1
|
Biswas P, Khan A, Mallick AI. Targeted Bioimaging of Microencapsulated Recombinant LAB Vector Expressing Fluorescent Reporter Protein: A Non-invasive Approach for Microbial Tracking. ACS Biomater Sci Eng 2024; 10:5210-5225. [PMID: 39087888 DOI: 10.1021/acsbiomaterials.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Lactococcus lactis (L. lactis), the first genetically modified Generally Recognized As Safe (GRAS) category Lactic Acid producing Bacteria (LAB), is best known for its generalized health-promoting benefits and ability to express heterologous proteins. However, achieving the optimal probiotic effects requires a selective approach that would allow us to study in vivo microbial biodistribution, fate, and immunological consequences. Although the chemical conjugation of fluorophores and chromophores represent the standard procedure to tag microbial cells for various downstream applications, it requires a high-throughput synthesis scheme, which is often time-consuming and expensive. On the contrary, the genetic manipulation of LAB vector, either chromosomally or extra-chromosomally, to express bioluminescent or fluorescent reporter proteins has greatly enhanced our ability to monitor bacterial transit through a complex gut environment. However, with faster passage and quick washing out from the gut due to rhythmic contractions of the digestive tract, real-time tracking of LAB vectors, particularly non-commensal ones, remains problematic. To get a deeper insight into the biodistribution of non-commensal probiotic bacteria in vivo, we bioengineered L. lactis to express fluorescence reporter proteins, mCherry (bright red monomeric fluorescent protein) and mEGFP (monomeric enhanced green fluorescent protein), followed by microencapsulation with a mucoadhesive and biodegradable polymer, chitosan. We show that coating of recombinant Lactococcus lactis (rL. lactis) with chitosan polymer, cross-linked with tripolyphosphate (TPP), retains their ability to express the reporter proteins stably without altering the specificity and sensitivity of fluorescence detection in vitro and in vivo. Further, we provide evidence of enhanced intragastric stability by chitosan-TPP (CS) coating of rL. lactis cells, allowing us to study the spatiotemporal distribution for an extended time in the gut of two unrelated hosts, avian and murine. The present scheme involving genetic modification and chitosan encapsulation of non-commensal LAB vector demonstrates great promise as a non-invasive and intensive tool for active live tracking of gut microbes.
Collapse
Affiliation(s)
- Prakash Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
2
|
Piri-Gharaghie T, Ghajari G, Rezaeizadeh G, Adil M, Mahdi MH. A novel vaccine strategy against Brucellosis using Brucella abortus multi-epitope OMPs vaccine based on Lactococcus lactis live bacterial vectors. Int Immunopharmacol 2024; 134:112204. [PMID: 38703567 DOI: 10.1016/j.intimp.2024.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Brucella infections typically occur in mucosal membranes, emphasizing the need for mucosal vaccinations. This study evaluated the effectiveness of orally administering Lactococcus lactis (L. lactis) for producing the Brucella abortus multi-epitope OMPs peptide. A multi-epitope plasmid was generated through a reverse vaccinology method, and mice were administered the genetically modified L. lactis orally as a vaccine. The plasmid underwent digestion, synthesizing a 39 kDa-sized protein known as OMPs by the target group. The sera of mice that were administered the pNZ8124-OMPs-L. lactis vaccine exhibited a notable presence of IgG1 antibodies specific to outer membrane proteins (OMPs), heightened levels of interferon (IFN-λ) and tumor necrosis factor alpha (TNF-α), and enhanced transcription rates of interleukin 4 (IL-4) and interleukin 10 (IL-10). The spleen sections from the pNZ8124-OMPs-L. lactis and IRIBA group had less morphological damage associated with inflammation, infiltration of lymphocytes, and lesions to the spleen. The findings present a novel approach to utilizing the food-grade, non-pathogenic L. lactis as a protein cell factory to synthesize innovative immunological candidate OMPs. This approach offers a distinctive way to evaluate experimental medicinal items' practicality, safety, affordability, and long-term sustainability.
Collapse
Affiliation(s)
- Tohid Piri-Gharaghie
- Biotechnology Research Center, Faculty of Biological Sciences, East Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Ghazal Ghajari
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Golnoosh Rezaeizadeh
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
3
|
Khairullah AR, Kurniawan SC, Puspitasari Y, Aryaloka S, Silaen OSM, Yanestria SM, Widodo A, Moses IB, Effendi MH, Afnani DA, Ramandinianto SC, Hasib A, Riwu KHP. Brucellosis: Unveiling the complexities of a pervasive zoonotic disease and its global impacts. Open Vet J 2024; 14:1081-1097. [PMID: 38938422 PMCID: PMC11199761 DOI: 10.5455/ovj.2024.v14.i5.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/08/2024] [Indexed: 06/29/2024] Open
Abstract
One zoonotic infectious animal disease is brucellosis. The bacteria that cause brucellosis belong to the genus Brucella. Numerous animal and human species are affected by brucellosis, with an estimated 500,000 human cases recorded annually worldwide. The occurrence of new areas of infection and the resurgence of infection in already infected areas indicate how dynamically brucellosis is distributed throughout different geographic regions. Bacteria originate from the blood and are found in the reticuloendothelial system, the liver, the spleen, and numerous other locations, including the joints, kidneys, heart, and genital tract. Diagnosis of this disease can be done by bacterial isolation, molecular tests, modified acid-fast stain, rose bengal test (RBT), milk ring test, complement fixation test, enzyme-linked immunosorbent assay, and serum agglutination test. The primary sign of a Brucella abortus infection is infertility, which can result in abortion and the birth of a frail fetus that may go on to infect other animals. In humans, the main symptoms are acute febrile illness, with or without localization signs, and chronic infection. Female cattle have a greater risk of contracting Brucella disease. Human populations at high risk of contracting brucellosis include those who care for cattle, veterinarians, slaughterhouse employees, and butchers. Antibiotic treatment of brucellosis is often unsuccessful due to the intracellular survival of Brucella and its adaptability in macrophages. A "one health" strategy is necessary to control illnesses like brucellosis.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Shendy Canadya Kurniawan
- Master Program of Animal Sciences, Department of Animal Sciences, Specialisation in Molecule, Cell and Organ Functioning, Wageningen University and Research, Wageningen, The Netherlands
| | - Yulianna Puspitasari
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Daniah Ashri Afnani
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | | | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| |
Collapse
|
4
|
Safarpour-Dehkordi M, Chabok O, Asgari M, Khademi R, Doosti A. A comprehensive investigation of the medicinal efficacy of antimicrobial fusion peptides expressed in probiotic bacteria for the treatment of pan drug-resistant (PDR) infections. Arch Microbiol 2024; 206:93. [PMID: 38329629 DOI: 10.1007/s00203-023-03823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024]
Abstract
The present work aimed to examine the intracellular antibacterial efficacy of Recombinant Lactobacillus acidophilus/antimicrobial peptides (AMPs) Melittin and Alyteserin-1a, specifically targeting Gram-negative bacteria. The first assessment was to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Recombinant L. acidophilus/AMPs versus Gram-negative and Gram-positive bacteria. In addition, the researchers examined the in vitro viability and safety of AMPs generated by L. acidophilus. The experiments included exposing the AMPs to elevated temperatures, proteases, cationic salts at physiological levels, and specific pH settings. The safety aspect was evaluated using hemolytic analysis utilizing sheep erythrocytes; cytotoxicity assays employing cell lines, and experiments on beneficial gut lactobacilli. An experiment was done using a time-kill method to assess the intracellular antibacterial efficacy of Recombinant L. acidophilus/AMPs compared to pathogenic varieties in HEp-2 cells. Previous investigations have shown that the MBC levels of recombinant L. acidophilus/AMPs were consistently two to four times higher than the equivalent MIC values when evaluated versus Gram-negative bacteria. Furthermore, the stability of the Recombinant L. acidophilus/AMPs showed variability when exposed to elevated temperatures (70 and 90 ℃), treated with protease enzymes (proteinase K, lysozyme), exposed to higher concentrations of physiological salts (150 mM NaCl and 2 mM MgCl2), and varying pH levels (ranging from 4.0 to 9.0). The recombinant L. acidophilus/AMPs are non-hemolytic towards sheep erythrocytes, exhibit little cytotoxicity in RAW 264.7 and HEp-2 cells, and are considered safe when compared to beneficial gut lactobacilli. The research examined the intracellular bacteriostatic effects of recombinant L. acidophilus/AMPs on Gram-negative bacteria inside HEp-2 cells. Nevertheless, no notable bactericidal impact was seen on Gram-positive bacteria (P > 0.05). The research shows that recombinant L. acidophilus/AMPs, namely (L. acidophilus/melittin/Alyteserin-1a) as the focus of the investigation, effectively eliminate Gram-negative bacteria. Therefore, more investigation is necessary to elaborate on these discoveries.
Collapse
Affiliation(s)
- Maryam Safarpour-Dehkordi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Omid Chabok
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohsen Asgari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Reyhaneh Khademi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
5
|
Kazemi-Roudsari M, Doosti A, Jami MS. Design of an oral vaccine using Lactococcus lactis against brucellosis: an in vitro and in vivo study. AMB Express 2024; 14:2. [PMID: 38170414 PMCID: PMC10764709 DOI: 10.1186/s13568-023-01638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024] Open
Abstract
Brucellosis is regarded as one of the world's most severe zoonotic diseases. This study aimed to investigate the possibility of using recombinant Lactococcus lactis (L. lactis) as a live vector to produce recombinant Brucella abortus (B. abortus) Omp10. The gene sequences were obtained from GenBank. The proteins' immunogenicity was assessed using Vaxijen. After confirming the cloning of the Omp10 gene in the pNZ8148 vector by enzymatic digestion and PCR, transformation into L. lactis was done. SDS-PAGE and western blot methods evaluated omp10 protein expression. Mice received oral recombinant L. lactis vaccines. IgG antibodies against Omp10 were tested using ELISA. Real-time PCR and ELISA were used to analyze cytokine responses. Survival rate and histopathological changes were evaluated after the challenge. Omp10 was chosen for its 1.5524 antigenicity score. Enzymatic digestion and PCR identified a 381-bp gene fragment. A 10 kDa band indicated the success of L. lactis transformation. Mice administered the L. lactis-pNZ8148-Omp10-Usp45 vaccination 14 days after priming showed significantly higher Omp10-specific total IgG and IgG1 (P < 0.001) than the PBS control group. The mice who received the L. lactis-pNZ8148-Omp10-Usp45 and IRBA vaccines had significantly elevated levels of IFN-γ, TNFα, IL-4, and IL-10 in samples collected on days 14 and 28 (P < 0.001). Inflammatory response, morphological damage, alveolar edema, and lymphocyte infiltration were reduced in the target group. A recombinant L. lactis expressing the Omp10 protein was constructed as an oral Lactococcus-based vaccine and compared to live attenuated vaccines for future brucellosis investigations.
Collapse
Affiliation(s)
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad-Saeid Jami
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Research Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Kazemi D, Doosti A, Shakhsi-Niaei M. Immunization of BALB/c mice with BAB1-0278: An initial investigation of a novel potential vaccine for brucellosis based on Lactococcus Lactis vector. Microb Pathog 2023; 185:106417. [PMID: 37866552 DOI: 10.1016/j.micpath.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The gram-negative intracellular bacterium Brucella abortus causes bovine brucellosis, a zoonotic disease that costs a lot of money. This work developed a vector vaccine against brucellosis utilizing recombinant L. lactis expressing Brucella outer membrane protein BAB1-0278. Gene sequences were obtained from GenBank. The proteins' immunogenicity was tested with Vaxijen. The target vector was converted into L. lactis after enzymatic digestion and PCR validated the BAB1-0278 gene cloning in the pNZ8148 vector. The target protein was extracted using a Ni-NTA column and confirmed using SDS-PAGE and western blot. After vaccination with the target vaccine, the expression of IgG subclasses was evaluated by the ELISA method. Cytokine production was also measured by the qPCR method in the small intestine and spleen. Lymphocyte proliferation and innate immune response (NLR, CRP, and PLR) were also assessed. Finally, after the challenge test, the spleen tissue was examined by H&E staining. BAB1-0278 was chosen because of its antigenicity score of 0.5614. A 237-bp gene fragment was discovered using enzymatic digestion and PCR. The presence of a 13 kDa protein band was confirmed by SDS-PAGE and western blot. In comparison to the PBS group, mice given the L. lactis-pNZ8148-BAB1-0278-Usp45 vaccine 14 days after priming had substantially greater levels of total IgG, IgG1, and IgG2a (P < 0.001). Also, the production of cytokines (IFN-γ, TNFα, IL-4, and IL-10) indicating cellular immunity increased compared to the control group (P < 0.001). The target group had a lower inflammatory response, morphological impairment, alveolar edema, and lymphocyte infiltration. An efficient probiotic-based oral brucellosis vaccination was created. These studies have proven that the recommended immunization gives the best protection, which supports its promotion.
Collapse
Affiliation(s)
- Donya Kazemi
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mostafa Shakhsi-Niaei
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
7
|
李 文, 欧 兴, 何 爱. [Construction, Identification, and Expression of Lactococcus lactis-Based Recombinant Vaccine for Echinococcus granulosus]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1154-1158. [PMID: 38162084 PMCID: PMC10752785 DOI: 10.12182/20231160105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 01/03/2024]
Abstract
Objective To construct Lactococcus lactis (LL)-based recombinant LL-Eg95 (rLL-Eg95) vaccine for Echinococcus granulosus (Eg) and to examine its expression efficiency. Methods Eg95 gene was obtained by PCR from the template of pCD-Eg95. Then, pMG36e was inserted in the Eg95 gene after double cleaving with restriction endonucleases XbaⅠ and HindⅢ to construct recombinant plasmid pMG36e-Eg95, which was transformed into E.coli BL2 (DE3) competent cells. The recombinant plasmid was extracted and identified by double restriction endonuclease digestion and was then electroporated into LL MG1363 to construct rLL-Eg95 vaccine. Then, the plamid was extracted and identified by PCR. Results Examination of the recombinant plasmid by double restriction endonuclease digestion showed that the segment was of the expected length. PCR showed that 471 base pairs of Eg95 gene were amplified when the plasmid extracted from roxithromycin-resistant recombinant LL was used as the template. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the relative molecular mass of the Eg95 protein expressed was approximately 16.5×103 and that the amount of the expressed protein was 17% of the total bacterial proteins. Western blot findings suggested that the expressed protein could be recognized by mice serum infected with hydatid cyst. Conclusion The rLL-Eg95 vaccine was successfully constructed, expressing Eg95 protein that has specific antigenicity.
Collapse
Affiliation(s)
- 文桂 李
- 重庆医科大学附属第一医院 传染病寄生虫病研究所 (重庆 400016)Institute of Infections and Parasitic Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - 兴坤 欧
- 重庆医科大学附属第一医院 传染病寄生虫病研究所 (重庆 400016)Institute of Infections and Parasitic Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - 爱琳 何
- 重庆医科大学附属第一医院 传染病寄生虫病研究所 (重庆 400016)Institute of Infections and Parasitic Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
8
|
Fan B, Gu J, Deng B, Guo W, Zhang S, Li L, Li B. Positively Charged-Amylose-Entangled Au-Nanoparticles Acting as Protein Carriers and Potential Adjuvants to SARS-CoV-2 Subunit Vaccines. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37330942 DOI: 10.1021/acsami.3c05295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The COVID-19 pandemic continues to spread worldwide. To protect and control the spread of SARS-CoV-2, varieties of subunit vaccines based on spike (S) proteins have been approved for human applications. Here, we report a new subunit vaccine design strategy that functions as both an antigen carrier and an adjuvant in immunization to elicit high-level immune responses. The complex of 2-hydroxypropyl-trimethylammonium chloride chitosan and amylose entangles Au nanoparticles (HTCC/amylose/AuNPs) forming 40 nm nanocarriers with a positive charge. The obtained positively charged nanoparticles reveal many merits, including the larger S protein loading capacity in PBS buffer, higher cellular uptake ability, and lower cell cytotoxicity, supporting their potential as safe vaccine nanocarriers. Two functionalized nanoparticle subunit vaccines are prepared via loading full-length S proteins derived from SARS-CoV-2 variants. In mice, both prepared vaccines elicit high specific IgG antibodies, neutralize antibodies, and immunoglobulin IgG1 and IgG2a. The prepared vaccines also elicit robust T- and B-cell immune responses and increase CD19+ B cells, CD11C+ dendritic cells, and CD11B+ macrophages at the alveoli and bronchi of the immunized mice. Furthermore, the results of skin safety tests and histological observation of organs indicated in vivo safety of HTCC/amylose/AuNP-based vaccines. Summarily, our prepared HTCC/amylose/AuNP have significant potential as general vaccine carriers for the delivery of different antigens with potent immune stimulation.
Collapse
Affiliation(s)
- Baochao Fan
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Jun Gu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Bin Deng
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Pharmacy, China Pharmaceutical University, Nanjing 210000, China
| | - Weilu Guo
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Pharmaceutical, Nanjing Tech University, Nanjing 210000, China
| | - Shuaifeng Zhang
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Li Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212000, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Bin Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| |
Collapse
|