1
|
Abstract
Aerobic methanotrophs have long been known to play a critical role in the global carbon cycle, being capable of converting methane to biomass and carbon dioxide. Interestingly, these microbes exhibit great sensitivity to copper and rare-earth elements, with the expression of key genes involved in the central pathway of methane oxidation controlled by the availability of these metals. That is, these microbes have a "copper switch" that controls the expression of alternative methane monooxygenases and a "rare-earth element switch" that controls the expression of alternative methanol dehydrogenases. Further, it has been recently shown that some methanotrophs can detoxify inorganic mercury and demethylate methylmercury; this finding is remarkable, as the canonical organomercurial lyase does not exist in these methanotrophs, indicating that a novel mechanism is involved in methylmercury demethylation. Here, we review recent findings on methanotrophic interactions with metals, with a particular focus on these metal switches and the mechanisms used by methanotrophs to bind and sequester metals.
Collapse
|
2
|
Straume D, Stamsås GA, Salehian Z, Håvarstein LS. Overexpression of the fratricide immunity protein ComM leads to growth inhibition and morphological abnormalities in Streptococcus pneumoniae. MICROBIOLOGY-SGM 2017; 163:9-21. [PMID: 27902435 DOI: 10.1099/mic.0.000402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The important human pathogen Streptococcus pneumoniae is a naturally transformable species. When developing the competent state, it expresses proteins involved in DNA uptake, DNA processing and homologous recombination. In addition to the proteins required for the transformation process, competent pneumococci express proteins involved in a predatory DNA acquisition mechanism termed fratricide. This is a mechanism by which the competent pneumococci secrete a muralytic fratricin termed CbpD, which lyses susceptible sister cells or closely related streptococcal species. The released DNA can then be taken up by the competent pneumococci and integrated into their genomes. To avoid committing suicide, competent pneumococci produce an integral membrane protein, ComM, which protects them against CbpD by an unknown mechanism. In the present study, we show that overexpression of ComM results in growth inhibition and development of severe morphological abnormalities, such as cell elongation, misplacement of the septum and inhibition of septal cross-wall synthesis. The toxic effect of ComM is tolerated during competence because it is not allowed to accumulate in the competent cells. We provide evidence that an intra-membrane protease called RseP is involved in the process of controlling the ComM levels, since △rseP mutants produce higher amounts of ComM compared to wild-type cells. The data presented here indicate that ComM mediates immunity against CbpD by a mechanism that is detrimental to the pneumococcus if exaggerated.
Collapse
Affiliation(s)
- Daniel Straume
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Gro Anita Stamsås
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Zhian Salehian
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Leiv Sigve Håvarstein
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| |
Collapse
|
3
|
Larsen Ø, Karlsen OA. Transcriptomic profiling of Methylococcus capsulatus (Bath) during growth with two different methane monooxygenases. Microbiologyopen 2016; 5:254-67. [PMID: 26687591 PMCID: PMC4831470 DOI: 10.1002/mbo3.324] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 11/23/2022] Open
Abstract
Methylococcus capsulatus (Bath) is a methanotroph that possesses both a membrane-embedded (pMMO) and a soluble methane monooxygenase (sMMO). The expression of these two MMO's is tightly controlled by the availability of copper in the growth medium, but the underlying mechanisms and the number of genes involved in this switch in methane oxidation is not yet fully elucidated. Microarray analyses were used to assess the transcriptome in cells producing either pMMO or sMMO. A total of 137 genes were differentially expressed, with 87 genes showing a significant up-regulation during sMMO production. The majority of the differentially expressed genes could be assigned to functional roles in the energy metabolism and transport. Furthermore, three copper responding gene clusters were discovered, including an extended cluster that also harbors the genes for sMMO. Our data also indicates that major changes takes place in the respiratory chain between pMMO- and sMMO-producing cells, and that quinone are predominantly used as the electron donors for methane oxidation by pMMO. Intriguingly, a large proportion of the differentially expressed genes between pMMO- and sMMO-producing cells encode c-type cytochromes. By combining microarray- and mass spectrometry data, a total of 35 c-type cytochromes are apparently expressed in M. capsulatus when grown in nitrate mineral salt medium with methane as sole energy and carbon source, and the expression of 21 of these respond to the availability of copper. Interestingly, several of these c-type cytochromes are recovered from the cell surface, suggesting that extracellular electron transfers may occur in M. capsulatus.
Collapse
Affiliation(s)
- Øivind Larsen
- Uni Research EnvironmentThormøhlensgate 49bBergen5006Norway
| | - Odd A. Karlsen
- Department of Molecular BiologyUniversity of BergenBergenNorway
| |
Collapse
|
4
|
Computational and experimental analysis of the secretome of Methylococcus capsulatus (Bath). PLoS One 2014; 9:e114476. [PMID: 25479164 PMCID: PMC4257694 DOI: 10.1371/journal.pone.0114476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/10/2014] [Indexed: 12/23/2022] Open
Abstract
The Gram-negative methanotroph Methylococcus capsulatus (Bath) was recently demonstrated to abrogate inflammation in a murine model of inflammatory bowel disease, suggesting interactions with cells involved in maintaining mucosal homeostasis and emphasizing the importance of understanding the many properties of M. capsulatus. Secreted proteins determine how bacteria may interact with their environment, and a comprehensive knowledge of such proteins is therefore vital to understand bacterial physiology and behavior. The aim of this study was to systematically analyze protein secretion in M. capsulatus (Bath) by identifying the secretion systems present and the respective secreted substrates. Computational analysis revealed that in addition to previously recognized type II secretion systems and a type VII secretion system, a type Vb (two-partner) secretion system and putative type I secretion systems are present in M. capsulatus (Bath). In silico analysis suggests that the diverse secretion systems in M.capsulatus transport proteins likely to be involved in adhesion, colonization, nutrient acquisition and homeostasis maintenance. Results of the computational analysis was verified and extended by an experimental approach showing that in addition an uncharacterized protein and putative moonlighting proteins are released to the medium during exponential growth of M. capsulatus (Bath).
Collapse
|
5
|
Khmelenina VN, Suzina NE, Trotsenko YA. Surface layers of methanotrophic bacteria. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713050068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Ve T, Mathisen K, Helland R, Karlsen OA, Fjellbirkeland A, Røhr ÅK, Andersson KK, Pedersen RB, Lillehaug JR, Jensen HB. The Methylococcus capsulatus (Bath) secreted protein, MopE*, binds both reduced and oxidized copper. PLoS One 2012; 7:e43146. [PMID: 22916218 PMCID: PMC3423442 DOI: 10.1371/journal.pone.0043146] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 07/17/2012] [Indexed: 11/18/2022] Open
Abstract
Under copper limiting growth conditions the methanotrophic bacterium Methylococcus capsulatus (Bath) secrets essentially only one protein, MopE*, to the medium. MopE* is a copper-binding protein whose structure has been determined by X-ray crystallography. The structure of MopE* revealed a unique high affinity copper binding site consisting of two histidine imidazoles and one kynurenine, the latter an oxidation product of Trp130. In this study, we demonstrate that the copper ion coordinated by this strong binding site is in the Cu(I) state when MopE* is isolated from the growth medium of M. capsulatus. The conclusion is based on X-ray Near Edge Absorption spectroscopy (XANES), and Electron Paramagnetic Resonance (EPR) studies. EPR analyses demonstrated that MopE*, in addition to the strong copper-binding site, also binds Cu(II) at two weaker binding sites. Both Cu(II) binding sites have properties typical of non-blue type II Cu (II) centres, and the strongest of the two Cu(II) sites is characterised by a relative high hyperfine coupling of copper (A|| = 20 mT). Immobilized metal affinity chromatography binding studies suggests that residues in the N-terminal part of MopE* are involved in forming binding site(s) for Cu(II) ions. Our results support the hypothesis that MopE plays an important role in copper uptake, possibly making use of both its high (Cu(I) and low Cu(II) affinity properties.
Collapse
Affiliation(s)
- Thomas Ve
- Department of Molecular Biology, University of Bergen, Bergen, Norway
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Karina Mathisen
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ronny Helland
- Norwegian Structural Biology Centre, Faculty of Science, University of Tromso, Tromso, Norway
| | - Odd A. Karlsen
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Åsmund K. Røhr
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | - Rolf-Birger Pedersen
- Department of Earth Science–Centre for Geobiology, University of Bergen, Bergen, Norway
| | | | - Harald B. Jensen
- Department of Molecular Biology, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
7
|
Shchukin VN, Khmelenina VN, Eshinimayev BT, Suzina NE, Trotsenko YA. Primary characterization of dominant cell surface proteins of halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711050122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Karlsen OA, Larsen Ø, Jensen HB. The copper responding surfaceome of Methylococccus capsulatus Bath. FEMS Microbiol Lett 2011; 323:97-104. [DOI: 10.1111/j.1574-6968.2011.02365.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/05/2011] [Accepted: 07/11/2011] [Indexed: 11/28/2022] Open
Affiliation(s)
- Odd A. Karlsen
- Department of Molecular Biology; University of Bergen; Norway
| | | | | |
Collapse
|
9
|
Abstract
All presently known methanotrophs are gram-negative bacteria suggesting that they are surrounded by a two-layered membrane: an inner or cytoplasmic membrane and an outer membrane. In the methanotroph Methylococcus capsulatus (Bath), separation of the two membranes has allowed studies on protein and lipid composition of the outer membrane. Its outer membrane can be isolated from purified cell envelopes by selective solubilization of the inner membranes with the detergent Triton X-100. The proteins associated with the outer membrane can further be fractionated into integral and tightly associated proteins and peripheral loosely associated proteins. We present here protocols for this fractionation and show how the proteins associated with the outer leaflet of the outer membrane can be isolated and identified by whole-cell biotin surface labeling.
Collapse
|
10
|
Manchur MA, Kikumoto M, Kanao T, Takada J, Kamimura K. Characterization of an OmpA-like outer membrane protein of the acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans. Extremophiles 2011; 15:403-10. [PMID: 21472537 PMCID: PMC3084935 DOI: 10.1007/s00792-011-0371-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/23/2011] [Indexed: 11/27/2022]
Abstract
An OmpA family protein (FopA) previously reported as one of the major outer membrane proteins of an acidophilic iron-oxidizing bacterium Acidithiobacillus ferrooxidans was characterized with emphasis on the modification by heat and the interaction with peptidoglycan. A 30-kDa band corresponding to the FopA protein was detected in outer membrane proteins extracted at 75°C or heated to 100°C for 10 min prior to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). However, the band was not detected in outer membrane proteins extracted at ≤40°C and without boiling prior to electrophoresis. By Western blot analysis using the polyclonal antibody against the recombinant FopA, FopA was detected as bands with apparent molecular masses of 30 and 90 kDa, suggesting that FopA existed as an oligomeric form in the outer membrane of A. ferrooxidans. Although the fopA gene with a sequence encoding the signal peptide was successfully expressed in the outer membrane of Escherichia coli, the recombinant FopA existed as a monomer in the outer membrane of E. coli. FopA was detected in peptidoglycan-associated proteins from A. ferrooxidans. The recombinant FopA also showed the peptidoglycan-binding activity.
Collapse
Affiliation(s)
- Mohammed Abul Manchur
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Okayama, 700-8530, Japan
| | | | | | | | | |
Collapse
|
11
|
Karlsen OA, Berven FS, Bagstevold JI, Larsen O, Jensen HB. Methylococcus capsulatus (Bath) from genome to protein function, and vice versa. Methods Enzymol 2011; 495:63-79. [PMID: 21419915 DOI: 10.1016/b978-0-12-386905-0.00005-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The genome sequence of Methylococcus capsulatus (Bath), considered a model methylotroph, was published in 2004 [Ward, N., et al. (2004). Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol.2, e303]. In the postgenomic era, the challenge is to determine the gene function, and to this end, genomics must be complemented with proteomic approaches. This chapter describes some experimental and computational approaches we have used and developed for the exploration of the genome and proteome of M. capsulatus (Bath).
Collapse
Affiliation(s)
- Odd A Karlsen
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | | | | | | | | |
Collapse
|
12
|
Karlsen OA, Larsen Ø, Jensen HB. Identification of a bacterial di-haem cytochrome c peroxidase from Methylomicrobium album BG8. MICROBIOLOGY-SGM 2010; 156:2682-2690. [PMID: 20576687 DOI: 10.1099/mic.0.037119-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nucleotide sequence of an open reading frame (corB) downstream of the copper-repressible CorA-encoding gene of the methanotrophic bacterium Methylomicrobium album BG8 was obtained by restriction enzyme digestion and inverse PCR. The amino acid sequence deduced from this gene showed significant sequence similarity to the surface-associated di-haem cytochrome c peroxidase (SACCP) previously isolated from Methylococcus capsulatus (Bath), including both c-type haem-binding motifs. Homology analysis placed this protein, phylogenetically, within the subfamily containing the M. capsulatus SACCP of the bacterial di-haem cytochrome c peroxidase (BCCP) family of proteins. Immunospecific recognition confirmed synthesis of the M. album CorB as a protein non-covalently associated with the outer membrane and exposed to the periplasm. corB expression is regulated by the availability of copper ions during growth and the protein is most abundant in M. album when grown at a low copper-to-biomass ratio, indicating an important physiological role of CorB under these growth conditions. corB was co-transcribed with the gene encoding CorA, constituting a copper-responding operon, which appears to be under the control of a sigma(54)-dependent promoter. M. album CorB is the second isolated member of the recently described subfamily of the BCCP family of proteins. So far, these proteins have only been described in methanotrophic bacteria.
Collapse
Affiliation(s)
- O A Karlsen
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5020 Bergen, Norway
| | - Ø Larsen
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5020 Bergen, Norway
| | - H B Jensen
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5020 Bergen, Norway
| |
Collapse
|
13
|
Abstract
Methanotrophs, cells that consume methane (CH(4)) as their sole source of carbon and energy, play key roles in the global carbon cycle, including controlling anthropogenic and natural emissions of CH(4), the second-most important greenhouse gas after carbon dioxide. These cells have also been widely used for bioremediation of chlorinated solvents, and help sustain diverse microbial communities as well as higher organisms through the conversion of CH(4) to complex organic compounds (e.g. in deep ocean and subterranean environments with substantial CH(4) fluxes). It has been well-known for over 30 years that copper (Cu) plays a key role in the physiology and activity of methanotrophs, but it is only recently that we have begun to understand how these cells collect Cu, the role Cu plays in CH(4) oxidation by the particulate CH(4) monooxygenase, the effect of Cu on the proteome, and how Cu affects the ability of methanotrophs to oxidize different substrates. Here we summarize the current state of knowledge of the phylogeny, environmental distribution, and potential applications of methanotrophs for regional and global issues, as well as the role of Cu in regulating gene expression and proteome in these cells, its effects on enzymatic and whole-cell activity, and the novel Cu uptake system used by methanotrophs.
Collapse
Affiliation(s)
- Jeremy D Semrau
- Department of Civil and Environmental Engineering, The University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
14
|
Trotsenko YA, Medvedkova KA, Khmelenina VN, Eshinimayev BT. Thermophilic and thermotolerant aerobic methanotrophs. Microbiology (Reading) 2009. [DOI: 10.1134/s0026261709040018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Helland R, Fjellbirkeland A, Karlsen OA, Ve T, Lillehaug JR, Jensen HB. An oxidized tryptophan facilitates copper binding in Methylococcus capsulatus-secreted protein MopE. J Biol Chem 2008; 283:13897-904. [PMID: 18348978 DOI: 10.1074/jbc.m800340200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins can coordinate metal ions with endogenous nitrogen and oxygen ligands through backbone amino and carbonyl groups, but the amino acid side chains coordinating metals do not include tryptophan. Here we show for the first time the involvement of the tryptophan metabolite kynurenine in a protein metal-binding site. The crystal structure to 1.35 angstroms of MopE* from the methane-oxidizing Methylococcus capsulatus (Bath) provided detailed information about its structure and mononuclear copper-binding site. MopE* contains a novel protein fold of which only one-third of the structure displays similarities to other known folds. The geometry around the copper ion is distorted tetrahedral with one oxygen ligand from a water molecule, two histidine imidazoles (His-132 and His-203), and at the fourth distorted tetrahedral position, the N1 atom of the kynurenine, an oxidation product of Trp-130. Trp-130 was not oxidized to kynurenine in MopE* heterologously expressed in Escherichia coli, nor did this protein bind copper. Our findings indicate that the modification of tryptophan to kynurenine and its involvement in copper binding is an innate property of M. capsulatus MopE*.
Collapse
Affiliation(s)
- Ronny Helland
- Norwegian Structural Biology Centre, Faculty of Science, University of Tromso, N-9073 Tromso, Norway
| | | | | | | | | | | |
Collapse
|
16
|
Karlsen OA, Kindingstad L, Angelskår SM, Bruseth LJ, Straume D, Puntervoll P, Fjellbirkeland A, Lillehaug JR, Jensen HB. Identification of a copper-repressible C-type heme protein of Methylococcus capsulatus (Bath). A member of a novel group of the bacterial di-heme cytochrome c peroxidase family of proteins. FEBS J 2006; 272:6324-35. [PMID: 16336269 DOI: 10.1111/j.1742-4658.2005.05020.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genomic sequencing of the methanotrophic bacterium, Methylococcus capsulatus (Bath), revealed an open reading frame (MCA2590) immediately upstream of the previously described mopE gene (MCA2589). Sequence analyses of the deduced amino acid sequence demonstrated that the MCA2590-encoded protein shared significant, but restricted, sequence similarity to the bacterial di-heme cytochrome c peroxidase (BCCP) family of proteins. Two putative C-type heme-binding motifs were predicted, and confirmed by positive heme staining. Immunospecific recognition and biotinylation of whole cells combined with MS analyses confirmed expression of MCA2590 in M. capsulatus as a protein noncovalently associated with the cellular surface of the bacterium exposed to the cell exterior. Similar to MopE, expression of MCA2590 is regulated by the bioavailability of copper and is most abundant in M. capsulatus cultures grown under low copper conditions, thus indicating an important physiological role under these growth conditions. MCA2590 is distinguished from previously characterized members of the BCCP family by containing a much longer primary sequence that generates an increased distance between the two heme-binding motifs in its primary sequence. Furthermore, the surface localization of MCA2590 is in contrast to the periplasmic location of the reported BCCP members. Based on our experimental and bioinformatical analyses, we suggest that MCA2590 is a member of a novel group of bacterial di-heme cytochrome c peroxidases not previously characterized.
Collapse
Affiliation(s)
- Odd A Karlsen
- Department of Molecular Biology, University of Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Berven FS, Karlsen OA, Straume AH, Flikka K, Murrell JC, Fjellbirkeland A, Lillehaug JR, Eidhammer I, Jensen HB. Analysing the outer membrane subproteome of Methylococcus capsulatus (Bath) using proteomics and novel biocomputing tools. Arch Microbiol 2005; 184:362-77. [PMID: 16311759 DOI: 10.1007/s00203-005-0055-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/13/2005] [Accepted: 11/03/2005] [Indexed: 02/05/2023]
Abstract
High-resolution two-dimensional gel electrophoresis and mass spectrometry has been used to identify the outer membrane (OM) subproteome of the Gram-negative bacterium Methylococcus capsulatus (Bath). Twenty-eight unique polypeptide sequences were identified from protein samples enriched in OMs. Only six of these polypeptides had previously been identified. The predictions from novel bioinformatic methods predicting beta-barrel outer membrane proteins (OMPs) and OM lipoproteins were compared to proteins identified experimentally. BOMP ( http://www.bioinfo.no/tools/bomp ) predicted 43 beta-barrel OMPs (1.45%) from the 2,959 annotated open reading frames. This was a lower percentage than predicted from other Gram-negative proteomes (1.8-3%). More than half of the predicted BOMPs in M. capsulatus were annotated as (conserved) hypothetical proteins with significant similarity to very few sequences in Swiss-Prot or TrEMBL. The experimental data and the computer predictions indicated that the protein composition of the M. capsulatus OM subproteome was different from that of other Gram-negative bacteria studied in a similar manner. A new program, Lipo, was developed that can analyse entire predicted proteomes and give a list of recognised lipoproteins categorised according to their lipo-box similarity to known Gram-negative lipoproteins ( http://www.bioinfo.no/tools/lipo ). This report is the first using a proteomics and bioinformatics approach to identify the OM subproteome of an obligate methanotroph.
Collapse
Affiliation(s)
- Frode S Berven
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5020, Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Karlsen OA, Ramsevik L, Bruseth LJ, Larsen Ø, Brenner A, Berven FS, Jensen HB, Lillehaug JR. Characterization of a prokaryotic haemerythrin from the methanotrophic bacterium Methylococcus capsulatus (Bath). FEBS J 2005; 272:2428-40. [PMID: 15885093 DOI: 10.1111/j.1742-4658.2005.04663.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For a long time, the haemerythrin family of proteins was considered to be restricted to only a few phyla of marine invertebrates. When analysing differential protein expression in the methane-oxidizing bacterium, Methylococcus capsulatus (Bath), grown at a high and low copper-to-biomass ratio, respectively, we identified a putative prokaryotic haemerythrin expressed in high-copper cultures. Haemerythrins are recognized by a conserved sequence motif that provides five histidines and two carboxylate ligands which coordinate two iron atoms. The diiron site is located in a hydrophobic pocket and is capable of binding O(2). We cloned the M. capsulatus haemerythrin gene and expressed it in Escherichia coli as a fusion protein with NusA. The haemerythrin protein was purified to homogeneity cleaved from its fusion partner. Recombinant M. capsulatus haemerythrin (McHr) was found to fold into a stable protein. Sequence similarity analysis identified all the candidate residues involved in the binding of diiron (His22, His58, Glu62, His77, His81, His117, Asp122) and the amino acids forming the hydrophobic pocket in which O(2) may bind (Ile25, Phe59, Trp113, Leu114, Ile118). We were also able to model a three-dimensional structure of McHr maintaining the correct positioning of these residues. Furthermore, UV/vis spectrophotometric analysis demonstrated the presence of conjugated diiron atoms in McHr. A comprehensive genomic database search revealed 21 different prokaryotes containing the haemerythrin signature (PROSITE 00550), indicating that these putative haemerythrins may be a conserved prokaryotic subfamily.
Collapse
Affiliation(s)
- Odd A Karlsen
- Department of Molecular Biology, University of Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Christensen HR, Larsen LC, Frøkiaer H. The oral immunogenicity of BioProtein, a bacterial single-cell protein, is affected by its particulate nature. Br J Nutr 2003; 90:169-78. [PMID: 12844389 DOI: 10.1079/bjn2003863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The bacterial single-cell protein BioProtein (BP; Norferm Danmark, Odense, Denmark), produced by fermentation of natural gas with methanotrophic bacteria, is a potential protein source for man and animals. For human consumption, removal of the nucleic acid is necessary. Preliminary studies have shown that ingested BP induces a specific immune response. The objective of the present study was to characterize the type of response, its development over time and product-related causative factors. Mice were fed with diets containing 60 g nucleic acid-reduced BP/kg, 240 g nucleic acid-reduced BP/kg, 240 g untreated BP (basic BP)/kg or 240 g casein/kg (control). In another study, mice were fed 240 g basic BP/kg, whole cell-free BP-culture homogenate or control diet. The immune response was monitored using an ELISA for BP-specific immunoglobulin in blood and BP-specific immunoglobulin A in blood and saliva. Ingested BP induced a steady specific mucosal and systemic immune response, characterized by a dose-dependent production of immunoglobulin and immunoglobulin A in blood and immunoglobulin A in saliva. Basic BP and nucleic acid-reduced BP induced identical responses. However, feeding mice BP-culture homogenate induced immunoglobulin A in saliva but there was no systemic response. The antibodies from BP-fed mice cross-reacted with BP-culture homogenate revealing the presence of the same antigenic components in the two products despite the different oral immunogenicity. Thus, ingestion of BP induces a persistent mucosal and systemic immune response of which the systemic response can be avoided by ingesting a BP preparation free of whole cells. This indicates the importance of the non-particulate constitution of single-cell protein products intended for human or animal consumption.
Collapse
Affiliation(s)
- Hanne R Christensen
- BioCentrum-DTU, Section for Biochemistry and Nutrition, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | |
Collapse
|
20
|
Karlsen OA, Berven FS, Stafford GP, Larsen Ø, Murrell JC, Jensen HB, Fjellbirkeland A. The surface-associated and secreted MopE protein of Methylococcus capsulatus (Bath) responds to changes in the concentration of copper in the growth medium. Appl Environ Microbiol 2003; 69:2386-8. [PMID: 12676726 PMCID: PMC154799 DOI: 10.1128/aem.69.4.2386-2388.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of surface-associated and secreted protein MopE of the methanotrophic bacterium Methylococcus capsulatus (Bath) in response to the concentration of copper ions in the growth medium was investigated. The level of protein associated with the cells and secreted to the medium changed when the copper concentration in the medium varied and was highest in cells exposed to copper stress.
Collapse
Affiliation(s)
- Odd A Karlsen
- Department of Molecular Biology, University of Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
21
|
Berven FS, Karlsen OA, Murrell JC, Jensen HB. Multiple polypeptide forms observed in two-dimensional gels of Methylococcus capsulatus (Bath) polypeptides are generated during the separation procedure. Electrophoresis 2003; 24:757-61. [PMID: 12601748 DOI: 10.1002/elps.200390091] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have examined two-dimensional electrophoresis (2-DE) gel maps of polypeptides from the Gram-negative bacterium Methylococcus capsulatus (Bath) and found the same widespread trains of spots as often reported in 2-DE gels of polypeptides of other Gram-negative bacteria. Some of the trains of polypeptides, both from the outer membrane and soluble protein fraction, were shown to be generated during the separation procedure of 2-DE, and not by covalent post-translational modifications. The trains were found to be regenerated when rerunning individual polypeptide spots. The polypeptides analysed giving this type of trains were all found to be classified as stable polypeptides according to the instability index of Guruprasad et al. (Protein Eng. 1990, 4, 155-161). The phenomenon most likely reflects conformational equilibria of polypeptides arising from the experimental conditions used, and is a clear drawback of the standard 2-DE procedure, making the gel picture unnecessarily complex to analyse.
Collapse
Affiliation(s)
- Frode S Berven
- Department of Molecular Biology, University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
22
|
Mølck AM, Poulsen M, Christensen HR, Lauridsen ST, Madsen C. Immunotoxicity of nucleic acid reduced BioProtein--a bacterial derived single cell protein--in Wistar rats. Toxicology 2002; 174:183-200. [PMID: 12007858 DOI: 10.1016/s0300-483x(02)00079-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BioProtein is a single cell protein produced by a mixed methanotrophic and heterotrophic bacteria culture using natural gas as energy source, which has been approved for animal feed. BioProtein contains a large amount of nucleic acids making the product less suitable for human consumption, therefore, a nucleic acid reduced variant (NABP) has been developed by the manufacturer. The purpose of the present study was to establish the safety of NABP in a subchronic toxicity rat study. Groups of 10 male and 10 female Wistar rats were fed diets containing 0, 6, 12 or 24% NABP for 13 weeks. Feeding NABP induced a humoral immune response and proliferation of phagocytic cell lines, mainly macrophages. The humoral response involved induction of NABP specific IgM and IgG. The proliferation of phagocytic cells involved increase of the white blood cell count of all dosed female groups. Males showed the same tendency, although, not statistically significant (P=0.09). The subsets of cells identified as neutrophils and eosinophils were increased and lymphocytes decreased. The histopathological examination revealed histiocytosis and accumulation of foamy macrophages in the mesenteric lymph nodes, hyperplasia of Kupffer cells in the liver, increased granulopoiesis in spleen and bone marrow, and infiltration of lamina propria of the large intestine with eosinophilic granulocytes. The most consistent and pronounced changes were observed in the highest dose group, but even at the lowest dose level some of the changes were present. Accordingly, a no-observed-effect level could not be established based on this study.
Collapse
Affiliation(s)
- Anne-Marie Mølck
- Institute of Food Safety and Toxicology, The Danish Veterinary and Food Administration, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark.
| | | | | | | | | |
Collapse
|