1
|
Barjaktarović I, Maletić JS, Vučinić N, Milutinović A, Grujičić M, Čabarkapa V. Diagnosing COVID-19: diagnostic importance of detecting E gene of the SARS-CoV-2 genome. Future Virol 2023. [DOI: 10.2217/fvl-2021-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aim: To evaluate the significance of E gene analysis in addition to N and RdRp genes of SARS-CoV-2, and to compare the specificity and sensitivity of targets. Materials & methods: We used two reverse transcription-PCR assays: one targeting N, E and RdRp and the other targeting N and RdRp genes and analyzed variation in threshold cycle (Ct) values. Results: Of the 155 samples, 70.32% tested positive: all three genes were detected in 45.87%, N and RdRp in 19.27% and only N in 34.86%. Patients negative for the E gene were tested after symptoms disappeared and Ct values were significantly higher. Conclusion: Samples negative for the E gene were potentially false positive and clinical conditions should be assessed while interpreting results.
Collapse
Affiliation(s)
- Iva Barjaktarović
- Department of General Education Subjects, University of Novi Sad, Faculty of Medicine, 2100, Novi Sad, Serbia
- Clinical Center of Vojvodina, Laboratory Medicine Center, 21000, Novi Sad, Serbia
| | - Jelena Stojčević Maletić
- Clinical Center of Vojvodina, Laboratory Medicine Center, 21000, Novi Sad, Serbia
- Department of Biochemistry, University of Novi Sad, Faculty of Medicine, 21000, Novi Sad, Serbia
| | - Nataša Vučinić
- Department of Pharmacy, University of Novi Sad, Faculty of Medicine, 21000, Novi Sad, Serbia
| | - Aleksandra Milutinović
- Department of General Education Subjects, University of Novi Sad, Faculty of Medicine, 2100, Novi Sad, Serbia
| | - Maja Grujičić
- Department of General Education Subjects, University of Novi Sad, Faculty of Medicine, 2100, Novi Sad, Serbia
| | - Velibor Čabarkapa
- Clinical Center of Vojvodina, Laboratory Medicine Center, 21000, Novi Sad, Serbia
- Department of Pathophysiology & Laboratory Medicine, University of Novi Sad, Faculty of Medicine, 21000, Novi Sad, Serbia
| |
Collapse
|
2
|
Molecular and Structural Analysis of Specific Mutations from Saudi Isolates of SARS-CoV-2 RNA-Dependent RNA Polymerase and their Implications on Protein Structure and Drug-Protein Binding. Molecules 2022; 27:molecules27196475. [PMID: 36235011 PMCID: PMC9573158 DOI: 10.3390/molecules27196475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/09/2022] Open
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has stressed the global health system to a significant level, which has not only resulted in high morbidity and mortality but also poses a threat for future pandemics. This situation warrants efforts to develop novel therapeutics to manage SARS-CoV-2 in specific and other emerging viruses in general. This study focuses on SARS-CoV2 RNA-dependent RNA polymerase (RdRp) mutations collected from Saudi Arabia and their impact on protein structure and function. The Saudi SARS-CoV-2 RdRp sequences were compared with the reference Wuhan, China RdRp using a variety of computational and biophysics-based approaches. The results revealed that three mutations-A97V, P323I and Y606C-may affect protein stability, and hence the relationship of protein structure to function. The apo wild RdRp is more dynamically stable with compact secondary structure elements compared to the mutants. Further, the wild type showed stable conformational dynamics and interaction network to remdesivir. The net binding energy of wild-type RdRp with remdesivir is -50.76 kcal/mol, which is more stable than the mutants. The findings of the current study might deliver useful information regarding therapeutic development against the mutant RdRp, which may further furnish our understanding of SARS-CoV-2 biology.
Collapse
|
3
|
Development of a database of RNA helicase inhibitors (VHIMDB) of pathogenic viruses and in silico screening for the potential drug molecules. THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The pathogenic RNA virus that infects human beings contains the RNA helicase enzyme, responsible for the replication of the viral genome. The enzyme is used as a suitable target against which the drug molecule acts. Therefore, the identification and proposal the novel compounds that can be targeted toward the helicase enzymes to stop the functioning of the enzyme is desirable. Although many viral helicase inhibitor molecules have been identified, still yet no unique database is available for these compounds. This research work envisages developing a curated database of RNA helicase inhibitors. The database contains in total of 353 entries that are computationally predicted and experimentally verified RNA helicase inhibitors. The database contains information like compound name, chemical properties, chemical format, and name of the target virus to which it acts against it with a user-friendly menu-driven search engine. Presently, the database is freely available at: https://vhimdb.rsatpathy.in/. Further, in silico screening of the whole database by drug-likeness and toxicity resulted in 14 potential drug molecules. The selected molecules were analyzed for their effectiveness in binding by using molecular docking score and interaction with the helicase enzymes of three categories of pathogenic viruses (SARS-CoV-2, SARS-CoV, and MERS-CoV).
Collapse
|
4
|
Yashvardhini N, Jha DK, Kumar A, Gaurav M, Sayrav K. Genome sequence analysis of nsp15 from SARS-CoV-2. Bioinformation 2022; 18:432-437. [PMID: 36909703 PMCID: PMC9997503 DOI: 10.6026/97320630018432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome), a causative agent of COVID-19 disease created a pandemic situation worldwide. Nsp15 is a uridine specific endoribonuclease encoded by the genome of SARS-CoV-2. It plays important role in processing viral RNA and, thus evades the host immune system. Therefore, it is of interest to identify mutants of nsp15 amongst Asian SARS-CoV-2 isolates, where a total of 1795 mutations, from 7793 sequences of Asia submitted till 31st January 2022, amongst which A231V, H234Y, K109N, K259R and S261A mutations were found frequent. Hence, we report data on the predicted secondary structure of wild type form followed by hydropathy plot, physiochemical properties, Ramachandran plot, B-cell epitopes prediction and protein modeling of wild type and mutant of nsp15 protein. Data shows that nsp15 of SARS-CoV-2 is a pontential candidate for the development of vaccine to control the infections of SARS-CoV-2.
Collapse
Affiliation(s)
- Niti Yashvardhini
- Department of Microbiology, Patna Women’s College, Patna, 800 001, Bihar, India
| | - Deepak Kumar Jha
- Department of Zoology, S.M.P. Girls Degree College, Ballia, 277401, Uttar Pradesh, India
| | - Amit Kumar
- Department of Botany, Patna University, Patna-800 005, Bihar, India
| | - Manjush Gaurav
- Department of Botany, Patna University, Patna-800 005, Bihar, India
| | - Kumar Sayrav
- Department of Chemistry, V.K.S. University, Ara-802301, Bihar India
| |
Collapse
|
5
|
Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 2022; 50:W276-W279. [PMID: 35412617 PMCID: PMC9252731 DOI: 10.1093/nar/gkac240] [Citation(s) in RCA: 1370] [Impact Index Per Article: 456.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
The EMBL-EBI search and sequence analysis tools frameworks provide integrated access to EMBL-EBI’s data resources and core bioinformatics analytical tools. EBI Search (https://www.ebi.ac.uk/ebisearch) provides a full-text search engine across nearly 5 billion entries, while the Job Dispatcher tools framework (https://www.ebi.ac.uk/services) enables the scientific community to perform a diverse range of sequence analysis using popular bioinformatics applications. Both allow users to interact through user-friendly web applications, as well as via RESTful and SOAP-based APIs. Here, we describe recent improvements to these services and updates made to accommodate the increasing data requirements during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Fábio Madeira
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matt Pearce
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Adrian R N Tivey
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Prasad Basutkar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Joon Lee
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ossama Edbali
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Nandana Madhusoodanan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Anton Kolesnikov
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Rodrigo Lopez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
6
|
Assis LC, de Castro AA, de Jesus JPA, da Cunha EFF, Nepovimova E, Krejcar O, Kuca K, Ramalho TC, La Porta FDA. Theoretical insights into the effect of halogenated substituent on the electronic structure and spectroscopic properties of the favipiravir tautomeric forms and its implications for the treatment of COVID-19. RSC Adv 2021; 11:35228-35244. [PMID: 35493173 PMCID: PMC9042810 DOI: 10.1039/d1ra06309j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/16/2021] [Indexed: 02/02/2023] Open
Abstract
In this study, we systematically investigated the electronic structure, spectroscopic (nuclear magnetic resonance, infrared, Raman, electron ionization mass spectrometry, UV-Vis, circular dichroism, and emission) properties, and tautomerism of halogenated favipiravir compounds (fluorine, chlorine, and bromine) from a computational perspective. Additionally, the effects of hydration on the proton transfer mechanism of the tautomeric forms of the halogenated favipiravir compounds are discussed. Our results suggest that spectroscopic properties allow for the elucidation of such tautomeric forms. As is well-known, the favipiravir compound has excellent antiviral properties and hence was recently tested for the treatment of new coronavirus (SARS-CoV-2). Through in silico modeling, in the current study, we evaluate the role of such tautomeric forms in order to consider the effect of drug-metabolism in the inhibition process of the main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 virus. According to the molecular docking, all halogenated compounds presented a better interaction energy than the co-crystallized active ligand (-3.5 kcal mol-1) in the viral RdRp, in both wild-type (-6.3 to -6.5 kcal mol-1) and variant (-5.4 to -5.6 kcal mol-1) models. The variant analyzed for RdRp (Y176C) decreases the affinity of the keto form of the compounds in the active site, and prevented the ligands from interacting with RNA. These findings clearly indicated that all these compounds are promising as drug candidates for this molecular target.
Collapse
Affiliation(s)
- Letícia Cristina Assis
- Department of Chemistry, Federal University of Lavras CEP 37200-000 Lavras Minas Gerais Brazil
| | | | - João Paulo Almirão de Jesus
- Post-graduation Program in Materials Science and Engineering and Laboratory of Nanotechnology and Computational Chemistry, Federal Technological University of Paraná Avenida dos Pioneiros 3131 86036-370 Londrina Paraná Brazil
| | | | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove Hradec Kralove Czech Republic
| | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove Hradec Kralove Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove Hradec Kralove Czech Republic
| | - Teodorico Castro Ramalho
- Department of Chemistry, Federal University of Lavras CEP 37200-000 Lavras Minas Gerais Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove Hradec Kralove Czech Republic
| | - Felipe de Almeida La Porta
- Post-graduation Program in Materials Science and Engineering and Laboratory of Nanotechnology and Computational Chemistry, Federal Technological University of Paraná Avenida dos Pioneiros 3131 86036-370 Londrina Paraná Brazil
| |
Collapse
|