1
|
Gao Y, Li D. Antibacterial Mechanism of Garviecin LG34 Against S. Aureus and L. Monocytogenes and its Application in Milk Preservation. J Food Prot 2024; 87:100345. [PMID: 39147097 DOI: 10.1016/j.jfp.2024.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The objective of this study was to reveal the antibacterial mode of action of garviecin LG34 against S. aureus CICC 21600 and L. monocytogenes CICC 21633 and measure the inhibitions on these two foodborne pathogenic bacteria in milk. Antibacterial mechanism of garviecin LG34 was ascertained by its effect on the efflux of Potassium (K+) ions, extracellular electrical conductivity, UV-absorbing substances, potential across the membrane (ΔΨ), and cell permeability. The inhibition of garviecin LG34 against S. aureus CICC 21600 and L. monocytogenes CICC 21600 in milk was studied by viable counting method. Supplementation with 160 AU/ml of garviecin LG34 had a bactericidal effect on S. aureus CICC 21600 and L. monocytogenes CICC 21633. A total of 80, 160, and 320 AU/ml of garviecin LG34 resulted in the effusion of potassium ion and UV-absorbing substances, the leakage of cellular electrolytes, and the dissipation of electrical potential across the membrane of these two food-borne bacteria and showed a dose-dependent. Moreover, the increase in cell permeability of both strains was observed by flow cytometer after cells treated with 160 AU/ml of garviecin LG34. Garviecin LG34 significantly inhibited the growth of these two food-borne bacteria in milk, especially in skimmed milk. Garviecin LG34 could cause pore formation, intracellular materials release, and permeability increase of S. aureus CICC 21600 and L. monocytogenes CICC 21633, and could be applied to milk as bio-preservative.
Collapse
Affiliation(s)
- Yurong Gao
- School of Biological and Environmental Engineering, Chaohu University, Bantang Road No. 1, Chaohu Economic Development Zone, Hefei 238024, China.
| | - Dapeng Li
- School of Biological and Environmental Engineering, Chaohu University, Bantang Road No. 1, Chaohu Economic Development Zone, Hefei 238024, China.
| |
Collapse
|
2
|
Gao Y, Li D. Antibacterial mode of action of garviecin LG34 against Gram-negative bacterium Salmonella typhimurium. FEMS Microbiol Lett 2024; 371:fnae066. [PMID: 39138064 DOI: 10.1093/femsle/fnae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024] Open
Abstract
Garviecin LG34 produced by Lactococcus garvieae LG34 exhibits wide-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria. This work aimed at clarifying the antibacterial mode of action of garviecin LG34 against Gram-negative bacterium Salmonella typhimurium. To determine the concentration for the bacteriocin antimicrobial mode experiments, the minimum inhibitory concentration of garviecin LG34 against S. typhimurium CICC21484 was determined as 0.25 mg/ml. Garviecin LG34 decreased the viable count of S. typhimurium CICC21484 and its antibacterial activity was the dose and time dependant. Garviecin LG34 led to the dissipation of transmembrane potential, the rise in the extracellular conductivity, UV-absorbing material at 260 nm, and LDH level of S. typhimurium CICC21484. Scanning electron micrographs results shown that garviecin LG34 cause dramatic deformation and fragmentation including the flagellum shedding, pores formation in surface, and even completely breakage of S. typhimurium cell. Moreover, garviecin LG34 decreased the intracellular ATP level. The results of this study demonstrated that garviecin LG34 can destroy cell structure, increase membrane permeability of S. typhimurium, thereby might be used as biopreservative for treating food borne and salmonellosis resulting from Gram-negative bacterium S. typhimurium.
Collapse
Affiliation(s)
- Yurong Gao
- School of Biological and Environmental Engineering, Chaohu University, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
| | - Dapeng Li
- School of Biological and Environmental Engineering, Chaohu University, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
| |
Collapse
|
3
|
Peng Z, He M, Yang X, Zhang J. Discovery and Characterization of a Novel Bacteriocin HA2-5 that Strongly Inhibits Propionibacterium acnes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12741-12748. [PMID: 37587448 DOI: 10.1021/acs.jafc.3c04617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Increased drug resistance has significantly reduced the effectiveness of antibiotics used in the treatment of Propionibacterium acnes. Therefore, there has been a trend toward the development of new antimicrobial agents to circumvent drug resistance. In this study, we isolated and purified a novel bacteriocin, HA2-5, from Bacillus haynesii HA2, which effectively killed P. acnes through membrane disruption at a minimum inhibitory concentration (MIC) of 8 μg/mL. HA2-5 with 2× MIC was able to kill 99.9% of P. acnes within 24 h. HA2-5 shows excellent stability and tolerance to temperature, pH, proteases, chemical reagents, UV radiation, and metal ions, with almost no loss of inhibitory activity after treatment. In addition, the very low hemolytic activity and cytotoxicity suggest that HA2-5 is biosafe. Notably, HA2-5 exhibits preferred antibacterial activity against gram-positive pathogens with an MIC of 16-32 μg/mL. In conclusion, this study shows that bacteriocin HA2-5 has the potential to be used as an alternative to antibiotics for acne treatment.
Collapse
Affiliation(s)
- Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mengni He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xinyu Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
4
|
Heinzinger LR, Pugh AR, Wagner JA, Otto M. Evaluating the Translational Potential of Bacteriocins as an Alternative Treatment for Staphylococcus aureus Infections in Animals and Humans. Antibiotics (Basel) 2023; 12:1256. [PMID: 37627676 PMCID: PMC10451987 DOI: 10.3390/antibiotics12081256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance remains a global threat to human and animal health. Staphylococcus aureus is an opportunistic pathogen that causes minor to life-threatening infections. The widespread use of antibiotics in the clinical, veterinary, and agricultural setting combined with the increasing prevalence of antibiotic-resistant S. aureus strains makes it abundantly clear that alternatives to antibiotics are urgently needed. Bacteriocins represent one potential alternative therapeutic. They are antimicrobial peptides that are produced by bacteria that are generally nontoxic and have a relatively narrow target spectrum, and they leave many commensals and most mammalian cells unperturbed. Multiple studies involving bacteriocins (e.g., nisin, epidermicin, mersacidin, and lysostaphin) have demonstrated their efficacy at eliminating or treating a wide variety of S. aureus infections in animal models. This review provides a comprehensive and updated evaluation of animal studies involving bacteriocins and highlights their translational potential. The strengths and limitations associated with bacteriocin treatments compared with traditional antibiotic therapies are evaluated, and the challenges that are involved with implementing novel therapeutics are discussed.
Collapse
Affiliation(s)
| | | | | | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA; (L.R.H.); (A.R.P.); (J.A.W.)
| |
Collapse
|
5
|
Castellano P, Melian C, Burgos C, Vignolo G. Bioprotective cultures and bacteriocins as food preservatives. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:275-315. [PMID: 37722775 DOI: 10.1016/bs.afnr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food preservation technologies face the challenge of extending product shelf life applying different factors to prevent the microbiological spoilage of food and inhibit/inactivate food borne pathogens maintaining or even enhancing its quality. One such preservation strategy is the application of bacteriocins or bacteriocin-producer cultures as a kind of food biopreservation. Bacteriocins are ribosomally synthesized small polypeptide molecules that exert antagonistic activity against closely related and unrelated bacteria without harming the producing strain by specific immunity proteins. This chapter aims to contribute to current knowledge about innovative natural preservative agents and their application in the food industry. Specifically, its purpose is to analyze the classification of bacteriocins from lactic acid bacteria (LAB), desirable characteristics of bacteriocins that position them in a privileged place in food biopreservation technology, their success story as well as the bacteriocinogenic LAB in various food systems. Finally, challenges and barrier strategies used to enhance the efficiency of the bacteriocins antimicrobial effect are presented in this chapter.
Collapse
Affiliation(s)
- Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina.
| | - Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Carla Burgos
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| |
Collapse
|
6
|
Li Q, Chen Q, Wu Y, Chen Z, Liu Y, Fang Z, Deng Q. Purification, characterization and structural identification of a novel bacteriocin produced by marine original Enterococcus durans YQ-6, and its inhibition of Listeria monocytogenes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
To HTA, Chhetri V, Settachaimongkon S, Prakitchaiwattana C. Stress tolerance-Bacillus with a wide spectrum bacteriocin as an alternative approach for food bio-protective culture production. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
A rapid one-step process for the isolation of antibacterial peptides by silica-decorated Fe3O4nanoparticles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Du R, Ping W, Ge J. Purification, characterization and mechanism of action of enterocin HDX-2, a novel class IIa bacteriocin produced by Enterococcus faecium HDX-2. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, Darb Emamie A, Ghanavati R, Kakanj M. Bacteriocins: Properties and potential use as antimicrobials. J Clin Lab Anal 2021; 36:e24093. [PMID: 34851542 PMCID: PMC8761470 DOI: 10.1002/jcla.24093] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/03/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
A variety of bacteriocins originate from lactic acid bacteria, which have recently been modified by scientists. Many strains of lactic acid bacteria related to food groups could produce bacteriocins or antibacterial proteins highly effective against foodborne pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, P. aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, and Clostridium botulinum. A wide range of bacteria belonging primarily to the genera Bifidobacterium and Lactobacillus have been characterized with different health‐promoting attributes. Extensive studies and in‐depth understanding of these antimicrobials mechanisms of action could enable scientists to determine their production in specific probiotic lactic acid bacteria, as they are potentially crucial for the final preservation of functional foods or for medicinal applications. In this review study, the structure, classification, mode of operation, safety, and antibacterial properties of bacteriocins as well as their effect on foodborne pathogens and antibiotic‐resistant bacteria were extensively studied.
Collapse
Affiliation(s)
- Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Masoume Halaj Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Darb Emamie
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Kakanj
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, Iran
| |
Collapse
|
11
|
Kirtonia K, Salauddin M, Bharadwaj KK, Pati S, Dey A, Shariati MA, Tilak VK, Kuznetsova E, Sarkar T. Bacteriocin: A new strategic antibiofilm agent in food industries. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Vaca J, Ortiz A, Sansinenea E. Bacillus sp. Bacteriocins: Natural Weapons against Bacterial Enemies. Curr Med Chem 2021; 29:2093-2108. [PMID: 34047258 DOI: 10.2174/0929867328666210527093041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, antibiotic-resistant pathogenic bacteria are emerging as an important health problem worldwide. The search for new compounds with antibiotic characteristics is the most promising alternative. Bacteriocins are natural compounds that are inhibitory against pathogens, and Bacillus species are the major producers of these compounds, which have shown antimicrobial activity against clinically important bacteria. These peptides not only have potential in the pharmaceutical industry but also in food and agricultural sectors. OBJECTIVE We provide an overview of the recent bacteriocins isolated from different species of Bacillus including their applications and the older bacteriocins. RESULTS In this review, we have revised some works about the improvements carried out in the production of bacteriocins. CONCLUSION These applications make bacteriocins very promising compounds that need to study for industrial production.
Collapse
Affiliation(s)
- Jessica Vaca
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| | - Aurelio Ortiz
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| |
Collapse
|
13
|
Ye P, Wang J, Liu M, Li P, Gu Q. Purification and characterization of a novel bacteriocin from Lactobacillus paracasei ZFM54. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111125] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Ng ZJ, Zarin MA, Lee CK, Tan JS. Application of bacteriocins in food preservation and infectious disease treatment for humans and livestock: a review. RSC Adv 2020; 10:38937-38964. [PMID: 35518417 PMCID: PMC9057404 DOI: 10.1039/d0ra06161a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases caused by bacteria that can be transmitted via food, livestock and humans are always a concern to the public, as majority of them may cause severe illnesses and death. Antibacterial agents have been investigated for the treatment of bacterial infections. Antibiotics are the most successful antibacterial agents that have been used widely for decades to ease human pain caused by bacterial infections. Nevertheless, the emergence of antibiotic-resistant bacteria has raised awareness amongst public about the downside of using antibiotics. The threat of antibiotic resistance to global health, food security and development has been emphasized by the World Health Organization (WHO), and research studies have been focused on alternative antimicrobial agents. Bacteriocin, a natural antimicrobial peptide, has been chosen to replace antibiotics for its application in food preservation and infectious disease treatment for livestock and humans, as it is less toxic.
Collapse
Affiliation(s)
- Zhang Jin Ng
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| | - Mazni Abu Zarin
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| | - Chee Keong Lee
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| |
Collapse
|
15
|
Processing Wastewaters from Spanish-Style cv. Chalkidiki Green Olives: A Potential Source of Enterococcus Casseliflavus and Hydroxytyrosol. Microorganisms 2020; 8:microorganisms8091274. [PMID: 32825632 PMCID: PMC7564576 DOI: 10.3390/microorganisms8091274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to examine the isolation of indigenous lactic acid bacteria (LAB) with functional properties from Spanish-style cv. Chalkidiki green olive processing wastewaters (GOW). Predominant indigenous LAB could serve as bioaugmentation agents/starter culture for table olives production and protected designation of origin specification. Spontaneous fermentation of fresh GOW over different temperatures (15 °C to 50 °C) and pH values (3.5 to 11.5) for 30 d enabled the isolation/molecular identification of the lactic acid bacterium Enterococcus casseliflavus and the plant-associated bacterium Bacillus amyloliquefaciens subsp. plantarum. E. casseliflavus was found to reduce chemical oxygen demand by 72%. Its resistance to extreme pH values, salinity, and temperature was successfully modeled and the minimum inhibitory concentration of oleuropein against the bacterial growth was determined (0.9 g/L). Furthermore, hydroxytyrosol content was doubled (up to 553 mg/L) after GOW spontaneous fermentation under acidic conditions at 15 °C to 30 °C for 120 d, creating an additional source of input. These results highlight the significance and potential of E. casseliflavus in Spanish-style cv. Chalkidiki green olive processing.
Collapse
|