1
|
Salvatore MM, Nicoletti R, Fiorito F, Andolfi A. Penicillides from Penicillium and Talaromyces: Chemical Structures, Occurrence and Bioactivities. Molecules 2024; 29:3888. [PMID: 39202967 PMCID: PMC11356976 DOI: 10.3390/molecules29163888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Penicillide is the founder product of a class of natural products of fungal origin. Although this compound and its analogues have been identified from taxonomically heterogeneous fungi, they are most frequently and typically reported from the species of Talaromyces and Penicillium. The producing strains have been isolated in various ecological contexts, with a notable proportion of endophytes. The occurrence of penicillides in these plant associates may be indicative of a possible role in defensive mutualism based on their bioactive properties, which are also reviewed in this paper. The interesting finding of penicillides in fruits and seeds of Phyllanthus emblica is introductory to a new ground of investigation in view of assessing whether they are produced by the plant directly or as a result of the biosynthetic capacities of some endophytic associates.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples ‘Federico II’, 80126 Naples, Italy; (M.M.S.); (A.A.)
| | - Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples ‘Federico II’, 80055 Naples, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples ‘Federico II’, 80137 Naples, Italy;
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80138 Naples, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples ‘Federico II’, 80126 Naples, Italy; (M.M.S.); (A.A.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80138 Naples, Italy
| |
Collapse
|
2
|
Song H, Ding YJ, Zhuang WY, Ding GZ, Wang XC. Three New Species of Penicillium from East and Northeast China. J Fungi (Basel) 2024; 10:342. [PMID: 38786697 PMCID: PMC11122177 DOI: 10.3390/jof10050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Penicillium species are ubiquitous in the environment and are of substantial importance, especially in industrial and medical aspects. During our investigation of the biodiversity of Penicillium, three new species were discovered in soil samples collected from East and Northeast China. They were determined as new to science based on morphological comparisons and phylogenetic analyses, and were found to belong to the subgenus Penicillium section Robsamsonia and subgenus Aspergilloides sections Aspergilloides and Citrina. Descriptions and illustrations of these species are provided, and their geographic distributions are also discussed.
Collapse
Affiliation(s)
- He Song
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China;
| | - Yi-Jing Ding
- College of Life Science, Capital Normal University, Beijing 100048, China;
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Guang-Zhou Ding
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China;
| | - Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
3
|
Lai D, Wang D, Shao X, Qin J, Zhuang Q, Xu H, Xiao W. Comparative physiological and transcriptome analysis provide insights into the inhibitory effect of osthole on Penicillium choerospondiatis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105749. [PMID: 38225092 DOI: 10.1016/j.pestbp.2023.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024]
Abstract
Blue mold induced by Penicillium choerospondiatis is a primary cause of growth and postharvest losses in the fruit of Phyllanthus emblica. There is an urgent need to explore novel and safe fungicides to control this disease. Here, we demonstrated osthole, a natural coumarin compound isolated from Cnidium monnieri, exhibited a strong inhibitory effect on mycelia growth, conidial germination rate and germ tube length of P. choerospondiatis, and effectively suppressed the blue mold development in postharvest fruit of P. emblica. The median effective concentration of osthole was 9.86 mg/L. Osthole treatment resulted in cellular structural disruption, reactive oxygen species (ROS) accumulation, and induced autophagic vacuoles containing cytoplasmic components in fungal cells. Transcriptome analysis revealed that osthole treatment led to the differentially expressed genes mainly enriched in the cell wall synthesis, TCA cycle, glycolysis/ gluconeogenesis, oxidative phosphorylation. Moreover, osthole treatment led to increase genes expression involved in peroxisome, autophagy and endocytosis. Particularly, the autophagy pathway related genes (PcATG1, PcATG3, PcATG15, PcATG27, PcYPT7 and PcSEC18) were prominently up-regulated by osthole. Summarily, these results revealed the potential antifungal mechanism of osthole against P. choerospondiatis. Osthole has potentials to develop as a natural antifungal agent for controlling blue mold disease in postharvest fruits.
Collapse
Affiliation(s)
- Duo Lai
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Delin Wang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Xuehua Shao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Jian Qin
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Qingli Zhuang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Weiqiang Xiao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China.
| |
Collapse
|