1
|
Hényková E, Kaleta M, Klíčová K, Gonzalez G, Novák O, Strnad M, Kaňovský P. Quantitative Determination of Endogenous Tetrahydroisoquinolines, Potential Parkinson's Disease Biomarkers, in Mammals. ACS Chem Neurosci 2022; 13:3230-3246. [PMID: 36375023 DOI: 10.1021/acschemneuro.2c00516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Current diagnostic options for Parkinson's disease are very limited and primarily based on characteristic clinical symptoms. Thus, there are urgent needs for reliable biomarkers that enable us to diagnose the disease in the early stages, differentiate it from other atypical Parkinsonian syndromes, monitor its progression, increase knowledge of its pathogenesis, and improve the development of potent therapies. A promising group of potential biomarkers are endogenous tetrahydroisoquinoline metabolites, which are thought to contribute to the multifactorial etiology of Parkinson's disease. The aim of this critical review is to highlight trends and limitations of available traditional and modern analytical techniques for sample pretreatment (extraction and derivatization procedures) and quantitative determination of tetrahydroisoquinoline derivatives in various types of mammalian fluids and tissues (urine, plasma, cerebrospinal fluid, brain tissue, liver tissue). Particular attention is paid to the most sensitive and specific analytical techniques, involving immunochemistry and gas or liquid chromatography coupled with mass spectrometric, fluorescence, or electrochemical detection. The review also includes a discussion of other relevant agents proposed and tested in Parkinson's disease.
Collapse
Affiliation(s)
- Eva Hényková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Michal Kaleta
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Kateřina Klíčová
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Gabriel Gonzalez
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic.,Department of Experimental Biology, Faculty of Science, Palacky University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.,Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic
| |
Collapse
|
2
|
Cross SJ, Reynaga DD, Cano M, Belluzzi JD, Zaveri NT, Leslie FM. Differences in mechanisms underlying reinstatement of cigarette smoke extract- and nicotine-seeking behavior in rats. Neuropharmacology 2020; 162:107846. [PMID: 31704271 PMCID: PMC7034132 DOI: 10.1016/j.neuropharm.2019.107846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/18/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022]
Abstract
Despite extensive research, current therapies for smoking cessation are largely ineffective at maintaining abstinence for more than a year. Whereas most preclinical studies use nicotine alone, the goal of the present study was to evaluate whether inclusion of non-nicotine tobacco constituents provides better face validity for the development of new pharmacological therapies for smoking cessation. Here, we trained adult male rats to self-administer nicotine alone or cigarette smoke extract (CSE), which contains nicotine and other aqueous constituents of cigarette smoke. After stable self-administration behavior was established, animals underwent extinction training followed by drug and cue primed reinstatement testing. We show that animals that self-administered CSE had significant reinstatement in all drug and drug + cue stimulus conditions whereas animals that self-administered nicotine only showed significant reinstatement in the drug + cue conditions. AT-1001, an α3β4 nicotinic acetylcholine receptor (nAChR) functional antagonist, attenuated drug + cue-primed reinstatement of both CSE- and nicotine-seeking behavior. However, AT-1001 was less potent in blocking drug-primed reinstatement in animals that had self-administered CSE than in those that had self-administered nicotine alone. This was the case even when nicotine was used to prime reinstatement in animals that had self-administered CSE, suggesting that prior CSE exposure had altered the functional role of α3β4-containing nAChRs in drug-seeking behavior. These findings confirm the importance of non-nicotine tobacco constituents and α3β4* nAChRs in cue- and nicotine-primed craving. They also suggest that tests using CSE may be more valid models to study tobacco dependence than use of nicotine alone.
Collapse
Affiliation(s)
- Sarah J Cross
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
| | - Daisy D Reynaga
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Michelle Cano
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - James D Belluzzi
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | | | - Frances M Leslie
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| |
Collapse
|
3
|
Ito A, Jamal M, Ameno K, Tanaka N, Takakura A, Kawamoto T, Kitagawa K, Nakayama K, Matsumoto A, Miki T, Kinoshita H. Acetaldehyde administration induces salsolinol formation in vivo in the dorsal striatum of Aldh2-knockout and C57BL/6N mice. Neurosci Lett 2018; 685:50-54. [DOI: 10.1016/j.neulet.2018.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 01/31/2023]
|
4
|
Jamal M, Ameno K, Miki T, Tanaka N, Ito A, Ono J, Takakura A, Kumihashi M, Kinoshita H. Ethanol and acetaldehyde differentially alter extracellular dopamine and serotonin in Aldh2-knockout mouse dorsal striatum: A reverse microdialysis study. Neurotoxicology 2016; 52:204-9. [DOI: 10.1016/j.neuro.2015.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 11/28/2022]
|
5
|
Brennan KA, Laugesen M, Truman P. Whole tobacco smoke extracts to model tobacco dependence in animals. Neurosci Biobehav Rev 2014; 47:53-69. [PMID: 25064817 DOI: 10.1016/j.neubiorev.2014.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/12/2014] [Accepted: 07/14/2014] [Indexed: 01/01/2023]
Abstract
Smoking tobacco is highly addictive and a leading preventable cause of death. The main addictive constituent is nicotine; consequently it has been administered to laboratory animals to model tobacco dependence. Despite extensive use, this model might not best reflect the powerful nature of tobacco dependence because nicotine is a weak reinforcer, the pharmacology of smoke is complex and non-pharmacological factors have a critical role. These limitations have led researchers to expose animals to smoke via the inhalative route, or to administer aqueous smoke extracts to produce more representative models. The aim was to review the findings from molecular/behavioural studies comparing the effects of nicotine to tobacco/smoke extracts to determine whether the extracts produce a distinct model. Indeed, nicotine and tobacco extracts yielded differential effects, supporting the initiative to use extracts as a complement to nicotine. Of the behavioural tests, intravenous self-administration experiments most clearly revealed behavioural differences between nicotine and extracts. Thus, future applications for use of this behavioural model were proposed that could offer new insights into tobacco dependence.
Collapse
Affiliation(s)
- Katharine A Brennan
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Murray Laugesen
- Health New Zealand Ltd, 36 Winchester St, Lyttelton, Christchurch, New Zealand
| | - Penelope Truman
- Institute of Environmental Science and Research Ltd, PO Box 50348, Porirua 5240, New Zealand
| |
Collapse
|
6
|
Zheng M, Ahuja M, Bhattacharya D, Clement TP, Hayworth JS, Dhanasekaran M. Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500. Life Sci 2013; 95:108-17. [PMID: 24361361 DOI: 10.1016/j.lfs.2013.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 01/03/2023]
Abstract
AIMS The British Petroleum (BP) oil spill has raised several ecological and health concerns. As the first response, BP used a chemical dispersant, Corexit-9500, to disperse the crude oil in the Gulf of Mexico to limit shoreline contamination problems. Nevertheless, portions of this oil/Corexit mixture reached the shoreline and still remain in various Gulf shore environments. The use of Corexit itself has become a significant concern since its impacts on human health and environment is unclear. MAIN METHODS In this study, in vitro cytotoxic effects of Corexit were evaluated using different mammalian cells. KEY FINDINGS Under serum free conditions, the LC50 value for Corexit in BL16/BL6 cell was 16 ppm, in 1321N1 cell was 33 ppm, in H19-7 cell was 70 ppm, in HEK293 was 93 ppm, and in HK-2 cell was 95 ppm. With regard to the mechanisms of cytotoxicity, we hypothesize that Corexit can possibly induce cytotoxicity in mammalian cells by altering the intracellular oxidative balance and inhibiting mitochondrial functions. Corexit induced increased reactive oxygen species and lipid peroxide levels; also, it depleted glutathione content and altered catalase activity in H19-7 cells. In addition, there was mitochondrial complex-I inhibition and increase in the pro-apoptotic factors including caspase-3 and BAX expression. SIGNIFICANCE The experimental results show changes in intracellular oxidative radicals leading to mitochondrial dysfunctions and apoptosis in Corexit treatments, possibly contributing to cell death. Our findings raise concerns about using large volumes of Corexit, a potential environmental toxin, in sensitive ocean environments.
Collapse
Affiliation(s)
- Mengyuan Zheng
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | - Manuj Ahuja
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Dwipayan Bhattacharya
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - T Prabhakar Clement
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | - Joel S Hayworth
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
7
|
Correa M, Salamone JD, Segovia KN, Pardo M, Longoni R, Spina L, Peana AT, Vinci S, Acquas E. Piecing together the puzzle of acetaldehyde as a neuroactive agent. Neurosci Biobehav Rev 2012; 36:404-30. [DOI: 10.1016/j.neubiorev.2011.07.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/14/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
|
8
|
Abstract
It is well established that the continued intake of drugs of abuse is reinforcing-that is repeated consumption increases preference. This has been shown in some studies to extend to other drugs of abuse; use of one increases preference for another. In particular, the present review deals with the interaction of nicotine and alcohol as it has been shown that smoking is a risk factor for alcoholism and alcohol use is a risk factor to become a smoker. The review discusses changes in the brain caused by chronic nicotine and chronic alcohol intake to approach the possible mechanisms by which one drug increases the preference for another. Chronic nicotine administration was shown to affect nicotine receptors in the brain, affecting not only receptor levels and distribution, but also receptor subunit composition, thus affecting affinity to nicotine. Other receptor systems are also affected among others catecholamine, glutamate, GABA levels and opiate and cannabinoid receptors. In addition to receptor systems and transmitters, there are endocrine, metabolic and neuropeptide changes as well induced by nicotine. Similarly chronic alcohol intake results in changes in the brain, in multiple receptors, transmitters and peptides as discussed in this overview and also illustrated in the tables. The changes are sex and age-dependent-some changes in males are different from those in females and in general adolescents are more sensitive to drug effects than adults. Although nicotine and alcohol interact-not all the changes induced by the combined intake of both are additive-some are opposing. These opposing effects include those on locomotion, acetylcholine metabolism, nicotine binding, opiate peptides, glutamate transporters and endocannabinoid content among others. The two compounds lower the negative withdrawal symptoms of each other which may contribute to the increase in preference, but the mechanism by which preference increases-most likely consists of multiple components that are not clear at the present time. As the details of induced changes of nicotine and alcohol differ, it is likely that the mechanisms of increasing nicotine preference may not be identical to that of increasing alcohol preference. Stimulation of preference of yet other drugs may again be different -representing one aspect of drug specificity of reward mechanisms.
Collapse
Affiliation(s)
- A Lajtha
- Nathan Kline Institute, Orangeburg, NY 10962, USA
| | | |
Collapse
|
9
|
Hipólito L, Sánchez-Catalán MJ, Zornoza T, Polache A, Granero L. Locomotor stimulant effects of acute and repeated intrategmental injections of salsolinol in rats: role of mu-opioid receptors. Psychopharmacology (Berl) 2010; 209:1-11. [PMID: 20084370 DOI: 10.1007/s00213-009-1751-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 11/18/2009] [Indexed: 12/31/2022]
Abstract
RATIONALE Microinjections of ethanol and acetaldehyde into ventral tegmental area (VTA) produce locomotor activation in rats through mechanisms dependent on the mu-opioid receptors. However, it is not clear how these drugs can interact with these receptors. It has been hypothesized that salsolinol could be the responsible for this interaction. OBJECTIVES The aim of the study was to investigate the ability of salsolinol to induce both motor activation and motor sensitization in rats after repeated intra-VTA administration. MATERIALS Rats received one microinjection into the posterior VTA of artificial cerebrospinal fluid (aCSF; 200 nL), salsolinol (0.3-3,000.0 pmol/200 nL), or salsolinol (30.0 pmol/200 nL) with either naltrexone (13.2 nmol/200 nL) or with the antagonist of the mu-opioid receptors, beta-funaltrexamine (beta-FNA; 2.5 nmol/300 nL). In the sensitization experiments, four microinjections of salsolinol (30.0 pmol/200 nL) or aCSF (200 nL) were performed over a 2-week period. This period was followed by a single challenge session, in which 0.3 pmol of salsolinol was microinjected to rats. Spontaneous activity was always monitored postinjection. RESULTS Intra-VTA salsolinol administration induces an increase of the spontaneous motor activity of the rats with the maximal effect at the dose of 30.0 pmol/200 nL. Salsolinol effects were blocked by the treatment with naltrexone or beta-FNA. Moreover, repeated injections of salsolinol produced locomotor sensitization. CONCLUSIONS Salsolinol induces locomotor activity and motor sensitization after intra-VTA administration. Moreover, the implication of the mu-opioid receptors was shown since the treatment with naltrexone or beta-FNA was able to suppress the salsolinol effects.
Collapse
Affiliation(s)
- Lucía Hipólito
- Departament de Farmacia i Tecnología Farmacèutica, Universitat de València, Burjassot, Spain
| | | | | | | | | |
Collapse
|
10
|
Sershen H, Shearman E, Fallon S, Chakraborty G, Smiley J, Lajtha A. The effects of acetaldehyde on nicotine-induced transmitter levels in young and adult brain areas. Brain Res Bull 2009; 79:458-62. [DOI: 10.1016/j.brainresbull.2009.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 04/07/2009] [Indexed: 12/30/2022]
|
11
|
Hipólito L, Sánchez-Catalán MJ, Polache A, Granero L. Induction of brain CYP2E1 changes the effects of ethanol on dopamine release in nucleus accumbens shell. Drug Alcohol Depend 2009; 100:83-90. [PMID: 18990514 DOI: 10.1016/j.drugalcdep.2008.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 09/08/2008] [Accepted: 09/12/2008] [Indexed: 01/05/2023]
Abstract
CYP2E1 is an important enzyme involved in the brain metabolism of ethanol that can be induced by chronic consumption of alcohol. Recent works have highlighted the importance of this system in the context of the behavioural effects of ethanol. Unfortunately, the underlying neurochemical events for these behavioural changes, has not been yet explored. In this work, we have started this exploration by analyzing the possible changes in the neurochemical response of the mesolimbic system to ethanol after pharmacological induction of brain CYP2E1. We have used the dopamine extracellular levels in nucleus accumbens (NAc) core and shell, measured by means of microdialysis in vivo, as an index of the effects of ethanol. Acetone 1% in the tap water was used to induce brain CYP2E1. Efficacy of the induction protocol was assessed by immunoblotting. Intravenous administration of 1.5 g/kg of ethanol in control rats provoked a significant increase of the dopamine levels in both the core (up to 127% of baseline) and the shell (up to 122% of baseline) of the NAc. However, the same dose of ethanol in acetone-treated rats only increased the dopamine extracellular levels in the core (up to 142% of baseline) whereas dopamine levels in the shell subregion remain unaltered relative to baseline. The results of this study indicate that induction of CYP2E1 changes the response of the mesolimbic system to ethanol in a region-dependent manner. Two hypotheses are postulated to explain the observed effects.
Collapse
Affiliation(s)
- Lucía Hipólito
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Valencia, Avda Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | | | | | | |
Collapse
|
12
|
DeCuypere M, Lu Y, Miller DD, LeDoux MS. Regional distribution of tetrahydroisoquinoline derivatives in rodent, human, and Parkinson's disease brain. J Neurochem 2008; 107:1398-413. [PMID: 19013830 DOI: 10.1111/j.1471-4159.2008.05709.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several members of the tetrahydroisoquinoline (TIQ) family of monoamine alkaloids can be formed from dopamine or its oxidized metabolites and may be involved in the pathogenesis of monoaminergic cell death in Parkinson's disease (PD). Using enantiomeric-selective high-performance liquid chromatography with electrochemical detection and liquid chromatography with tandem mass spectroscopy, the regional concentrations of several TIQ derivatives, including salsolinols, were determined in mouse, rat, normal human, and PD brain. TIQ derivatives were detected in all regions subjected to analysis. In general, salsolinols were present at higher concentrations than TIQ and its benzyl and methyl derivatives, especially in human brain. Moreover, salsolinols were concentrated in areas with increased dopamine synthesis and turnover such as the ventral midbrain and striatum, respectively. A possible consequence of nigrostriatal dopaminergic cell death, significantly lower levels of (R)salsolinol, (S)salsolinol, N-methyl-(R)salsolinol and N-methyl-(S)salsolinol were found in the caudate nuclei of PD in comparison with normal human brain. Our data support the hypothesis of endogenous synthesis of salsolinols and provide evidence for their accumulation in catecholaminergic neurons.
Collapse
Affiliation(s)
- Michael DeCuypere
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|