipopeptides. Furthermore, activities of defense-related enzymes were enhanced in wheat seedlings after inoculation with B.sorokiniana and treatment with CF, which showed induced resistance could be produced in wheat to resist pathogens. These results reveal that strain XZ34-1 is a promising candidate for application as a biological control agent against B.sorokiniana.
Collapse
Affiliation(s)
- Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
- Correspondence: (Y.Y.); (R.L.); Tel.: +86-371-67756513 (Y.Y. & R.L.)
| | - Youtian Shan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Shifei Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
| | - Yanhui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Yang Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Yanan Yin
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Zhipeng Hou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Pengyu Luan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Ruifang Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.S.); (S.L.); (Y.Y.); (Y.L.); (Y.Y.); (Z.H.); (P.L.)
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
- Correspondence: (Y.Y.); (R.L.); Tel.: +86-371-67756513 (Y.Y. & R.L.)
| |
Collapse
|
5
|
Jamali H, Sharma A, Roohi, Srivastava AK. Biocontrol potential of
Bacillus subtilis
RH5 against sheath blight of rice caused by
Rhizoctonia solani. J Basic Microbiol 2019; 60:268-280. [DOI: 10.1002/jobm.201900347] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/21/2019] [Accepted: 11/11/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Hena Jamali
- ICAR National Bureau of Agriculturally Important Microorganisms Mau Uttar Pradesh India
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| | - Anjney Sharma
- ICAR National Bureau of Agriculturally Important Microorganisms Mau Uttar Pradesh India
| | - Roohi
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| | - Alok Kumar Srivastava
- ICAR National Bureau of Agriculturally Important Microorganisms Mau Uttar Pradesh India
| |
Collapse
|
6
|
Khan MA, Asaf S, Khan AL, Adhikari A, Jan R, Ali S, Imran M, Kim KM, Lee IJ. Halotolerant Rhizobacterial Strains Mitigate the Adverse Effects of NaCl Stress in Soybean Seedlings. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9530963. [PMID: 31886270 PMCID: PMC6925695 DOI: 10.1155/2019/9530963] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Salinity is one of the major abiotic constraints that hinder health and quality of crops. Conversely, halotolerant plant growth-promoting rhizospheric (PGPR) bacteria are considered biologically safe for alleviating salinity stress. RESULTS We isolated halotolerant PGPR strains from the rhizospheric soil of Artemisia princeps, Chenopodium ficifolium, Echinochloa crus-galli, and Oenothera biennis plants; overall, 126 strains were isolated. The plant growth-promoting traits of these isolates were studied by inoculating them with the soil used to grow soybean plants under normal and salt stress (NaCl; 200 mM) conditions. The isolates identified as positive for growth-promoting activities were subjected to molecular identification. Out of 126 isolates, five strains-Arthrobacter woluwensis (AK1), Microbacterium oxydans (AK2), Arthrobacter aurescens (AK3), Bacillus megaterium (AK4), and Bacillus aryabhattai (AK5)-were identified to be highly tolerant to salt stress and demonstrated several plant growth-promoting traits like increased production of indole-3-acetic acid (IAA), gibberellin (GA), and siderophores and increased phosphate solubilization. These strains were inoculated in the soil of soybean plants grown under salt stress (NaCl; 200 mM) and various physiological and morphological parameters of plants were studied. The results showed that the microbial inoculation elevated the antioxidant (SOD and GSH) level and K+ uptake and reduced the Na+ ion concentration. Moreover, inoculation of these microbes significantly lowered the ABA level and increased plant growth attributes and chlorophyll content in soybean plants under 200 mM NaCl stress. The salt-tolerant gene GmST1 was highly expressed with the highest expression of 42.85% in AK1-treated plants, whereas the lowest expression observed was 13.46% in AK5-treated plants. Similarly, expression of the IAA regulating gene GmLAX3 was highly depleted in salt-stressed plants by 38.92%, which was upregulated from 11.26% to 43.13% upon inoculation with the microorganism. CONCLUSION Our results showed that the salt stress-resistant microorganism used in these experiments could be a potential biofertilizer to mitigate the detrimental effects of salt stress in plants via regulation of phytohormones and gene expression.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Arjun Adhikari
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Rahmatullah Jan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajid Ali
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
7
|
Sodium nitroprusside enhances regeneration and alleviates salinity stress in soybean [Glycine max (L.) Merrill]. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Li N, Kang S. Do volatile compounds produced by Fusarium oxysporum and Verticillium dahliae affect stress tolerance in plants? Mycology 2018; 9:166-175. [PMID: 30181923 PMCID: PMC6115880 DOI: 10.1080/21501203.2018.1448009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/01/2018] [Indexed: 11/01/2022] Open
Abstract
Volatile compounds (VCs) produced by diverse microbes seem to affect plant growth, development and/or stress tolerance. We investigated how VCs released by soilborne fungi Fusarium oxysporum and Verticillium dahliae affect Arabidopsis thaliana responses to abiotic and biotic stresses. Under salt stress, VCs from both fungi helped its growth and increased chlorophyll content. However, in contrast to wild-type A. thaliana (Col-0), V. dahliae VCs failed to increase leaf surface area in auxin signalling mutants aux1-7, tir1-1 and axr1-3. Compared to wild-type Col-0, the degree of lateral root density enhanced by V. dahliae VCs in these mutants was also reduced. Consistent with the involvement of auxin signalling in fungal VC-mediated salt torelance, A. thaliana line carrying DR5::GUS displayed increased auxin accumulation in root apex upon exposure to V. dahliae VCs, and 1-naphthylphthalamic acid, an auxin transport inhibitor, adversely affected V. dahliae VC-mediated salt tolerance. F. oxysporum VCs induced the expression of PR1 but not PDF1.2 in A. thaliana lines containing PR1::GUS and PFD1.2::GUS. When challenged with Pseudomonas syringae after the exposure to F. oxysporum VCs, A. thaliana showed reduced disease symptoms. However, the number of bacterial cells in F. oxysporum VC-treated plants was not significantly different from that in control plants.
Collapse
Affiliation(s)
- Ningxiao Li
- Intercollege Graduate Degree Program in Plant Biology, University Park, PA, The Pennsylvania State University, USA
| | - Seogchan Kang
- Intercollege Graduate Degree Program in Plant Biology, University Park, PA, The Pennsylvania State University, USA.,Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
9
|
Nitric Oxide as a Signaling Molecule in Plant-Bacterial Interactions. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK. PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 2016; 56:1274-1288. [PMID: 27439917 DOI: 10.1002/jobm.201600188] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022]
Abstract
Increasing evidence shows that nitric oxide (NO), a typical signaling molecule plays important role in development of plant and in bacteria-plant interaction. In the present study, we tested the effect of sodium nitroprusside (SNP)-a nitric oxide donor, on bacterial metabolism and its role in establishment of PGPR-plant interaction under salinity condition. In the present study, we adopted methods namely, biofilm formation assay, GC-MS analysis of bacterial volatiles, chemotaxis assay of root exudates (REs), measurement of electrolyte leakage and lipid peroxidation, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for gene expression. GC-MS analysis revealed that three new volatile organic compounds (VOCs) were expressed after treatment with SNP. Two VOCs namely, 4-nitroguaiacol and quinoline were found to promote soybean seed germination under 100 mM NaCl stress. Chemotaxis assay revealed that SNP treatment, altered root exudates profiling (SS-RE), found more attracted to Pseudomonas simiae bacterial cells as compared to non-treated root exudates (S-RE) under salt stress. Expression of Peroxidase (POX), catalase (CAT), vegetative storage protein (VSP), and nitrite reductase (NR) genes were up-regulated in T6 treatment seedlings, whereas, high affinity K+ transporter (HKT1), lipoxygenase (LOX), polyphenol oxidase (PPO), and pyrroline-5-carboxylate synthase (P5CS) genes were down-regulated under salt stress. The findings suggest that NO improves the efficiency and establishment of PGPR strain in the plant environment during salt condition. This strategy may be applied on soybean plants to increase their growth during salinity stress.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Sarita Kumari
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Shekhar Jain
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Ajit Varma
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Narendra Tuteja
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Devendra Kumar Choudhary
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| |
Collapse
|
11
|
Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK. Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.). World J Microbiol Biotechnol 2015; 32:4. [PMID: 26712619 DOI: 10.1007/s11274-015-1974-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/27/2015] [Indexed: 11/27/2022]
Abstract
The present study focused on the overproducing mutant of a plant growth promoting rhizobacterium (PGPR) Pseudomonas simiae strain AU (MTCC-12057) for significant drought tolerance in mung bean plants. Five mutants namely AU-M1, AU-M2, AU-M3, AU-M4 and AU-M5 were made after treatment of wild type strain with N-methyl-N-nitro-N-nitrosoguanidine. Mutant strain AU-M4 was recorded for enhanced ACC deaminase (ACC-D) activity, indole acetic acid (IAA) production and inorganic phosphate (Pi) solubilization compared to wild strain and other four mutant strains under drought condition. AU-M4 showed higher phosphate solubilization index (8.17) together with higher ACC-D activity (98 nmol/mg/h) and IAA concentration (69.35 µg/ml) compared with the wild type P. simiae strain AU ACC-D activity (79 nmol/mg/h) and IAA concentration (38.98 µg/ml) respectively. In this report, we investigated the effect of both wild and mutant type bacterial strain on mung bean plants under drought stress. Results showed that mutant AU-M4 and wild type strain AU inoculated plants exhibited superior tolerance against drought stress, as shown by their enhanced plant biomass (fresh weight), higher water content, higher proline accumulation and lower osmotic stress injury. Mutant AU-M4 and wild strain AU inoculated plants reduced the ethylene level by 59 and 45% respectively, compared to the control under stress condition. Furthermore, bacterial inoculated plants showed enhanced induced systemic drought tolerance by reducing stomata size and net photosynthesis resulting higher water content in mung bean plants that may help in survival of plants during drought condition. To mitigate the effects of drought stress, use of PGPR will be needed to ensure sufficient production of food from crop plants. Taking current leads available, concerted future research is needed in this area, particularly on field evaluation with application of potential microorganisms.
Collapse
Affiliation(s)
- Sarita Kumari
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science & Technology, Lakshmangarh, Sikar, Rajasthan, 332311, India
- Amity Institute of Microbial Technology (AIMT), Block 'E-3', 4th Floor, Amity University Campus, Sector-125, Gautam Buddha Nagar, Noida, UP, 201303, India
| | - Anukool Vaishnav
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science & Technology, Lakshmangarh, Sikar, Rajasthan, 332311, India
- Amity Institute of Microbial Technology (AIMT), Block 'E-3', 4th Floor, Amity University Campus, Sector-125, Gautam Buddha Nagar, Noida, UP, 201303, India
| | - Shekhar Jain
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science & Technology, Lakshmangarh, Sikar, Rajasthan, 332311, India
- Amity Institute of Microbial Technology (AIMT), Block 'E-3', 4th Floor, Amity University Campus, Sector-125, Gautam Buddha Nagar, Noida, UP, 201303, India
| | - Ajit Varma
- Amity Institute of Microbial Technology (AIMT), Block 'E-3', 4th Floor, Amity University Campus, Sector-125, Gautam Buddha Nagar, Noida, UP, 201303, India
| | - Devendra Kumar Choudhary
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science & Technology, Lakshmangarh, Sikar, Rajasthan, 332311, India.
- Amity Institute of Microbial Technology (AIMT), Block 'E-3', 4th Floor, Amity University Campus, Sector-125, Gautam Buddha Nagar, Noida, UP, 201303, India.
| |
Collapse
|
12
|
Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 2015; 119:539-51. [PMID: 26042866 DOI: 10.1111/jam.12866] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/23/2015] [Accepted: 05/23/2015] [Indexed: 12/28/2022]
Abstract
AIMS Plant root-associated rhizobacteria elicit plant immunity referred to as induced systemic tolerance (IST) against multiple abiotic stresses. Among multibacterial determinants involved in IST, the induction of IST and promotion of growth by putative bacterial volatile compounds (VOCs) is reported in the present study. METHODS AND RESULTS To characterize plant proteins induced by putative bacterial VOCs, proteomic analysis was performed by MALDI-MS/MS after exposure of soybean seedlings to a new strain of plant growth promoting rhizobacteria (PGPR) Pseudomonas simiae strain AU. Furthermore, expression analysis by Western blotting confirmed that the vegetative storage protein (VSP), gamma-glutamyl hydrolase (GGH) and RuBisCo large chain proteins were significantly up-regulated by the exposure to AU strain and played a major role in IST. VSP has preponderant roles in N accumulation and mobilization, acid phosphatase activity and Na(+) homeostasis to sustain plant growth under stress condition. More interestingly, plant exposure to the bacterial strain significantly reduced Na(+) and enhanced K(+) and P content in root of soybean seedlings under salt stress. In addition, high accumulation of proline and chlorophyll content also provided evidence of protection against osmotic stress during the elicitation of IST by bacterial exposure. CONCLUSIONS The present study reported for the first time that Ps. simiae produces a putative volatile blend that can enhance soybean seedling growth and elicit IST against 100 mmol l(-1) NaCl stress condition. SIGNIFICANCE AND IMPACT OF THE STUDY The identification of such differentially expressed proteins provide new targets for future studies that will allow assessment of their physiological roles and significance in the response of glycophytes to stresses. Further work should uncover more about the chemical side of VOC compounds and a detailed study about their molecular mechanism responsible for plant growth.
Collapse
Affiliation(s)
- A Vaishnav
- Amity Institute of Microbial Technology (AIMT), Noida, India
| | - S Kumari
- Amity Institute of Microbial Technology (AIMT), Noida, India
| | - S Jain
- Amity Institute of Microbial Technology (AIMT), Noida, India
| | - A Varma
- Amity Institute of Microbial Technology (AIMT), Noida, India
| | - D K Choudhary
- Amity Institute of Microbial Technology (AIMT), Noida, India
| |
Collapse
|
13
|
Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee IJ. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:115-124. [PMID: 25270162 DOI: 10.1016/j.plaphy.2014.09.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/01/2014] [Indexed: 05/18/2023]
Abstract
The physiological changes in tolerant soybean plants under salt and drought stress conditions with Pseudomonas putida H-2-3 were investigated. A bacterial isolate H-2-3 was isolated from soil and identified as Pseudomonas putida H-2-3 by 16S rDNA sequences. The treatment of P. putida H-2-3 significantly increased the length, fresh and dry weight of shoot and chlorophyll content in gibberellins (GAs) deficient mutant Waito-c rice seedlings over the control, it might be the presence of GA1, GA4, GA9 and GA20. The soybean plant growth was retarded in salt (120 mM sodium chloride) and drought (15% polyethylene glycol) stress conditions at 10 days treatments, while P. putida H-2-3 effectively enhanced the shoot length and fresh weight of plants suffered at salt and drought stress. The chlorophyll content was lower in abiotic stress conditions and bacterial inoculant P. putida H-2-3 mitigated the stress effects by an evidence of higher quantity of chlorophyll content in plants exposed to salt and drought. The stress hormonal analysis revealed that individual treatment of P. putida H-2-3, salt and drought significantly enhanced the abscisic acid and salicylic acid content than their control. P. putida H-2-3 applied to salt and drought stressed plants showed a lower level of abscisic acid and salicylic acid and a higher level of jasmonic acid content. Under stress condition induced by salt and drought in plants expressed higher level of total polyphenol, superoxide dismutase and radical scavenging activity and no significant changes in flavonoids. The bio-inoculant, P. putida H-2-3 modulated those antioxidants by declining superoxide dismutase, flavonoids and radical scavenging activity. P. putida H-2-3 induced tolerance against abiotic stress was confirmed by a reduction of Na content in abiotic stressed plants. The results suggest that P. putida H-2-3 application reprograms the chlorophyll, stress hormones and antioxidants expression in abiotic stress affected soybean plant and improves their growth under stress environment.
Collapse
Affiliation(s)
- Sang-Mo Kang
- School of Plant Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | - Abdul Latif Khan
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| | - Min-Ji Kim
- School of Plant Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jae-Man Park
- School of Plant Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Bo-Ra Kim
- School of Plant Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Dong-Hyun Shin
- School of Plant Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - In-Jung Lee
- School of Plant Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
14
|
Liu CW, Chang TS, Hsu YK, Wang AZ, Yen HC, Wu YP, Wang CS, Lai CC. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Proteomics 2014; 14:1759-75. [PMID: 24841874 DOI: 10.1002/pmic.201300276] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 04/01/2014] [Accepted: 05/15/2014] [Indexed: 11/11/2022]
Abstract
Growth and productivity of rice (Oryza sativa L.) are severely affected by salinity. Understanding the mechanisms that protect rice and other important cereal crops from salt stress will help in the development of salt-stress-tolerant strains. In this study, rice seedlings of the same genetic species with various salt tolerances were studied. We first used 2DE to resolve the expressed proteome in rice roots and leaves and then used nanospray liquid chromatography/tandem mass spectrometry to identify the differentially expressed proteins in rice seedlings after salt treatment. The 2DE assays revealed that there were 104 differentially expressed protein spots in rice roots and 59 in leaves. Then, we identified 83 proteins in rice roots and 61 proteins in rice leaves by MS analysis. Functional classification analysis revealed that the differentially expressed proteins from roots could be classified into 18 functional categories while those from leaves could be classified into 11 functional categories. The proteins from rice seedlings that most significantly contributed to a protective effect against increased salinity were cysteine synthase, adenosine triphosphate synthase, quercetin 3-O-methyltransferase 1, and lipoxygenase 2. Further analysis demonstrated that the primary mechanisms underlying the ability of rice seedlings to tolerate salt stress were glycolysis, purine metabolism, and photosynthesis. Thus, we suggest that differentially expressed proteins may serve as marker group for the salt tolerance of rice.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|