1
|
Zhang J, Yang X, Qiu J, Zhang W, Yang J, Han J, Ni L. The Characterization, Biological Activities, and Potential Applications of the Antimicrobial Peptides Derived from Bacillus spp.: A Comprehensive Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10447-5. [PMID: 39739161 DOI: 10.1007/s12602-024-10447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
This paper provides a comprehensive review of antimicrobial peptides (AMPs) derived from Bacillus spp. The classification and structure of Bacillus-derived AMPs encompass a diverse range. There are 89 documented Bacillus-derived AMPs, which exhibit varied sources, amino acid sequences, and molecular structures. These AMPs can be categorized into classes I, Ia, IIa, IIb, IIc, and IId. The synthesis pathway of the AMPs primarily involves either ribosomally synthesized or non-ribosomally synthesized approaches. Additionally, the antimicrobial activity of these AMPs is versatile, targeting bacteria, fungi, and viruses, through disrupting intracellular DNA and the cell wall and membrane, as well as modulating immune responses. Moreover, the Bacillus-derived AMPs demonstrate promising application in the pharmaceutical industry, environmental protection, food preservation, and bio-control in agriculture. The commonly employed strategies for enhancing the production of Bacillus-derived AMPs involve optimizing cultivation conditions, implementing systems metabolic engineering, employing genome shuffling techniques, optimizing promoters, and improving expression host optimization. This review can provide a valuable reference for comprehending the current research status on advancements and sustainable production of Bacillus-derived AMPs.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
| | - Xinmiao Yang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
| | - Jiajia Qiu
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
| | - Wen Zhang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Jie Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Jinzhi Han
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China.
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China.
| | - Li Ni
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China.
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
2
|
Chen Q, Song Y, An Y, Lu Y, Zhong G. Mechanisms and Impact of Rhizosphere Microbial Metabolites on Crop Health, Traits, Functional Components: A Comprehensive Review. Molecules 2024; 29:5922. [PMID: 39770010 PMCID: PMC11679325 DOI: 10.3390/molecules29245922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Current agricultural practices face numerous challenges, including declining soil fertility and heavy reliance on chemical inputs. Rhizosphere microbial metabolites have emerged as promising agents for enhancing crop health and yield in a sustainable manner. These metabolites, including phytohormones, antibiotics, and volatile organic compounds, play critical roles in promoting plant growth, boosting resistance to pathogens, and improving resilience to environmental stresses. This review comprehensively outlines the mechanisms through which rhizosphere microbial metabolites influence crop health, traits, functional components, and yield. It also discusses the potential applications of microbial secondary metabolites in biofertilizers and highlights the challenges associated with their production and practical use. Measures to overcome these challenges are proposed, alongside an exploration of the future development of the functional fertilizer industry. The findings presented here provide a scientific basis for utilizing rhizosphere microbial metabolites to enhance agricultural sustainability, offering new strategies for future crop management. Integrating these microbial strategies could lead to increased crop productivity, improved quality, and reduced dependence on synthetic chemical inputs, thereby supporting a more environmentally friendly and resilient agricultural system.
Collapse
Affiliation(s)
- Qingxia Chen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yingjie Song
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guohua Zhong
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Albornoz RV, Oyarzún D, Burgess K. Optimisation of surfactin yield in Bacillus using data-efficient active learning and high-throughput mass spectrometry. Comput Struct Biotechnol J 2024; 23:1226-1233. [PMID: 38550972 PMCID: PMC10973723 DOI: 10.1016/j.csbj.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 11/12/2024] Open
Abstract
Integration of machine learning and high throughput measurements are essential to drive the next generation of the design-build-test-learn (DBTL) cycle in synthetic biology. Here, we report the use of active learning in combination with metabolomics for optimising production of surfactin, a complex lipopeptide resulting from a non-ribosomal assembly pathway. We designed a media optimisation algorithm that iteratively learns the yield landscape and steers the media composition toward maximal production. The algorithm led to a 160 % yield increase after three DBTL runs as compared to an M9 baseline. Metabolomics data helped to elucidate the underpinning biochemistry for yield improvement and revealed Pareto-like trade-offs in production of other lipopeptides from related pathways. We found positive associations between organic acids and surfactin, suggesting a key role of central carbon metabolism, as well as system-wide anisotropies in how metabolism reacts to shifts in carbon and nitrogen levels. Our framework offers a novel data-driven approach to improve yield of biological products with complex synthesis pathways that are not amenable to traditional yield optimisation strategies.
Collapse
Affiliation(s)
- Ricardo Valencia Albornoz
- Institute of Quantitative Biology, Biochemistry & Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | - Diego Oyarzún
- Institute of Quantitative Biology, Biochemistry & Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
| | - Karl Burgess
- Institute of Quantitative Biology, Biochemistry & Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Yang S, Ji Y, Xue P, Li Z, Chen X, Shi J, Jiang C. Insights into the antifungal mechanism of Bacillus subtilis cyclic lipopeptide iturin A mediated by potassium ion channel. Int J Biol Macromol 2024; 277:134306. [PMID: 39094860 DOI: 10.1016/j.ijbiomac.2024.134306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Fungal infections pose severe and potentially lethal threats to plant, animal, and human health. Ergosterol has served as the primary target for developing antifungal medications. However, many antifungal drugs remain highly toxic to humans due to similarity in cell membrane composition between fungal and animal cells. Iturin A, lipopeptide produced by Bacillus subtilis, efficiently inhibit various fungi, but demonstrated safety in oral administration, indicating the existence of targets different from ergosterol. To pinpoint the exact antifungal target of iturin A, we used homologous recombination to knock out and overexpress erg3, a key gene in ergosterol synthesis. Saccharomyces cerevisiae and Aspergillus carbonarius were transformed using the LiAc/SS-DNNPEG and Agrobacterium-mediated transformation (AMT), respectively. Surprisingly, increasing ergosterol content did not augment antifungal activity. Furthermore, iturin A's antifungal activity against S. cerevisiae was reduced while it pre-incubation with voltage-gated potassium (Kv) channel inhibitor, indicating that Kv activation was responsible for cell death. Iturin A was found to activate the Kv protein, stimulating K+ efflux from cell. In vitro tests confirmed interaction between iturin A and Kv protein. This study highlights Kv as one of the precise targets of iturin A in its antifungal activity, offering a novel target for the development of antifungal medications.
Collapse
Affiliation(s)
- Saixue Yang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yulan Ji
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Pengyuan Xue
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhenzhu Li
- Center for Ecology and Environmental Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Xianqing Chen
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China.
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
5
|
Yin Y, Wang X, Zhang P, Wang P, Wen J. Strategies for improving fengycin production: a review. Microb Cell Fact 2024; 23:144. [PMID: 38773450 PMCID: PMC11110267 DOI: 10.1186/s12934-024-02425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
Fengycin is an important member of the lipopeptide family with a wide range of applications in the agricultural, food, medical and cosmetic industries. However, its commercial application is severely hindered by low productivity and high cost. Therefore, numerous studies have been devoted to improving the production of fengycin. We summarize these studies in this review with the aim of providing a reference and guidance for future researchers. This review begins with an overview of the synthesis mechanism of fengycin via the non-ribosomal peptide synthetases (NRPS), and then delves into the strategies for improving the fengycin production in recent years. These strategies mainly include fermentation optimization and metabolic engineering, and the metabolic engineering encompasses enhancement of precursor supply, application of regulatory factors, promoter engineering, and application of genome-engineering (genome shuffling and genome-scale metabolic network model). Finally, we conclude this review with a prospect of fengycin production.
Collapse
Affiliation(s)
- Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Xin Wang
- Coll Biol & Pharmaceut Sci, China Three Gorges Univ, Yichang, 443002, P. R. China
| | - Pengsheng Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Pan Wang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Collaborative Innovation Center of Molecular Imaging Precision Medical, Shanxi Medical University, Taiyuan, 030001, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China.
| |
Collapse
|
6
|
El Housni Z, Ezrari S, Radouane N, Tahiri A, Ouijja A, Errafii K, Hijri M. Evaluating Rhizobacterial Antagonists for Controlling Cercospora beticola and Promoting Growth in Beta vulgaris. Microorganisms 2024; 12:668. [PMID: 38674613 PMCID: PMC11052011 DOI: 10.3390/microorganisms12040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Cercospora beticola Sacc. is an ascomycete pathogen that causes Cercospora leaf spot in sugar beets (Beta vulgaris L.) and other related crops. It can lead to significant yield losses if not effectively managed. This study aimed to assess rhizosphere bacteria from sugar beet soil as a biological control agent against C. beticola and evaluate their effect on B. vulgaris. Following a dual-culture screening, 18 bacteria exhibiting over 50% inhibition were selected, with 6 of them demonstrating more than 80% control. The bacteria were identified by sequencing the 16S rRNA gene, revealing 12 potential species belonging to 6 genera, including Bacillus, which was represented by 4 species. Additionally, the biochemical and molecular properties of the bacteria were characterized in depth, as well as plant growth promotion. PCR analysis of the genes responsible for producing antifungal metabolites revealed that 83%, 78%, 89%, and 56% of the selected bacteria possessed bacillomycin-, iturin-, fengycin-, and surfactin-encoding genes, respectively. Infrared spectroscopy analysis confirmed the presence of a lipopeptide structure in the bacterial supernatant filtrate. Subsequently, the bacteria were assessed for their effect on sugar beet plants in controlled conditions. The bacteria exhibited notable capabilities, promoting growth in both roots and shoots, resulting in significant increases in root length and weight and shoot length. A field experiment with four bacterial candidates demonstrated good performance against C. beticola compared to the difenoconazole fungicide. These bacteria played a significant role in disease control, achieving a maximum efficacy of 77.42%, slightly below the 88.51% efficacy attained with difenoconazole. Additional field trials are necessary to verify the protective and growth-promoting effects of these candidates, whether applied individually, combined in consortia, or integrated with chemical inputs in sugar beet crop production.
Collapse
Affiliation(s)
- Zakariae El Housni
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, Faculty of Science, Moulay Ismail University, Zitoune, Meknès 50050, Morocco; (Z.E.H.); (A.O.)
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, BPS 40, Meknès 50001, Morocco;
| | - Said Ezrari
- Microbiology Unit, Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Medicine and Pharmacy Oujda, University Mohammed Premier, P.O. Box 724 Hay Al Quods, Oujda 60000, Morocco;
| | - Nabil Radouane
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco; (N.R.); (K.E.)
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, BPS 40, Meknès 50001, Morocco;
| | - Abderrahman Ouijja
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, Faculty of Science, Moulay Ismail University, Zitoune, Meknès 50050, Morocco; (Z.E.H.); (A.O.)
| | - Khaoula Errafii
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco; (N.R.); (K.E.)
| | - Mohamed Hijri
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco; (N.R.); (K.E.)
- Institut de Recherche en Biologie Végétale (IRBV), Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
7
|
Puan SL, Erriah P, Baharudin MMAA, Yahaya NM, Kamil WNIWA, Ali MSM, Ahmad SA, Oslan SN, Lim S, Sabri S. Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield. Appl Microbiol Biotechnol 2023; 107:5569-5593. [PMID: 37450018 DOI: 10.1007/s00253-023-12651-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.
Collapse
Affiliation(s)
- Sheau Ling Puan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Pirasannah Erriah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohamad Malik Al-Adil Baharudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, 31499, Asan-Si, Chungnam, Republic of Korea
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
8
|
Vlajkov V, Pajčin I, Loc M, Budakov D, Dodić J, Grahovac M, Grahovac J. The Effect of Cultivation Conditions on Antifungal and Maize Seed Germination Activity of Bacillus-Based Biocontrol Agent. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120797. [PMID: 36551004 PMCID: PMC9774550 DOI: 10.3390/bioengineering9120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Aflatoxin contamination is a global risk and a concerning problem threatening food safety. The biotechnological answer lies in the production of biocontrol agents that are effective against aflatoxins producers. In addition to their biocontrol effect, microbial-based products are recognized as efficient biosolutions for plant nutrition and growth promotion. The present study addresses the characterization of the representative of Phaseolus vulgaris rhizosphere microbiome, Bacillus sp. BioSol021, regarding plant growth promotion traits, including the activity of protease, cellulase, xylanase, and pectinase with the enzymatic activity index values 1.06, 2.04, 2.41, and 3.51, respectively. The potential for the wider commercialization of this kind of product is determined by the possibility of developing a scalable bioprocess solution suitable for technology transfer to an industrial scale. Therefore, the study addresses one of the most challenging steps in bioprocess development, including the production scale-up from the Erlenmeyer flask to the laboratory bioreactor. The results indicated the influence of the key bioprocess parameters on the dual mechanism of action of biocontrol effects against the aflatoxigenic Aspergillus flavus, as well on maize seed germination activity, pointing out the positive impact of high aeration intensity and agitation rate, resulting in inhibition zone diameters of 60 mm, a root length 96 mm, and a shoot length 27 mm.
Collapse
Affiliation(s)
- Vanja Vlajkov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (V.V.); (J.G.)
| | - Ivana Pajčin
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Marta Loc
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Dragana Budakov
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jelena Dodić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (V.V.); (J.G.)
| |
Collapse
|
9
|
Xia B, Zou H, Li L, Zhang B, Xiang Y, Zou Y, Shen Z, Xue S, Han Y. Screening and fermentation medium optimization of a strain favorable to Rice-fish Coculture. Front Microbiol 2022; 13:1054797. [PMID: 36590418 PMCID: PMC9802155 DOI: 10.3389/fmicb.2022.1054797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Rice-fish coculture (RF) is a small ecosystem in which microorganisms are widely distributed in the fish, water environment, soil, and plants. In order to study the positive effects of microorganisms on common carp and rice in the RF ecosystem, a total of 18 strains with growth-promoting ability were screened from common carp (Cyprinus carpio) gut contents, among which three strains had the ability to produce both DDP-IV inhibitors and IAA. The strain with the strongest combined ability, FYN-22, was identified physiologically, biochemically, and by 16S rRNA, and it was initially identified as Bacillus licheniformis. As the number of metabolites secreted by the strain under natural conditions is not sufficient for production, the FYN-22 fermentation medium formulation was optimized by means of one-factor-at-a-time (OFAT) experiments and response surface methodology (RSM). The results showed that, under the conditions of a soluble starch concentration of 10.961 g/l, yeast concentration of 2.366 g/l, NH4Cl concentration of 1.881 g/l, and FeCl3 concentration of 0.850 g/l, the actual measured number of FYN-22 spores in the fermentation broth was 1.913 × 109 CFU/ml, which was 2.575-fold improvement over the pre-optimization value. The optimized fermentation solution was used for the immersion operation of rice seeds, and, after 14 days of incubation in hydroponic boxes, the FYN-22 strain was found to have a highly significant enhancement of 48.31% (p < 0.01) on the above-ground part of rice, and different degrees of effect on root length, fresh weight, and dry weight (16.73, 17.80, and 21.97%, respectively; p < 0.05). This study may provide new insights into the fermentation process of Bacillus licheniformis FYN-22 and its further utilization in RF systems.
Collapse
Affiliation(s)
- Banghua Xia
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Haobo Zou
- China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Linyuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Bitao Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yifang Xiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuning Zou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhentao Shen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shuqun Xue
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,*Correspondence: Shuqun Xue,
| | - Ying Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,*Correspondence: Shuqun Xue,
| |
Collapse
|
10
|
Vahidinasab M, Adiek I, Hosseini B, Akintayo SO, Abrishamchi B, Pfannstiel J, Henkel M, Lilge L, Voegele RT, Hausmann R. Characterization of Bacillus velezensis UTB96, Demonstrating Improved Lipopeptide Production Compared to the Strain B. velezensis FZB42. Microorganisms 2022; 10:2225. [PMID: 36363818 PMCID: PMC9693074 DOI: 10.3390/microorganisms10112225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 08/24/2023] Open
Abstract
Bacillus strains can produce various lipopeptides, known for their antifungal properties. This makes them attractive metabolites for applications in agriculture. Therefore, identification of productive wild-type strains is essential for the development of biopesticides. Bacillus velezensis FZB42 is a well-established strain for biocontrol of plant pathogens in agriculture. Here, we characterized an alternative strain, B. velezensis UTB96, that can produce higher amounts of all three major lipopeptide families, namely surfactin, fengycin, and iturin. UTB96 produces iturin A. Furthermore, UTB96 showed superior antifungal activity towards the soybean fungal pathogen Diaporthe longicolla compared to FZB42. Moreover, the additional provision of different amino acids for lipopeptide production in UTB96 was investigated. Lysine and alanine had stimulatory effects on the production of all three lipopeptide families, while supplementation of leucine, valine and isoleucine decreased the lipopeptide bioproduction. Using a 45-litre bioreactor system for upscaling in batch culture, lipopeptide titers of about 140 mg/L surfactin, 620 mg/L iturin A, and 45 mg/L fengycin were achieved. In conclusion, it becomes clear that B. velezensis UTB96 is a promising strain for further research application in the field of agricultural biological controls of fungal diseases.
Collapse
Affiliation(s)
- Maliheh Vahidinasab
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Isabel Adiek
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Behnoush Hosseini
- Department of Phytopathology (360a), Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| | - Stephen Olusanmi Akintayo
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Bahar Abrishamchi
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, August-von-Hartmann-Str. 3, 70599 Stuttgart, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Science, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Lars Lilge
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Ralf T. Voegele
- Department of Phytopathology (360a), Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| |
Collapse
|
11
|
Assessment of Lipopeptide Mixtures Produced by Bacillus subtilis as Biocontrol Products against Apple Scab ( Venturia inaequalis). Microorganisms 2022; 10:microorganisms10091810. [PMID: 36144412 PMCID: PMC9501572 DOI: 10.3390/microorganisms10091810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 02/03/2023] Open
Abstract
Apple scab is an important disease conventionally controlled by chemical fungicides, which should be replaced by more environmentally friendly alternatives. One of these alternatives could be the use of lipopeptides produced by Bacillus subtilis. The objective of this work is to study the action of the three families of lipopeptides and different mixtures of them in vitro and in vivo against Venturia inaequalis. Firstly, the antifungal activity of mycosubtilin/surfactin and fengycin/surfactin mixtures was determined in vitro by measuring the median inhibitory concentration. Then, the best lipopeptide mixture ratio was produced using Design of Experiment (DoE) to optimize the composition of the culture medium. Finally, the lipopeptides mixtures efficiency against V. inaequalis was assessed in orchards as well as the evaluation of the persistence of lipopeptides on apple. In vitro tests show that the use of fengycin or mycosubtilin alone is as effective as a mixture, with the 50–50% fengycin/surfactin mixture being the most effective. Optimization of culture medium for the production of fengycin/surfactin mixture shows that the best composition is glycerol coupled with glutamic acid. Finally, lipopeptides showed in vivo antifungal efficiency against V. inaequalis regardless of the mixture used with a 70% reduction in the incidence of scab for both mixtures (fengycin/surfactin or mycosubtilin/surfactin). The reproducibility of the results over the two trial campaigns was significantly better with the mycosubtilin/surfactin mixture. The use of B. subtilis lipopeptides to control this disease is very promising.
Collapse
|
12
|
Metabolic engineering of Bacillus subtilis 168 for the utilization of arabinose to synthesize the antifungal lipopeptide fengycin. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Lu H, Xu H, Yang P, Bilal M, Zhu S, Zhong M, Zhao L, Gu C, Liu S, Zhao Y, Geng C. Transcriptome Analysis of Bacillus amyloliquefaciens Reveals Fructose Addition Effects on Fengycin Synthesis. Genes (Basel) 2022; 13:genes13060984. [PMID: 35741746 PMCID: PMC9222730 DOI: 10.3390/genes13060984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Fengycin is a lipopeptide produced by Bacillus that has a strong inhibitory effect on filamentous fungi; however, its use is restricted due to poor production and low yield. Previous studies have shown that fengycin biosynthesis in B. amyloliquefaciens was found to be significantly increased after fructose addition. This study investigated the effect of fructose on fengycin production and its regulation mechanism in B. amyloliquefaciens by transcriptome sequencing. According to the RNA sequencing data, 458 genes were upregulated and 879 genes were downregulated. Transcriptome analysis results showed that fructose changed the transcription of amino acid synthesis, fatty acid metabolism, and energy metabolism; alterations in these metabolic pathways contribute to the synthesis of fengycin. In an MLF medium (modified Landy medium with fructose), the expression level of the fengycin operon was two-times higher than in an ML medium (modified Landy medium). After fructose was added to B. amyloliquefaciens, the fengycin-synthesis-associated genes were activated in the process of fengycin synthesis.
Collapse
Affiliation(s)
- Hedong Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Panping Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Shaohui Zhu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Mengyuan Zhong
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Li Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Chengyuan Gu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Shuai Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
| | - Chengxin Geng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (H.L.); (H.X.); (P.Y.); (M.B.); (S.Z.); (M.Z.); (L.Z.); (C.G.); (S.L.); (Y.Z.)
- Correspondence: ; Tel.: +86-517-83559107
| |
Collapse
|
14
|
Min S, Lee H, Chae D, Park J, Lee SH, Oh HS, Lee K, Lee CH, Chae S, Park PK. Innovative Biofouling Control for Membrane Bioreactors in Cold Regions by Inducing Environmental Adaptation in Quorum-Quenching Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4396-4403. [PMID: 35290031 DOI: 10.1021/acs.est.1c07786] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial quorum quenching (QQ), whose mechanism involves the degradation of quorum-sensing signal molecules, is an effective strategy for controlling biofouling in membrane bioreactors (MBRs). However, MBRs operated at low temperatures, either due to cold climates or seasonal variations, exhibit severe deterioration in QQ efficiency. In this study, a modified culture method for Rhodococcus sp. BH4, a QQ bacterium, was developed to induce environmental adaptation in cold regions. BH4-L, which was prepared by the modified culture method, showed enhancement in QQ efficiency at low temperatures. The higher QQ efficiency obtained by employing BH4-L at 10 °C (compared with that obtained by employing BH4 at 10 °C) was attributed to the higher live/dead cell ratio in the BH4-L-entrapping beads. When BH4-L-entrapping beads were applied to lab-scale MBRs operated at low temperatures, membrane biofouling in MBRs at low temperatures was successfully mitigated because BH4-L could substantially reduce the concentration of signal molecules (N-acyl homoserine lactones) in the biocake. Employing BH4-L in QQ-MBRs could offer a novel solution to the problem of severe membrane biofouling in MBRs in cold regions.
Collapse
Affiliation(s)
- Sojin Min
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Gangwon-do 26439, Republic of Korea
| | - Hosung Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Gangwon-do 26439, Republic of Korea
| | - Dowon Chae
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Gangwon-do 26439, Republic of Korea
| | - Jeongwon Park
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Gangwon-do 26439, Republic of Korea
| | - Sang H Lee
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea
| | - Kibaek Lee
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soryong Chae
- Department of Chemical and Environmental Engineering, University of Cincinnati, 2901 Woodside Drive, Cincinnati, Ohio 45221, United States
| | - Pyung-Kyu Park
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Gangwon-do 26439, Republic of Korea
| |
Collapse
|
15
|
Wang XF, Miao CH, Qiao B, Xu SJ, Cheng JS. Co-culture of Bacillus amyloliquefaciens and recombinant Pichia pastoris for utilizing kitchen waste to produce fengycins. J Biosci Bioeng 2022; 133:560-566. [DOI: 10.1016/j.jbiosc.2022.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023]
|
16
|
He M, Wen J, Yin Y, Wang P. Metabolic engineering of Bacillus subtilis based on genome-scale metabolic model to promote fengycin production. 3 Biotech 2021; 11:448. [PMID: 34631349 DOI: 10.1007/s13205-021-02990-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/09/2021] [Indexed: 12/01/2022] Open
Abstract
Fengycin is an important lipopeptide antibiotic that can be produced by Bacillus subtilis. However, the production capacity of the unmodified wild strain is very low. Therefore, a computationally guided engineering method was proposed to improve the fengycin production capacity. First, based on the annotated genome and biochemical information, a genome-scale metabolic model of Bacillus subtilis 168 was constructed. Subsequently, several potential genetic targets were identified through the flux balance analysis and minimization of metabolic adjustment algorithm that can ensure an increase in the production of fengycin. In addition, according to the results predicted by the model, the target genes accA (encoding acetyl-CoA carboxylase), cypC (encoding fatty acid beta-hydroxylating cytochrome P450) and gapA (encoding glyceraldehyde-3-phosphate dehydrogenase) were overexpressed in the parent strain Bacillus subtilis 168. The yield of fengycin was increased by 56.4, 46.6, and 20.5% by means of the overexpression of accA, cypC, and gapA, respectively, compared with the yield from the parent strain. The relationship between the model prediction and experimental results proves the effectiveness and rationality of this method for target recognition and improving fengycin production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02990-7.
Collapse
Affiliation(s)
- Mingliang He
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 People's Republic of China
| | - Ying Yin
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 People's Republic of China
| | - Pan Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072 People's Republic of China
| |
Collapse
|
17
|
Isolation and Purification of a New Bacillus Subtilis Strain from Deer Dung with Anti-microbial and Anti-cancer Activities. Curr Med Sci 2021; 41:832-840. [PMID: 34403110 DOI: 10.1007/s11596-021-2383-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 01/29/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Bacillus strains are well known for their natural bioactive products that have antimicrobial and/or anti-cancer activities. Many of Bacillus' structurally unique metabolites can combat human diseases, including cancers. However, because Bacillus' metabolites are so abundant, few have been studied extensively enough to fully characterize their chemical constitutions and biological functions. METHODS In this study, we focused on the isolation and purification of a new Bacillus strain, and determined the effects of its metabolites on bacteria and cancer cells. Our study focused on a new strain of Bacillus isolated from deer dung. Based on BLAST results, this isolate belongs to Bacillus subtilis, and therefore we named the strain Bacillus subtilis NC16. Congo red assay was used to test the cellulase activity. The inhibition zone was measured to test the antimicrobial activity. CCK-8, wound healing and flow cytometry were used to test the anti-cancer activity. RESULTS Metabolites from Bacillus subtilis NC16 have both antimicrobial and anti-cancer activities. They can both suppress the growth of Trichoderma vride and Staphylococcus aureus, and inhibit the proliferation and promote the apoptosis of non-small cell lung cancer cell lines. CONCLUSION Our results suggest that Bacillus subtilis NC16 can not only degrade cellulose, but its metabolites may be sources of antibiotics and anti-cancer drugs.
Collapse
|
18
|
Moreno-Velandia CA, Ongena M, Kloepper JW, Cotes AM. Biosynthesis of Cyclic Lipopeptides by Bacillus velezensis Bs006 and its Antagonistic Activity are Modulated by the Temperature and Culture Media Conditions. Curr Microbiol 2021; 78:3505-3515. [PMID: 34292378 DOI: 10.1007/s00284-021-02612-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/09/2021] [Indexed: 11/30/2022]
Abstract
Antagonistic activity of strains from Bacillus species has made them among the preferred agricultural biological control agents against phytopathogenic fungi. These microorganisms' success is mostly based on the production of antagonistic secondary metabolites, mainly those of the non-ribosomal cyclic lipopeptides (CLPs) nature, which can affect phytopathogens directly (iturins and fengycins) or indirectly (surfactins and fengycins). However, abiotic factors in the target site can influence the behavior of the biocontrol traits, but to date, few studies attempting to decipher this kind of interaction have been conducted. This work aimed to evaluate the effect of temperature and culture medium on growth, antagonistic activity against Fusarium oxysporum f. sp. physali (Foph), and the profile of CLPs produced by Bacillus velezensis Bs006. The data showed that measured traits in Bs006 varied with temperature and medium interaction. The concentration of CLPs, as well as the antagonistic activity against Foph, was increased as the nutritional wealth, temperature, and time of incubation increased. The concentration of fengycins and iturins was higher than surfactins at high temperatures. However, a bacteriostatic effect was detected with a combination of Landy medium and 15 °C, which prevented both the biosynthesis of CLPs and the antagonistic activity. The results of this work highlight the importance of abiotic conditions of the target site where a biocontrol agent will be applied to stay active and develop its full antagonistic potential. This response by Bs006 could partly explain the variability of its biocontrol efficacy in the Foph-golden berry pathosystem.
Collapse
Affiliation(s)
- Carlos A Moreno-Velandia
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Km 14 vía Bogotá a Mosquera, 250047, Mosquera, Colombia.
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2 5030, Gembloux, Belgium
| | - Joseph W Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Alba M Cotes
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Km 14 vía Bogotá a Mosquera, 250047, Mosquera, Colombia
| |
Collapse
|
19
|
Vahidinasab M, Lilge L, Reinfurt A, Pfannstiel J, Henkel M, Morabbi Heravi K, Hausmann R. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis. Microb Cell Fact 2020; 19:205. [PMID: 33167976 PMCID: PMC7654001 DOI: 10.1186/s12934-020-01468-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/29/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Plipastatin is a potent Bacillus antimicrobial lipopeptide with the prospect to replace conventional antifungal chemicals for controlling plant pathogens. However, the application of this lipopeptide has so far been investigated in a few cases, principally because of the yield in low concentration and unknown regulation of biosynthesis pathways. B. subtilis synthesizes plipastatin by a non-ribosomal peptide synthetase encoded by the ppsABCDE operon. In this study, B. subtilis 3NA (a non-sporulation strain) was engineered to gain more insights about plipastatin mono-production. RESULTS The 4-phosphopantetheinyl transferase Sfp posttranslationally converts non-ribosomal peptide synthetases from inactive apoforms into their active holoforms. In case of 3NA strain, sfp gene is inactive. Accordingly, the first step was an integration of a repaired sfp version in 3NA to construct strain BMV9. Subsequently, plipastatin production was doubled after integration of a fully expressed degQ version from B. subtilis DSM10T strain (strain BMV10), ensuring stimulation of DegU-P regulatory pathway that positively controls the ppsABSDE operon. Moreover, markerless substitution of the comparably weak native plipastatin promoter (Ppps) against the strong constitutive promoter Pveg led to approximately fivefold enhancement of plipastatin production in BMV11 compared to BMV9. Intriguingly, combination of both repaired degQ expression and promoter exchange (Ppps::Pveg) did not increase the plipastatin yield. Afterwards, deletion of surfactin (srfAA-AD) operon by the retaining the regulatory comS which is located within srfAB and is involved in natural competence development, resulted in the loss of plipastatin production in BMV9 and significantly decreased the plipastatin production of BMV11. We also observed that supplementation of ornithine as a precursor for plipastatin formation caused higher production of plipastatin in mono-producer strains, albeit with a modified pattern of plipastatin composition. CONCLUSIONS This study provides evidence that degQ stimulates the native plipastatin production. Moreover, a full plipastatin production requires surfactin synthetase or some of its components. Furthermore, as another conclusion of this study, results point towards ornithine provision being an indispensable constituent for a plipastatin mono-producer B. subtilis strain. Therefore, targeting the ornithine metabolic flux might be a promising strategy to further investigate and enhance plipastatin production by B. subtilis plipastatin mono-producer strains.
Collapse
Affiliation(s)
- Maliheh Vahidinasab
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Lars Lilge
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany.
| | - Aline Reinfurt
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Marius Henkel
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Kambiz Morabbi Heravi
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| |
Collapse
|
20
|
Zou D, Maina SW, Zhang F, Yan Z, Ding L, Shao Y, Xin Z. Mining New Plipastatins and Increasing the Total Yield Using CRISPR/Cas9 in Genome-Modified Bacillus subtilis 1A751. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11358-11367. [PMID: 32930578 DOI: 10.1021/acs.jafc.0c03694] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CRISPR/Cas9 is one of the robust and effective gene manipulation tools which has been widely applied in various organisms. In this study, the plipastatin gene cluster was successfully expressed in genome-modified Bacillus subtilis 1A751 by disrupting the surfactin operon (srf) through CRISPR/Cas9 technology. The presumed plipastatin biosynthetic pathway was proposed based on the analysis of its biosynthetic gene cluster. Two new plipastatins were identified by a combination of ultra-high performance liquid chromatography-coupled electron spray ionization-tandem mass spectrometry and gas chromatography-mass spectrometry analyses, together with nine known plipastatins or their derivatives. The yield of plipastatin was as high as 1600 mg/L which is the highest reported to date. Antimicrobial experiments revealed that its methanolic extracts exhibited powerful inhibitory effects on the growth of the tested pathogens and fungi. The results from this investigation highlight the remarkable utility of CRISPR/Cas9 in mining new plipastatins and increasing the total plipastatin yield, providing a new pipeline for the industrial application of plipastatin.
Collapse
Affiliation(s)
- Dandan Zou
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Sarah Wanjiku Maina
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Fengmin Zhang
- Testing Center, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
| | - Zhenzhen Yan
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Liping Ding
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuting Shao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
21
|
Ravi A, Rajan S, Khalid NK, Jose MS, Aravindakumar CT, Krishnankutty RE. Impact of Supplements on Enhanced Activity of Bacillus amyloliquefaciens BmB1 Against Pythium aphanidermatum Through Lipopeptide Modulation. Probiotics Antimicrob Proteins 2020; 13:367-374. [PMID: 33000419 DOI: 10.1007/s12602-020-09707-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
The present study has been designed to improve the activity of endophytic Bacillus amyloliquefaciens BmB1 against Pythium aphanidermatum through the culture supplementation with carbon sources, nitrogen sources and zinc oxide nanoparticles (ZnONPs). From the results of the study, supplementation with glucose (45 g/L), yeast extract (7.5 g/L) and ZnONPs (5 mg/L) were found to enhance the antifungal activity of B. amyloliquefaciens BmB1. This was also confirmed by comparative statistical analysis with experimental control. Further LC-Q-TOF-MS analysis of extracts of B. amyloliquefaciens BmB1 cultured with supplements showed a remarkable modulation of its lipopeptide profile. The blend of lipopeptides enhanced during the culture supplementation of B. amyloliquefaciens BmB1 as evidenced by the mass spectrometric analysis can consider to be the basis of its increased activity against P. aphanidermatum. As Bacillus spp. are well known for their biocontrol activities, the results of the study offer ways to improve its agricultural applications.
Collapse
Affiliation(s)
- Aswani Ravi
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Sukanya Rajan
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | | | | | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, India
| | | |
Collapse
|
22
|
Key elements and regulation strategies of NRPSs for biosynthesis of lipopeptides by Bacillus. Appl Microbiol Biotechnol 2020; 104:8077-8087. [DOI: 10.1007/s00253-020-10801-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/08/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
|
23
|
Sidorova TM, Asaturova AM, Homyak AI, Zhevnova NA, Shternshis MV, Tomashevich NS. Optimization of laboratory cultivation conditions for the synthesis of antifungal metabolites by bacillus subtilis strains. Saudi J Biol Sci 2020; 27:1879-1885. [PMID: 32565709 PMCID: PMC7296493 DOI: 10.1016/j.sjbs.2020.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 01/25/2023] Open
Abstract
In order to achieve the optimal number of colony forming units and a high level of antifungal metabolites synthesis, we carried out the periodic cultivation of the Bacillus subtilis BZR 336 g and Bacillus subtilis BZR 517 strains at various pH and temperature levels. In the experiment for determining the optimal temperature, the maximum titer of B. subtilis BZR 336 g bacterium (1.6-1.7 × 109 CFU/ml) was recorded at a cultivation temperature of 20-25 °C. For B. subtilis BZR 517 strain, the temperature turned out to be optimal at 30 °C: the titer was 8.9 × 108 CFU/ml. The maximum antifungal activity of B. subtilis BZR 336 g strain against the test culture of Fusarium oxysporum var. orthoceras was observed at a cultivation temperature of 20-25 °C; for B. subtilis BZR 517 strain, 25-30 °C. When determining the optimal pH level, it was found that a high titer of B. subtilis BZR 336 g strain cells was determined at pH 8.0 (2.7 × 109 CFU/ml), for B. subtilis BZR 517 strain it was at pH 6.0-8.0 (1.0 × 109 CFU/ml). The maximum antifungal activity was noted with the same indicators. Chromatographic and bioautographic analyses suggest that the synthesized antifungal metabolites belong to surfactin and iturin A. The data obtained in this research can be used in the development of the technology for the production of effective biofungicides to protect crops against Fusarium pathogens.
Collapse
Affiliation(s)
- Tatyana M. Sidorova
- Federal State Budgetary Scientific Institution (FSBSI), “All-Russian Research Institute of Biological Plant Protection”, 350039, Krasnodar-39, VNIIBZR, Russia
| | - Anzhela M. Asaturova
- Federal State Budgetary Scientific Institution (FSBSI), “All-Russian Research Institute of Biological Plant Protection”, 350039, Krasnodar-39, VNIIBZR, Russia
| | - Anna I. Homyak
- Federal State Budgetary Scientific Institution (FSBSI), “All-Russian Research Institute of Biological Plant Protection”, 350039, Krasnodar-39, VNIIBZR, Russia
| | - Natalya A. Zhevnova
- Federal State Budgetary Scientific Institution (FSBSI), “All-Russian Research Institute of Biological Plant Protection”, 350039, Krasnodar-39, VNIIBZR, Russia
| | - Margarita V. Shternshis
- Federal State Budgetary Scientific Institution (FSBSI), “All-Russian Research Institute of Biological Plant Protection”, 350039, Krasnodar-39, VNIIBZR, Russia
| | - Natalia S. Tomashevich
- Federal State Budgetary Scientific Institution (FSBSI), “All-Russian Research Institute of Biological Plant Protection”, 350039, Krasnodar-39, VNIIBZR, Russia
| |
Collapse
|
24
|
Efficient production of surfactin from xylose-rich corncob hydrolysate using genetically modified Bacillus subtilis 168. Appl Microbiol Biotechnol 2020; 104:4017-4026. [DOI: 10.1007/s00253-020-10528-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/28/2020] [Accepted: 03/05/2020] [Indexed: 01/04/2023]
|