1
|
Smith A, Fletcher J, Swinnen J, Jonckheere K, Bazzicalupo A, Liao HL, Ragland G, Colpaert J, Lipzen A, Tejomurthula S, Barry K, V Grigoriev I, Ruytinx J, Branco S. Comparative transcriptomics provides insights into molecular mechanisms of zinc tolerance in the ectomycorrhizal fungus Suillus luteus. G3 (BETHESDA, MD.) 2024; 14:jkae156. [PMID: 39001865 PMCID: PMC11373636 DOI: 10.1093/g3journal/jkae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 04/26/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Zinc (Zn) is a major soil contaminant and high Zn levels can disrupt growth, survival, and reproduction of fungi. Some fungal species evolved Zn tolerance through cell processes mitigating Zn toxicity, although the genes and detailed mechanisms underlying mycorrhizal fungal Zn tolerance remain unexplored. To fill this gap in knowledge, we investigated the gene expression of Zn tolerance in the ectomycorrhizal fungus Suillus luteus. We found that Zn tolerance in this species is mainly a constitutive trait that can also be environmentally dependent. Zinc tolerance in S. luteus is associated with differences in the expression of genes involved in metal exclusion and immobilization, as well as recognition and mitigation of metal-induced oxidative stress. Differentially expressed genes were predicted to be involved in transmembrane transport, metal chelation, oxidoreductase activity, and signal transduction. Some of these genes were previously reported as candidates for S. luteus Zn tolerance, while others are reported here for the first time. Our results contribute to understanding the mechanisms of fungal metal tolerance and pave the way for further research on the role of fungal metal tolerance in mycorrhizal associations.
Collapse
Affiliation(s)
- Alexander Smith
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA
| | - Jessica Fletcher
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA
| | - Janne Swinnen
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, Ixelles 1050, Belgium
| | - Karl Jonckheere
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, Ixelles 1050, Belgium
| | - Anna Bazzicalupo
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Richmond 11415, UK
| | - Hui-Ling Liao
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, FL 32351, USA
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| | - Greg Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA
| | - Jan Colpaert
- Centre for Environmental Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Anna Lipzen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sravanthi Tejomurthula
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kerrie Barry
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley 94720, CA, USA
| | - Joske Ruytinx
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, Ixelles 1050, Belgium
| | - Sara Branco
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA
| |
Collapse
|
2
|
Fletcher J, Smith A, Honan A, Leary W, Dabney T, Branco S. Inter- and intra-specific metal tolerance variation in ectomycorrhizal fungal Suillus species. MYCORRHIZA 2024:10.1007/s00572-024-01162-8. [PMID: 39037611 DOI: 10.1007/s00572-024-01162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Soil metal contamination can affect growth, metabolism, and reproduction of organisms, and can lead to death. However, some fungi have evolved metal tolerance and are able to live in contaminated soils. Species in the ectomycorrhizal genus Suillus from Europe and Asia display variation in metal tolerance, yet it is unknown whether this is a widespread trait in the genus and whether it occurs in North America. Here we investigate cadmium (Cd) and zinc (Zn) tolerance in S. brevipes and S. tomentosus isolates collected from sites in the Rocky Mountains of Colorado displaying different metal content. In line with previous findings for other Suillus species, we hypothesized (1) S. brevipes and S. tomentosus to display intra-specific metal tolerance variation, (2) Zn and Cd tolerance to be correlated to soil metal content, and (3) tolerant isolates to show lower metal tissue content compared to sensitive isolates (due to increased metal exclusion). We found ample intra- and inter-specific Zn and Cd tolerance variation in both S. brevipes and S. tomentosus, but no correlation between soil metal content and tolerance. There was a negative correlation between tolerance level and Zn uptake, indicating an exclusion-based Zn tolerance strategy. Sensitive and tolerant isolates showed no difference in Cd accumulation, indicating that Cd tolerance in these species is likely not dependent on exclusion. Our study sets the groundwork for further investigation into the genetic basis of Suillus metal tolerance and whether and how it impacts pine mycorrhizal partners.
Collapse
Affiliation(s)
- Jessica Fletcher
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA.
| | - Alexander Smith
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Amy Honan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, US
| | - William Leary
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Treya Dabney
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Sara Branco
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| |
Collapse
|
3
|
Zhao B, Ding H, Hu T, Guo Y. Synergistic effects of the Se and Zn supplemental combination on the nutrient improvement of mannitol and adenosine and the multi-element bioaccessibility in Cordyceps cicadae. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Ban Y, Tan J, Xiong Y, Mo X, Li W, Jia C, Ding Y, Xu Z. The responses and detoxification mechanisms of dark septate endophytes (DSE), Exophiala salmonis, to CuO nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13773-13787. [PMID: 36149553 DOI: 10.1007/s11356-022-23099-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
To understand the tolerance mechanisms of dark septate endophytes (DSE), Exophiala salmonis, to CuO nanoparticles (CuO-NPs) with different sizes (40 and 150 nm), we investigated the morphology, antioxidant response, Cu subcellular distribution, and the melanin gene expression in the mycelia of E. salmonis. E. salmonis was cultured in liquid and solid media under the stress of increasing CuO-NP concentrations (0, 50, 100, 150, and 250 mg/L). Results showed that (1) E. salmonis showed good CuO-NP tolerance, and the tolerance to CuO-NPs at 150 nm was stronger than that at 40 nm. A large number of agglomeration structures were observed on the mycelia surface with the exception of 50 mg/L CuO-NPs with a diameter of 150 nm. (2) CuO-NP stress significantly stimulated the production of antioxidant enzymes, particularly the CuO-NPs with small particle size (40 nm). (3) Cu uptaken by E. salmonis increased proportionally with the increase of CuO-NP concentration in the medium. More than 80% Cu was absorbed in cell wall of mycelia treated with a small particle size (40 nm). (4) FTIR analysis revealed that hydroxyl, amine, carboxyl, and phosphate groups were associated with CuO-NP binding regardless of particle size. (5) Fungal melanin content increased with the addition of CuO-NPs; the increase of melanin induced by CuO-NPs with small particle size (40 nm) was more significant. (6) The expression of 1,3,6,8-tetrahydroxynaphthalene reductase (Arp2) in the melanin synthesis pathway increased under the stress of CuO-NPs, and CuO-NPs with a small particle size (40 nm) caused a significant change in the expression level of Arp2 gene than those with a large particle size (150 nm). In conclusion, E. salmonis had a strong tolerance to CuO-NPs and mitigated the toxic effects of CuO-NPs through the antioxidant system, the expression of genes related to melanin synthesis, and the synthesis of melanin.
Collapse
Affiliation(s)
- Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Jiayuan Tan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yang Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Xiantong Mo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Wenxuan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Chenyue Jia
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yiwen Ding
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
5
|
Okrasińska A, Decewicz P, Majchrowska M, Dziewit L, Muszewska A, Dolatabadi S, Kruszewski Ł, Błocka Z, Pawłowska J. Marginal lands and fungi - linking the type of soil contamination with fungal community composition. Environ Microbiol 2022; 24:3809-3825. [PMID: 35415861 PMCID: PMC9544152 DOI: 10.1111/1462-2920.16007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
Abstract
Fungi can be found in almost all ecosystems. Some of them can even survive in harsh, anthropogenically transformed environments, such as post-industrial soils. In order to verify how the soil fungal diversity may be changed by pollution, two soil samples from each of the 28 post-industrial sites were collected. Each soil sample was characterized in terms of concentration of heavy metals and petroleum derivatives. To identify soil fungal communities, fungal internal transcribed spacer 2 (ITS2) amplicon was sequenced for each sample using Illumina MiSeq platform. There were significant differences in the community structure and taxonomic diversity among the analysed samples. The highest taxon richness and evenness were observed in the non-polluted sites, and lower numbers of taxa were identified in multi-polluted soils. The presence of monocyclic aromatic hydrocarbons, gasoline and mineral oil was determined as the factors driving the differences in the mycobiome. Furthermore, in the culture-based selection experiment, two main groups of fungi growing on polluted media were identified - generalists able to live in the presence of pollution, and specialists adapted to the usage of BTEX as a sole source of energy. Our selection experiment proved that it is long-term soil contamination that shapes the community, rather than temporary addition of pollutant.
Collapse
Affiliation(s)
- Alicja Okrasińska
- Institute of Evolutionary Biology, Centre of Biological and Chemical Research Centre, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Przemyslaw Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Maria Majchrowska
- Institute of Evolutionary Biology, Centre of Biological and Chemical Research Centre, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Anna Muszewska
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | | | - Łukasz Kruszewski
- Institute of Geological SciencesPolish Academy of SciencesWarsawPoland
| | - Zuzanna Błocka
- Institute of Evolutionary Biology, Centre of Biological and Chemical Research Centre, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Julia Pawłowska
- Institute of Evolutionary Biology, Centre of Biological and Chemical Research Centre, Faculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
6
|
Liu D, Zhu L, Li T, Zhao Z. Mutualism between Dark Septate Endophytes (DSEs) and their host plants under metal stress: a case study. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1954097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Di Liu
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, People’s Republic of China
| | - Lingling Zhu
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, People’s Republic of China
| | - Tao Li
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, People’s Republic of China
| | - Zhiwei Zhao
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, People’s Republic of China
| |
Collapse
|
7
|
Kumar V, Dwivedi SK. Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10375-10412. [PMID: 33410020 DOI: 10.1007/s11356-020-11491-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/30/2020] [Indexed: 05/27/2023]
Abstract
Industrial processes and mining of coal and metal ores are generating a number of threats by polluting natural water bodies. Contamination of heavy metals (HMs) in water and soil is the most serious problem caused by industrial and mining processes and other anthropogenic activities. The available literature suggests that existing conventional technologies are costly and generated hazardous waste that necessitates disposal. So, there is a need for cheap and green approaches for the treatment of such contaminated wastewater. Bioremediation is considered a sustainable way where fungi seem to be good bioremediation agents to treat HM-polluted wastewater. Fungi have high adsorption and accumulation capacity of HMs and can be potentially utilized. The most important biomechanisms which are involved in HM tolerance and removal by fungi are bioaccumulation, bioadsorption, biosynthesis, biomineralisation, bioreduction, bio-oxidation, extracellular precipitation, intracellular precipitation, surface sorption, etc. which vary from species to species. However, the time, pH, temperature, concentration of HMs, the dose of fungal biomass, and shaking rate are the most influencing factors that affect the bioremediation of HMs and vary with characteristics of the fungi and nature of the HMs. In this review, we have discussed the application of fungi, involved tolerance and removal strategies in fungi, and factors affecting the removal of HMs.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| | - Shiv Kumar Dwivedi
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| |
Collapse
|
8
|
Patel D, Patel A, Patel M, Goswami D. Talaromyces pinophilus strain M13: a portrayal of novel groundbreaking fungal strain for phytointensification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8758-8769. [PMID: 33067792 DOI: 10.1007/s11356-020-11152-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The aim of current research was to explore different fungi as plant growth promoting fungi (PGPF). Strains of Trichoderma are well explored till now. But there are few other fungal strains that are better than Trichoderma strains. The study involves the isolation of different fungi from the rhizosphere of various agriculture farms. After isolation, 18S rRNA identification was carried out. Isolated fungi belonged to genus Penicillium, Talaromyces, Trichoderma, and Aspergillus. Isolate M13 belonging to genus Talaromyces was screened for its plant growth promoting (PGP) activity as it is a novel strain and still to be explored. Isolate M13 was identified as Talaromyces pinophilus (MG011365). Indole acetic acid (IAA) estimation was carried out using Salkowski reagent. Isolate was allowed to grow in cultivation media (Potato Dextrose Broth, PDB) in which one was supplemented with tryptophan (TRP) and one was without TRP. Phosphate solubilization was assessed using Pikovskaya's media and latter estimated using stannous chloride method, showing decent solubilization of phosphate. Siderophore production was assessed using CAS assay that indicated decent extent of siderophore production. Further for biocontrol, enzymatic assay for β-glucanase and chitinase was carried out. For β-glucanase enzyme production 1% carboxymethylcellulose (CMC) and for chitinase enzyme production 10% v/v colloidal chitin (as a sole carbon source) supplemented in solid minimal-medium-9 (MM9) were used. Antagonism effect of isolate M13 was carried out against Aspergillus niger by dual cultural method. As the strain M13 showed several PGP traits, liquid bioformulation was prepared to perform seed germination assay and pot trials on chickpea, followed by field trial on banana plant. All the experimental data of biochemical assessment with pot and field trials suggest T. pinophilus M13 as a novel fungus that can be used as biointensifier.
Collapse
Affiliation(s)
- Dhavalkumar Patel
- Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Waghodia, Gujarat, 380058, India
| | - Abhishek Patel
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charusat University, Changa, Gujarat, India
| | - Mahima Patel
- Department of Biotechnology, School of Science, Royal Melbourne Institute of Technology, Melbourne, Australia
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, School of Sciences (SoS), Gujarat University, Ahmedabad, India.
| |
Collapse
|
9
|
Malik A, Butt TA, Naqvi STA, Yousaf S, Qureshi MK, Zafar MI, Farooq G, Nawaz I, Iqbal M. Lead tolerant endophyte Trametes hirsuta improved the growth and lead accumulation in the vegetative parts of Triticum aestivum L. Heliyon 2020; 6:e04188. [PMID: 32671237 PMCID: PMC7339007 DOI: 10.1016/j.heliyon.2020.e04188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 06/08/2020] [Indexed: 12/27/2022] Open
Abstract
Rapid industrialization and increasing population are continuously adding contaminants to our environment. Among those, heavy metals are considered to be one of the serious threats to the ecosystem due to their persistent nature. Microbe assisted phytoremediation is an effective tool for metal remediation as microbes enhance the metal availability and uptake to the host plants or reduce it by binding them intracellularly or extracellularly. An endophytic fungus, Trametes hirsuta, was isolated from Chenopodium album L. plant growing in the lead (Pb) contaminated soil of an industrial area. This is the first study citing Trametes hirsuta, as a root endophyte of Chenopodium album L. This endophytic fungus was found to be tolerant to high concentration of Pb i.e., 1500 mg L-1, when tested in-vitro. Wheat (Triticum aestivum L.) seedlings were infected by Trametes hirsuta and Pb tolerance was observed. With the fungal inoculation plants cumulative growth and total chlorophyll content increased by 24% and 18%, respectively as compared to their respective non-inoculated controls at 1000 mg kg-1 Pb. Similary, 50% more Pb accumulation was measured in the shoots of fungal inoculated plants at 1500 mg kg-1 Pb as compared to control. Thus, the results of the present study suggest that mutualism with endophytic fungi can improve the survival of host plants in metal contaminated soils, additionally it can also assist the phytoextraction of heavy metals from polluted sites by increasing their uptake by the host plants.
Collapse
Affiliation(s)
- Amna Malik
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tayyab Ashfaq Butt
- Department of Civil Engineering, College of Engineering, University of Hail, Hail, Saudi Arabia
| | - Syed Tatheer Alam Naqvi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Sohail Yousaf
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghazanfar Farooq
- Department of Computer Sciences, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ismat Nawaz
- Department of Bio Sciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
10
|
Martínez-Espinosa RM. Microorganisms and Their Metabolic Capabilities in the Context of the Biogeochemical Nitrogen Cycle at Extreme Environments. Int J Mol Sci 2020; 21:ijms21124228. [PMID: 32545812 PMCID: PMC7349289 DOI: 10.3390/ijms21124228] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Extreme microorganisms (extremophile) are organisms that inhabit environments characterized by inhospitable parameters for most live beings (extreme temperatures and pH values, high or low ionic strength, pressure, or scarcity of nutrients). To grow optimally under these conditions, extremophiles have evolved molecular adaptations affecting their physiology, metabolism, cell signaling, etc. Due to their peculiarities in terms of physiology and metabolism, they have become good models for (i) understanding the limits of life on Earth, (ii) exploring the possible existence of extraterrestrial life (Astrobiology), or (iii) to look for potential applications in biotechnology. Recent research has revealed that extremophilic microbes play key roles in all biogeochemical cycles on Earth. Nitrogen cycle (N-cycle) is one of the most important biogeochemical cycles in nature; thanks to it, nitrogen is converted into multiple chemical forms, which circulate among atmospheric, terrestrial and aquatic ecosystems. This review summarizes recent knowledge on the role of extreme microorganisms in the N-cycle in extremophilic ecosystems, with special emphasis on members of the Archaea domain. Potential implications of these microbes in global warming and nitrogen balance, as well as their biotechnological applications are also discussed.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; ; Tel.: +34-965903400 (ext. 1258)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
11
|
Oxidative and antioxidative responses to antimony stress by endophytic fungus Aspergillus tubingensis isolated from antimony accumulator Hedysarum pallidum Desf. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00305-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Glukhova LB, Frank YA, Danilova EV, Avakyan MR, Banks D, Tuovinen OH, Karnachuk OV. Isolation, Characterization, and Metal Response of Novel, Acid-Tolerant Penicillium spp. from Extremely Metal-Rich Waters at a Mining Site in Transbaikal (Siberia, Russia). MICROBIAL ECOLOGY 2018; 76:911-924. [PMID: 29663040 DOI: 10.1007/s00248-018-1186-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
The role of fungi in metal cycling in acidic environments has been little explored to date. In this study, two acid-tolerant and metal-resistant Penicillium isolates, strains ShG4B and ShG4C, were isolated from a mine site in the Transbaikal area of Siberia (Russia). Waters at the mine site were characterized by extremely high metal concentrations: up to 18 g l-1 Fe and > 2 g l-1 each of Cu, Zn, Al, and As. Both isolates were identified as Penicillium spp. by phylogenetic analyses and they grew well in Czapek medium acidified to pH 2.5. Resistance to Cu, Cd, Ni, Co, and arsenate was in the range of 1-10 g l-1. Further experiments with Penicillium strain ShG4C demonstrated that growth in Cu-containing media was accompanied by the precipitation of Cu-oxalate (moolooite) and the formation of extracellular vesicles enriched in Cu on the mycelia. Vesicles were greatly reduced in size in Cd-containing media and were not formed in the presence of Ni or Co. Cd-oxalate was detected as a crystalline solid phase in Cd-exposed mycelia. Hydrated Ni-sulfate (retgersite) and Co-sulfate (bieberite) were detected in mycelia grown in the presence of Ni and Co, respectively. The results demonstrated that acid-tolerant and metal-resistant Penicillium constitute a component in extremophilic microbiomes, contributing to organic matter breakdown and formation of secondary solid phases at pH ranges found in acid rock drainage.
Collapse
Affiliation(s)
- Lubov B Glukhova
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Lenin Ave. 36, Tomsk, Russia, 634050
| | - Yulia A Frank
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Lenin Ave. 36, Tomsk, Russia, 634050
| | - Ehrzena V Danilova
- Institute of General and Experimental Biology, Russian Academy of Sciences, Sakhyanovoy St. 6, Ulan-Ude, Russia, 670047
| | - Marat R Avakyan
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Lenin Ave. 36, Tomsk, Russia, 634050
| | - David Banks
- School of Engineering, Systems Power & Energy, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
- Holymoor Consultancy Ltd., 360 Ashgate Road, Chesterfield, Derbyshire, S40 4BW, UK
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Olga V Karnachuk
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Lenin Ave. 36, Tomsk, Russia, 634050.
| |
Collapse
|