1
|
McKnight MM, Neufeld JD. Comammox Nitrospira among dominant ammonia oxidizers within aquarium biofilter microbial communities. Appl Environ Microbiol 2024; 90:e0010424. [PMID: 38899882 PMCID: PMC11267875 DOI: 10.1128/aem.00104-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Nitrification by aquarium biofilters transforms ammonia waste (NH3/NH4+) to less toxic nitrate (NO3-) via nitrite (NO2-). Prior to the discovery of complete ammonia-oxidizing ("comammox" or CMX) Nitrospira, previous research revealed that ammonia-oxidizing archaea (AOA) dominated over ammonia-oxidizing bacteria (AOB) in freshwater aquarium biofilters. Here, we profiled aquarium biofilter microbial communities and quantified the abundance of all three known ammonia oxidizers using 16S rRNA gene sequencing and quantitative PCR (qPCR), respectively. Biofilter and water samples were each collected from representative residential and commercial freshwater and saltwater aquaria. Distinct biofilter microbial communities were associated with freshwater and saltwater biofilters. Comammox Nitrospira amoA genes were detected in all 38 freshwater biofilter samples (average CMX amoA genes: 2.2 × 103 ± 1.5 × 103 copies/ng) and dominant in 30, whereas AOA were present in 35 freshwater biofilter samples (average AOA amoA genes: 1.1 × 103 ± 2.7 × 103 copies/ng) and only dominant in 7 of them. The AOB were at relatively low abundance within biofilters (average of 3.2 × 101 ± 1.1 × 102 copies of AOB amoA genes/ng of DNA), except for the aquarium with the highest ammonia concentration. For saltwater biofilters, AOA or AOB were differentially abundant, with no comammox Nitrospira detected. Additional sequencing of Nitrospira amoA genes revealed differential distributions, suggesting niche adaptation based on water chemistry (e.g., ammonia, carbonate hardness, and alkalinity). Network analysis of freshwater microbial communities demonstrated positive correlations between nitrifiers and heterotrophs, suggesting metabolic and ecological interactions within biofilters. These results demonstrate that comammox Nitrospira plays a previously overlooked, but important role in home aquarium biofilter nitrification. IMPORTANCE Nitrification is a crucial process that converts toxic ammonia waste into less harmful nitrate that occurs in aquarium biofilters. Prior research found that ammonia-oxidizing archaea (AOA) were dominant over ammonia-oxidizing bacteria (AOB) in freshwater aquarium biofilters. Our study profiled microbial communities of aquarium biofilters and quantified the abundance of all currently known groups of aerobic ammonia oxidizers. The findings reveal that complete ammonia-oxidizing (comammox) Nitrospira were present in all freshwater aquarium biofilter samples in high abundance, challenging our previous understanding of aquarium nitrification. We also highlight niche adaptation of ammonia oxidizers based on salinity. The network analysis of freshwater biofilter microbial communities revealed significant positive correlations among nitrifiers and other community members, suggesting intricate interactions within biofilter communities. Overall, this study expands our understanding of nitrification in aquarium biofilters, emphasizes the role of comammox Nitrospira, and highlights the value of aquaria as microcosms for studying nitrifier ecology.
Collapse
Affiliation(s)
| | - Josh D. Neufeld
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Liu W, Li J, Liu T, Zheng M, Meng J, Li J. Temperature-resilient superior performances by coupling partial nitritation/anammox and iron-based denitrification with granular formation. WATER RESEARCH 2024; 254:121424. [PMID: 38460226 DOI: 10.1016/j.watres.2024.121424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Partial nitritation-anammox (PN/A), an energy-neutral process, is widely employed in the treatment of nitrogen-rich wastewater. However, the intrinsic nitrate accumulation limits the total nitrogen (TN) removal, and the practical application of PN/A continues to face a significant challenge at low temperatures (<15 °C). Here, an integrated partial nitritation-anammox and iron-based denitrification (PNAID) system was developed to address the concern. Two up-flow bioreactors were set up and operated for 400 days, with one as the control group and the other as the experiment group with the addition of Fe0. In comparison to the control group, the experiment group with the Fe0 supplement showed better nitrogen removal during the entire course of the experiment at different temperature levels. Specifically, the TN removal efficiency of the control group decreased from 82.9 % to 53.9 % when the temperature decreased from 30 to 12 °C, while in stark contrast, the experiment group consistently achieved 80 % of TN removal in the same condition. Apart from the enhanced nitrogen removal, the experiment group also exhibited better phosphorus removal (10.6 % versus 74.1 %) and organics removal (49.5 % versus 65.1 %). The enhanced and resilient nutrient removal performance of the proposed integrated process under low temperatures appeared to be attributed to the compact structure of granules and the increased microbial metabolism with Fe0 supplement, elucidated by a comprehensive analysis including microbial-specific activity, apparent activation energy, characteristics of granular sludge, and metagenomic sequencing. These results clearly confirmed that Fe0 supplement not only improved nitrogen removal of PN/A process, but also conferred a certain degree of robustness to the system in the face of temperature fluctuations.
Collapse
Affiliation(s)
- Wenbin Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Tao Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Murakami C, Tanaka AR, Sato Y, Morimoto K. Buffer-free CAS assay using a diluted growth medium efficiently detects siderophore production and microbial growth. Biometals 2024; 37:223-232. [PMID: 37848652 DOI: 10.1007/s10534-023-00544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Siderophores are iron chelators and low-molecular-weight compounds secreted by various microorganisms under low-iron conditions. Many microorganisms produce siderophores in the natural environment as iron is an essential element for many of them. CAS assays are widely used to detect siderophores in cultures of various microorganisms; however, it is necessary to improve their sensitivity for the efficient application to fastidious microorganisms. We developed a simple, high-throughput CAS assay employing a buffer-free CAS reagent and diluted growth medium (10% dR2A) in a 96-well microplate. Using a diluted growth medium in agar plates suitable for iron-restricted conditions supported siderophore production by microorganisms from activated sludge. A buffer-free CAS reagent combined with a diluted growth medium revealed that these microorganisms tended to produce more siderophores or iron chelators than microorganisms under iron-rich conditions. Moreover, this buffer-free CAS assay easily and efficiently detected not only siderophore production but also the growth of fastidious microorganisms.
Collapse
Affiliation(s)
- Chiho Murakami
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Hiroshima City, Hiroshima Prefecture, 731-0153, Japan.
| | - Arowu R Tanaka
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Hiroshima City, Hiroshima Prefecture, 731-0153, Japan
| | - Yuichiro Sato
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Hiroshima City, Hiroshima Prefecture, 731-0153, Japan
| | - Kinjiro Morimoto
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Hiroshima City, Hiroshima Prefecture, 731-0153, Japan
| |
Collapse
|
4
|
Martocello DE, Wankel SD. Physiological Influence of Fe and Cu Availability on Nitrogen Isotope Fractionation during Ammonia Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:421-431. [PMID: 38147309 DOI: 10.1021/acs.est.3c05964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Microbially mediated cycling processes play central roles in regulating the speciation and availability of nitrogen, a vital nutrient with wide implications for agriculture, water quality, wastewater treatment, ecosystem health, and climate change. Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by bacteria (AOB) and archaea (AOA) that require the trace metal micronutrients copper (Cu) and iron (Fe) for growth and metabolic catalysis. While stable isotope analyses for constraining nitrogen cycling are commonly used, it is unclear whether metal availability may modulate expression of stable isotope fractionation during ammonia oxidation, by varying growth or through regulation of metabolic metalloenzymes. We present the first study examining the influence of Fe and Cu availability on the kinetic nitrogen isotope effect in ammonia oxidation (15εAO). We report a general independence of 15εAO from the growth rate in AOB, except at a low temperature (10 °C). With AOA Nitrosopumilus maritimus SCM1, however, 15εAO decreases nonlinearly at lower oxidation rates. We examine assumptions involved in the interpretation of 15εAO values and suggest these dynamics may arise from physiological constraints that push the system toward isotopic equilibrium. These results suggest important links between isotope fractionation and environmental constraints on physiology in these key N cycling microorganisms.
Collapse
Affiliation(s)
- Donald E Martocello
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Scott D Wankel
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
5
|
Mehrani MJ, Kowal P, Sobotka D, Godzieba M, Ciesielski S, Guo J, Makinia J. The coexistence and competition of canonical and comammox nitrite oxidizing bacteria in a nitrifying activated sludge system - Experimental observations and simulation studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161084. [PMID: 36565884 DOI: 10.1016/j.scitotenv.2022.161084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The second step of nitrification can be mediated by nitrite oxidizing bacteria (NOB), i.e. Nitrospira and Nitrobacter, with different characteristics in terms of the r/K theory. In this study, an activated sludge model was developed to account for competition between two groups of canonical NOB and comammox bacteria. Heterotrophic denitrification on soluble microbial products was also incorporated into the model. Four 5-week washout trials were carried out at dissolved oxygen-limited conditions for different temperatures (12 °C vs. 20 °C) and main substrates (NH4+-N vs. NO2--N). Due to the aggressive reduction of solids retention time (from 4 to 1 d), the biomass concentrations were continuously decreased and stabilized after two weeks at a level below 400 mg/L. The collected experimental data (N species, biomass concentrations, and microbiological analyses) were used for model calibration and validation. In addition to the standard predictions (N species and biomass), the newly developed model also accurately predicted two microbiological indicators, including the relative abundance of comammox bacteria as well as nitrifiers to heterotrophs ratio. Sankey diagrams revealed that the relative contributions of specific microbial groups to N conversion pathways were significantly shifted during the trial. The contribution of comammox did not exceed 5 % in the experiments with both NH4+-N and NO2--N substrates. This study contributes to a better understanding of the novel autotrophic N removal processes (e.g. deammonification) with nitrite as a central intermediate product.
Collapse
Affiliation(s)
- Mohamad-Javad Mehrani
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Przemyslaw Kowal
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Martyna Godzieba
- Department of Environmental Biotechnology, Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Sloneczna 45G, 10-719 Olsztyn, Poland
| | - Slawomir Ciesielski
- Department of Environmental Biotechnology, Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Sloneczna 45G, 10-719 Olsztyn, Poland
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
6
|
Liu B, Lin W, Huang S, Sun Q, Yin H, Luo J. Removal of Mg 2+ inhibition benefited the growth and isolation of ammonia-oxidizing bacteria: An inspiration from bacterial interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155923. [PMID: 35577082 DOI: 10.1016/j.scitotenv.2022.155923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Ammonia-oxidizing bacteria (AOB) play an important role in the global nitrogen cycle and have broad applications in the nitrogen removal from wastewater. However, the AOB species are sensitive to environmental factors and usually form tight relationships with other microbes, making the AOB isolation and maintenance are difficult and time-consuming. In this study, the relationship that occurred between AOB and their bacterial partners was found to be able to improve the ammonia oxidation; during the co-cultivation, the magnesium ions (Mg2+) with removal rate as high as 36.7% was removed from culture medium by the concomitant bacterial species, which was regarded as the main reason for improving ammonia oxidation. During the pure cultivation of AOB isolate, when the concentration of Mg2+ reduced to low levels, the ammonia-oxidizing activity was more than 5 times and the amoA gene expression was more than 12 times higher than that grown in the initial culture medium. Based on a newly designed culture medium, the ammonia oxidation of AOB isolate grown in liquid culture was significantly promoted and the visible AOB colonies with much more number and larger diameter were observed to form on agar plates. With the addition of high concentration of calcium carbonate (CaCO3), AOB colonies could be easily and specifically identified by following the hydrolytic zones that formed around AOB colonies. Another AOB isolates were successively obtained from different samples and within a short time, suggesting the feasibility and effectivity of this culture medium and strategy on the AOB isolation from environments.
Collapse
Affiliation(s)
- Buchan Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Weitie Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; MOE Joint International Research Laboratory of Synthetic Biology and Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Shenxi Huang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Qiuyun Sun
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Hao Yin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jianfei Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; MOE Joint International Research Laboratory of Synthetic Biology and Medicine, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Effects of aquatic nitrogen pollution on particle-attached ammonia-oxidizing bacteria in urban freshwater mesocosms. World J Microbiol Biotechnol 2022; 38:64. [DOI: 10.1007/s11274-022-03251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/16/2022] [Indexed: 11/27/2022]
|
8
|
Murakami C, Machida K, Nakao Y, Kindaichi T, Ohashi A, Aoi Y. Mutualistic relationship between Nitrospira and concomitant heterotrophs. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:130-137. [PMID: 34862743 PMCID: PMC9300095 DOI: 10.1111/1758-2229.13030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Nitrifying chemoautotrophs support the growth of diverse concomitant heterotrophs in natural or engineered environments by supplying organic compounds. In this study, we aimed to investigate this microbial association, especially (i) to distinguish whether the relationship between nitrifying chemoautotrophs and heterotrophs is commensal or mutualistic, and (ii) to clarify how heterotrophs promote the growth of autotrophic nitrite-oxidizing bacteria (Nitrospira). Pure cultured Nitrospira (Nitrospira sp. ND1) was employed in this study. Heterotrophs growing with metabolic by-products of Nitrospira as a sole carbon source were isolated from several environmental samples and used to test the growth-promoting activity of Nitrospira. Furthermore, liquid chromatography-mass spectrometry analysis was conducted to evaluate how heterotrophs consumed chemical compounds produced by Nitrospira and newly produced during co-cultivation. Notably, Nitrospira growth was stimulated by co-cultivation with some heterotrophs and the addition of spent media of some strains, suggesting that not only heterotrophs but also Nitrospira received benefits from their mutual co-existence. Furthermore, the data suggested that some of the growth-promoting heterotrophs provided as-yet-unidentified growth-promoting factors to Nitrospira. Overall, Nitrospira and heterotrophs thus appear to exhibit a mutualistic relationship. Such mutualistic relationships between autotrophs and heterotrophs would contribute to the stability and diversity of microbial ecosystems.
Collapse
Affiliation(s)
- Chiho Murakami
- Department of Civil and Environmental EngineeringGraduate School of Engineering Hiroshima UniversityHiroshimaJapan
- Unit of Biotechnology, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
- Institute for Sustainable Science and DevelopmentHiroshima UniversityHiroshimaJapan
| | - Koshi Machida
- Waseda Research Institute for Science and EngineeringWaseda UniversityTokyoJapan
| | - Yoichi Nakao
- Waseda Research Institute for Science and EngineeringWaseda UniversityTokyoJapan
| | - Tomonori Kindaichi
- Department of Civil and Environmental EngineeringGraduate School of Engineering Hiroshima UniversityHiroshimaJapan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental EngineeringGraduate School of Engineering Hiroshima UniversityHiroshimaJapan
| | - Yoshiteru Aoi
- Unit of Biotechnology, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
- Institute for Sustainable Science and DevelopmentHiroshima UniversityHiroshimaJapan
| |
Collapse
|
9
|
Ilgrande C, Defoirdt T, Vlaeminck SE, Boon N, Clauwaert P. Media Optimization, Strain Compatibility, and Low-Shear Modeled Microgravity Exposure of Synthetic Microbial Communities for Urine Nitrification in Regenerative Life-Support Systems. ASTROBIOLOGY 2019; 19:1353-1362. [PMID: 31657947 DOI: 10.1089/ast.2018.1981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Urine is a major waste product of human metabolism and contains essential macro- and micronutrients to produce edible microorganisms and crops. Its biological conversion into a stable form can be obtained through urea hydrolysis, subsequent nitrification, and organics removal, to recover a nitrate-enriched stream, free of oxygen demand. In this study, the utilization of a microbial community for urine nitrification was optimized with the focus for space application. To assess the role of selected parameters that can impact ureolysis in urine, the activity of six ureolytic heterotrophs (Acidovorax delafieldii, Comamonas testosteroni, Cupriavidus necator, Delftia acidovorans, Pseudomonas fluorescens, and Vibrio campbellii) was tested at different salinities, urea, and amino acid concentrations. The interaction of the ureolytic heterotrophs with a nitrifying consortium (Nitrosomonas europaea ATCC 19718 and Nitrobacter winogradskyi ATCC 25931) was also tested. Lastly, microgravity was simulated in a clinostat utilizing hardware for in-flight experiments with active microbial cultures. The results indicate salt inhibition of the ureolysis at 30 mS cm-1, while amino acid nitrogen inhibits ureolysis in a strain-dependent manner. The combination of the nitrifiers with C. necator and V. campbellii resulted in a complete halt of the urea hydrolysis process, while in the case of A. delafieldii incomplete nitrification was observed, and nitrite was not oxidized further to nitrate. Nitrate production was confirmed in all the other communities; however, the other heterotrophic strains most likely induced oxygen competition in the test setup, and nitrite accumulation was observed. Samples exposed to low-shear modeled microgravity through clinorotation behaved similarly to the static controls. Overall, nitrate production from urea was successfully demonstrated with synthetic microbial communities under terrestrial and simulated space gravity conditions, corroborating the application of this process in space.
Collapse
Affiliation(s)
- Chiara Ilgrande
- Center for Microbial Ecology and Technology, Ghent University, Gent, Belgium
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology, Ghent University, Gent, Belgium
| | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology, Ghent University, Gent, Belgium
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerpen, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent University, Gent, Belgium
| | - Peter Clauwaert
- Center for Microbial Ecology and Technology, Ghent University, Gent, Belgium
| |
Collapse
|
10
|
Keshvardoust P, Huron VAA, Clemson M, Constancias F, Barraud N, Rice SA. Biofilm formation inhibition and dispersal of multi-species communities containing ammonia-oxidising bacteria. NPJ Biofilms Microbiomes 2019; 5:22. [PMID: 31482007 PMCID: PMC6711990 DOI: 10.1038/s41522-019-0095-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/02/2019] [Indexed: 02/01/2023] Open
Abstract
Despite considerable research, the biofilm-forming capabilities of Nitrosomonas europaea are poorly understood for both mono and mixed-species communities. This study combined biofilm assays and molecular techniques to demonstrate that N. europaea makes very little biofilm on its own, and relies on the activity of associated heterotrophic bacteria to establish a biofilm. However, N. europaea has a vital role in the proliferation of mixed-species communities under carbon-limited conditions, such as in drinking water distribution systems, through the provision of organic carbon via ammonia oxidation. Results show that the addition of nitrification inhibitors to mixed-species nitrifying cultures under carbon-limited conditions disrupted biofilm formation and caused the dispersal of pre-formed biofilms. This dispersal effect was not observed when an organic carbon source, glucose, was included in the medium. Interestingly, inhibition of nitrification activity of these mixed-species biofilms in the presence of added glucose resulted in increased total biofilm formation compared to controls without the addition of nitrification inhibitors, or with only glucose added. This suggests that active AOB partially suppress or limit the overall growth of the heterotrophic bacteria. The experimental model developed here provides evidence that ammonia-oxidising bacteria (AOB) are involved in both the formation and maintenance of multi-species biofilm communities. The results demonstrate that the activity of the AOB not only support the growth and biofilm formation of heterotrophic bacteria by providing organic carbon, but also restrict and limit total biomass in mixed community systems.
Collapse
Affiliation(s)
- Pejhman Keshvardoust
- The School of Biotechnology and Biomolecular Sciences, UNSversatile open source tool for metagenomicsW Sydney, Sydney, NSW Australia
- The Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW Australia
| | - Vanessa A. A. Huron
- The School of Biotechnology and Biomolecular Sciences, UNSversatile open source tool for metagenomicsW Sydney, Sydney, NSW Australia
- The Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW Australia
| | - Matthew Clemson
- The School of Biotechnology and Biomolecular Sciences, UNSversatile open source tool for metagenomicsW Sydney, Sydney, NSW Australia
- Rural Clinical School, UNSW Sydney, Sydney, NSW Australia
| | - Florentin Constancias
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nicolas Barraud
- The Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW Australia
- Genetics of Biofilms Unit, Institut Pasteur, 25-28 Rue de Dr Roux, 75015 Paris, France
| | - Scott A. Rice
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Ithree Institute, University of Technology Sydney, UTS Faculty of Science Store, Building 1, Level 2, Thomas Street, Ultimo, NSW 2007 Australia
| |
Collapse
|
11
|
González-Cabaleiro R, Curtis TP, Ofiţeru ID. Bioenergetics analysis of ammonia-oxidizing bacteria and the estimation of their maximum growth yield. WATER RESEARCH 2019; 154:238-245. [PMID: 30798178 DOI: 10.1016/j.watres.2019.01.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/14/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The currently accepted biochemistry and bioenergetics of ammonia-oxidizing bacteria (AOB) show an inefficient metabolism: only 53.8% of the energy released when a mole of ammonia is oxidised and less than two of the electrons liberated can be directed to the autotrophic anabolism. However, paradoxically, AOB seem to thrive in challenging conditions: growing readily in virtually most aerobic environment, yet limited AOB exist in pure culture. In this study, a comprehensive model of the biochemistry of the metabolism of AOB is presented. Using bioenergetics calculations and selecting the minimum estimation for the energy dissipated in each of the metabolic steps, the model predicts the highest possible true yield of 0.16 gBio/gN and a yield of 0.13 gBio/gN when cellular maintenance is considered. Observed yields should always be lower than these values but the range of experimental values in literature vary between 0.04 and 0.45 gBio/gN. In this work, we discuss if this variance of observed values for AOB growth yield could be understood if other non-considered alternative energy sources are present in the biochemistry of AOB. We analyse how the predicted maximum growth yield of AOB changes considering co-metabolism, the use of hydroxylamine as a substrate, the abiotic oxidation of NO, energy harvesting in the monooxygenase enzyme or the use of organic carbon sources.
Collapse
Affiliation(s)
- Rebeca González-Cabaleiro
- School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK; School of Engineering, Department of Infrastructure and Environment, University of Glasgow, Rankine Building, Glasgow, 12 8LT, UK.
| | - Thomas Peter Curtis
- School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
| | - Irina Dana Ofiţeru
- School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Narihiro T, Nobu MK, Hori T, Aoyagi T, Sato Y, Inaba T, Aizawa H, Tamaki H, Habe H. Effects of the Wastewater Flow Rate on Interactions between the Genus Nitrosomonas and Diverse Populations in an Activated Sludge Microbiome. Microbes Environ 2018; 34:89-94. [PMID: 30584187 PMCID: PMC6440735 DOI: 10.1264/jsme2.me18108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The present study characterized the interactions of microbial populations in activated sludge systems during the operational period after an increase in the wastewater flow rate and consequential ammonia accumulation using a 16S rRNA gene sequencing-based network analysis. Two hundred microbial populations accounting for 81.8% of the total microbiome were identified. Based on a co-occurrence analysis, Nitrosomonas-type ammonia oxidizers had one of the largest number of interactions with diverse bacteria, including a bulking-associated Thiothrix organism. These results suggest that an increased flow rate has an impact on constituents by changing ammonia concentrations and also that Nitrosomonas- and Thiothrix-centric responses are critical for ammonia removal and microbial community recovery.
Collapse
Affiliation(s)
- Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Masaru Konishi Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Hidenobu Aizawa
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
13
|
Li L, Qian G, Ye L, Hu X, Yu X, Lyu W. Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant. WATER RESEARCH 2018; 140:77-89. [PMID: 29698857 DOI: 10.1016/j.watres.2018.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH4+-N, and NO3--N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas.
Collapse
Affiliation(s)
- Liang Li
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Guangsheng Qian
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China.
| | - Linlin Ye
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Xiaomin Hu
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Xin Yu
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Weijian Lyu
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| |
Collapse
|
14
|
Segobola J, Adriaenssens E, Tsekoa T, Rashamuse K, Cowan D. Exploring Viral Diversity in a Unique South African Soil Habitat. Sci Rep 2018; 8:111. [PMID: 29311639 PMCID: PMC5758573 DOI: 10.1038/s41598-017-18461-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
The Kogelberg Biosphere Reserve in the Cape Floral Kingdom in South Africa is known for its unique plant biodiversity. The potential presence of unique microbial and viral biodiversity associated with this unique plant biodiversity led us to explore the fynbos soil using metaviromic techniques. In this study, metaviromes of a soil community from the Kogelberg Biosphere Reserve has been characterised in detail for the first time. Metaviromic DNA was recovered from soil and sequenced by Next Generation Sequencing. The MetaVir, MG-RAST and VIROME bioinformatics pipelines were used to analyse taxonomic composition, phylogenetic and functional assessments of the sequences. Taxonomic composition revealed members of the order Caudovirales, in particular the family Siphoviridae, as prevalent in the soil samples and other compared viromes. Functional analysis and other metaviromes showed a relatively high frequency of phage-related and structural proteins. Phylogenetic analysis of PolB, PolB2, terL and T7gp17 genes indicated that many viral sequences are closely related to the order Caudovirales, while the remainder were distinct from known isolates. The use of single virome which only includes double stranded DNA viruses limits this study. Novel phage sequences were detected, presenting an opportunity for future studies aimed at targeting novel genetic resources for applied biotechnology.
Collapse
Affiliation(s)
- Jane Segobola
- Biosciences Unit, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Evelien Adriaenssens
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Tsepo Tsekoa
- Biosciences Unit, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Konanani Rashamuse
- Biosciences Unit, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Don Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
15
|
Jurczyk Ł, Koc-Jurczyk J. Quantitative dynamics of ammonia-oxidizers during biological stabilization of municipal landfill leachate pretreated by Fenton's reagent at neutral pH. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 63:310-326. [PMID: 28159310 DOI: 10.1016/j.wasman.2017.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
The application of multi-stage systems including biological step, for the treatment of leachate from municipal landfills, is economically and technologically justified. When microbial activity is utilized as 2nd stage of treatment, the task of 1st stage is to increase the bioavailability of organic matter. In this work, the effect of advanced oxidation process by Fenton's reagent for treatment efficiency of landfill leachate in the sequencing batch reactor was assessed. The quantitative dynamics of bacteria taking a part in ammonia removal process was evaluated by determination of number of DNA copies of 16S rRNA and amoA. Products of neutral pH chemical oxidation, had a definite positive impact on the quantity of β-proteobacteria 16S rRNA, whereas the same gene specified for Nitrospira sp. as well as amoA did not show a significant increase during the process of biological treatment, regardless of whether the reactor was fed with raw leachate or chemically pre-treated.
Collapse
Affiliation(s)
- Łukasz Jurczyk
- University of Rzeszow, Department of Biology and Agriculture, Cwiklinskiej 1b Str., 35-601 Rzeszow, Poland.
| | - Justyna Koc-Jurczyk
- University of Rzeszow, Department of Biology and Agriculture, Cwiklinskiej 1b Str., 35-601 Rzeszow, Poland
| |
Collapse
|
16
|
Yilmaz G, Cetin E, Bozkurt U, Aleksanyan Magden K. Effects of ferrous iron on the performance and microbial community in aerobic granular sludge in relation to nutrient removal. Biotechnol Prog 2017; 33:716-725. [DOI: 10.1002/btpr.2456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/20/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Gulsum Yilmaz
- Department of Environmental EngineeringIstanbul UniversityAvcilar Istanbul34320 Turkey
| | - Ender Cetin
- Department of Environmental EngineeringIstanbul UniversityAvcilar Istanbul34320 Turkey
| | - Umit Bozkurt
- Department of Environmental EngineeringIstanbul UniversityAvcilar Istanbul34320 Turkey
| | | |
Collapse
|
17
|
Effects of Bacterial Community Members on the Proteome of the Ammonia-Oxidizing Bacterium Nitrosomonas sp. Strain Is79. Appl Environ Microbiol 2016; 82:4776-4788. [PMID: 27235442 DOI: 10.1128/aem.01171-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Microorganisms in the environment do not exist as the often-studied pure cultures but as members of complex microbial communities. Characterizing the interactions within microbial communities is essential to understand their function in both natural and engineered environments. In this study, we investigated how the presence of a nitrite-oxidizing bacterium (NOB) and heterotrophic bacteria affect the growth and proteome of the chemolithoautotrophic ammonia-oxidizing bacterium (AOB) Nitrosomonas sp. strain Is79. We investigated Nitrosomonas sp. Is79 in co-culture with Nitrobacter winogradskyi, in co-cultures with selected heterotrophic bacteria, and as a member of the nitrifying enrichment culture G5-7. In batch culture, N. winogradskyi and heterotrophic bacteria had positive effects on the growth of Nitrosomonas sp. Is79. An isobaric tag for relative and absolute quantification (iTRAQ) liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was used to investigate the effect of N. winogradskyi and the co-cultured heterotrophic bacteria from G5-7 on the proteome of Nitrosomonas sp. Is79. In co-culture with N. winogradskyi, several Nitrosomonas sp. Is79 oxidative stress response proteins changed in abundance, with periplasmic proteins increasing and cytoplasmic proteins decreasing in abundance. In the presence of heterotrophic bacteria, the abundance of proteins directly related to the ammonia oxidation pathway increased, while the abundance of proteins related to amino acid synthesis and metabolism decreased. In summary, the proteome of Nitrosomonas sp. Is79 was differentially influenced by the presence of either N. winogradskyi or heterotrophic bacteria. Together, N. winogradskyi and heterotrophic bacteria reduced the oxidative stress for Nitrosomonas sp. Is79, which resulted in more efficient metabolism. IMPORTANCE Aerobic ammonia-oxidizing microorganisms play an important role in the global nitrogen cycle, converting ammonia to nitrite. In their natural environment, they coexist and interact with nitrite oxidizers, which convert nitrite to nitrate, and with heterotrophic microorganisms. The presence of nitrite oxidizers and heterotrophic bacteria has a positive influence on the growth of the ammonia oxidizers. Here, we present a study investigating the effect of nitrite oxidizers and heterotrophic bacteria on the proteome of a selected ammonia oxidizer in a defined culture to elucidate how these two groups improve the performance of the ammonia oxidizer. The results show that the presence of a nitrite oxidizer and heterotrophic bacteria reduced the stress for the ammonia oxidizer and resulted in more efficient energy generation. This study contributes to our understanding of microbe-microbe interactions, in particular between ammonia oxidizers and their neighboring microbial community.
Collapse
|
18
|
Isolation of Ammonia Oxidizing Bacteria (AOB) from Fish Processing Effluents. NATIONAL ACADEMY SCIENCE LETTERS 2015. [DOI: 10.1007/s40009-015-0363-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Ramond JB, Lako JDW, Stafford WHL, Tuffin MI, Cowan DA. Evidence of novel plant-species specific ammonia oxidizing bacterial clades in acidic South African fynbos soils. J Basic Microbiol 2015; 55:1040-7. [DOI: 10.1002/jobm.201400933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/27/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Jean-Baptiste Ramond
- Center for Microbial Ecology and Genomics, Genomics Research Institute, Department of Genetics; University of Pretoria; Pretoria South Africa
| | - Joseph D. W. Lako
- Department of Biotechnology; Dr. John Garang Memorial University of Science and Technology; Bor Town Jonglei State South Sudan
| | | | - Marla I. Tuffin
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM); University of the Western Cape; Cape Town South Africa
| | - Don A. Cowan
- Center for Microbial Ecology and Genomics, Genomics Research Institute, Department of Genetics; University of Pretoria; Pretoria South Africa
| |
Collapse
|