1
|
Atmanspacher F, Schreckenberg R, Wolf A, Grgic I, Schlüter KD. Effect of Metabolic Adaptation by Voluntary Running Wheel Activity and Aldosterone Inhibition on Renal Function in Female Spontaneously Hypertensive Rats. Cells 2022; 11:cells11243954. [PMID: 36552716 PMCID: PMC9777552 DOI: 10.3390/cells11243954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Metabolic effects of physical activity may be reno-protective in the context of hypertension, although exercise stresses kidneys. Aldosterone participates in renal disease in hypertension, but exercise affects the plasma concentration of aldosterone. This study was designed to evaluate whether physical activity and pharmacological treatment by aldosterone have additive effects on renal protection in hypertensive rats. Female spontaneously hypertensive rats (SHR) or normotensive Wistar rats performed voluntary running wheel activity alone or in combination with aldosterone blockade (spironolactone). The following groups were studied: young and pre-hypertensive SHR (n = 5 sedentary; n = 10 running wheels, mean body weight 129 g), 10-month-old Wistar rats (n = 6 sedentary; n = 6 running wheels, mean body weight 263 g), 10-month-old SHRs (n = 18 sedentary, mean body weight 224 g; n = 6 running wheels, mean body weight 272 g; n = 6 aldosterone, mean body weight 219 g; n = 6 aldosterone and running wheels, mean body weight 265 g). Another group of SHRs had free access to running wheels for 6 months and kept sedentary for the last 3 months (n = 6, mean body weight 240 g). Aldosterone was given for the last 4 months. SHRs from the running groups had free access to running wheels beginning at the age of 6 weeks. Renal function was analyzed by microalbuminuria (Alb/Cre), urinary secretion of kidney injury molecule-1 (uKim-1), and plasma blood urea nitrogen (BUN) concentration. Molecular adaptation of the kidney to hypertension and its modification by spironolactone and/or exercise were analyzed by real-time PCR, immunoblots, and histology. After six months of hypertension, rats had increased Alb/Cre and BUN but normal uKim-1. Voluntary free running activity normalized BUN but not Alb/Cre, whereas spironolactone reduced Alb/Cre but not BUN. Exercise constitutively increased renal expression of proprotein convertase subtilisin/kexin type 9 (PCSK9; mRNA and protein) and arginase-2 (mRNA). Spironolactone reduced these effects. uKim-1 increased in rats performing voluntary running wheel activity exercise irrespectively of blood pressure and aldosterone blockade. We observed independent but no additive effects of aldosterone blockade and physical activity on renal function and on molecules potentially affecting renal lipid metabolism.
Collapse
Affiliation(s)
- Felix Atmanspacher
- Physiologisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Rolf Schreckenberg
- Physiologisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Annemarie Wolf
- Physiologisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Ivica Grgic
- Klinik für Nephrologie und Transplantationsmedizin, Philipps Universität Marburg, 35043 Marburg, Germany
| | - Klaus-Dieter Schlüter
- Physiologisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
- Correspondence:
| |
Collapse
|
2
|
Li Z, Wang L, Ren Y, Huang Y, Liu W, Lv Z, Qian L, Yu Y, Xiong Y. Arginase: shedding light on the mechanisms and opportunities in cardiovascular diseases. Cell Death Dis 2022; 8:413. [PMID: 36209203 PMCID: PMC9547100 DOI: 10.1038/s41420-022-01200-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Arginase, a binuclear manganese metalloenzyme in the urea, catalyzes the hydrolysis of L-arginine to urea and L-ornithine. Both isoforms, arginase 1 and arginase 2 perform significant roles in the regulation of cellular functions in cardiovascular system, such as senescence, apoptosis, proliferation, inflammation, and autophagy, via a variety of mechanisms, including regulating L-arginine metabolism and activating multiple signal pathways. Furthermore, abnormal arginase activity contributes to the initiation and progression of a variety of CVDs. Therefore, targeting arginase may be a novel and promising approach for CVDs treatment. In this review, we give a comprehensive overview of the physiological and biological roles of arginase in a variety of CVDs, revealing the underlying mechanisms of arginase mediating vascular and cardiac function, as well as shedding light on the novel and promising therapeutic approaches for CVDs therapy in individuals.
Collapse
Affiliation(s)
- Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Liwei Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Ziwei Lv
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China.
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Abiko Y, Taguchi K, Hisamori M, Hiyoshi-Arai K, Luong NC, Toriba A, Kumagai Y. Redox Homeostasis is Disturbed by Redox Cycling between Reactive Cysteines of Thioredoxin 1 and 9,10-Phenanthrenequinone, an Atmospheric Electron Acceptor. Chem Res Toxicol 2022; 35:1425-1432. [PMID: 35862866 DOI: 10.1021/acs.chemrestox.2c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
9,10-Phenanthrenequinone (9,10-PQ) is a toxicant in diesel exhaust particles and airborne particulate matter ≤2.5 μm in diameter. It is an efficient electron acceptor that readily reacts with dithiol compounds in vitro, resulting in the oxidation of thiol groups and concomitant generation of reactive oxygen species (ROS). However, it remains to be elucidated whether 9,10-PQ interacts with proximal protein dithiols. In the present study, we used thioredoxin 1 (Trx1) as a model of proteins with reactive proximal cysteines and examined whether it reacts with 9,10-PQ in cells and tissues, thereby affecting its catalytic activity and thiol status. Intratracheal injection of 9,10-PQ into mice resulted in protein oxidation and diminished Trx activity in the lungs. Using recombinant wild-type and C32S/C35S Trx1, we found that Cys32 and Cys35 selectively serve as electron donor sites for redox reactions with 9,10-PQ that lead to substantial inhibition of Trx activity. Addition of dithiothreitol restored the Trx activity inhibited by 9,10-PQ. Exposure of cultured cells to 9,10-PQ caused intracellular reactive oxygen species generation that led to protein oxidation, Trx1 dimerization, p38 phosphorylation, and apoptotic cell death. Overexpression of Trx1 blocked these 9,10-PQ-mediated events. These results suggest that the interaction of the reactive cysteines of Trx1 with 9,10-PQ causes oxidative stress, leading to disruption of redox homeostasis.
Collapse
Affiliation(s)
- Yumi Abiko
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba, Sendai 980-8575, Japan
| | - Miwa Hisamori
- Master Program in Environmental Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kyoko Hiyoshi-Arai
- School of Nursing, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Nho Cong Luong
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Toriba
- School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yoshito Kumagai
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
4
|
Long-term dietary restriction up-regulates activity and expression of renal arginase II in aging mice. J Biosci 2018; 42:275-283. [PMID: 28569251 DOI: 10.1007/s12038-017-9683-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Arginase II is a mitochondrial enzyme that catalyses the hydrolysis of L-arginine into urea and ornithine. It is present in other extra-hepatic tissues that lack urea cycle. Therefore, it is plausible that arginase II has a physiological role other than urea cycle which includes polyamine, proline, glutamate synthesis and regulation of nitric oxide production. The high expression of arginase II in kidney, among extrahepatic tissues, might have an important role associated with kidney functions. The present study is aimed to determine the age-associated alteration in the activity and expression of arginase II in the kidney of mice of different ages. The effect of dietary restriction to modulate the agedependent changes of arginase II was also studied. Results showed that renal arginase II activity declines significantly with the progression of age (p less than 0.01 and p less than 0.001 in 6- and 18-month-old mice, respectively as compared to 2-month old mice) and is due to the reduction in its protein as well as the mRNA level (p less than 0.001 in both 6- and 18-month-old mice as compared to 2-month-old mice). Long-term dietary restriction for three months has significantly up-regulated arginase II activity and expression level in both 2- and 18-month-old mice (p less than 0.01 and p less than 0.001, respectively as compared to AL group). These findings clearly indicate that the reducing level of arginase II during aging might have an impact on the declining renal functions. This age-dependent down-regulation of arginase II in the kidney can be attenuated by dietary restriction which may help in the maintenance of such functions.
Collapse
|
5
|
Yoshioka H, Nonogaki T, Shinohara Y, Suzui M, Mori Y, Hwang GW, Ohtani K, Miura N. Lethal chronotoxicity induced by seven metal compounds in mice. J Toxicol Sci 2018; 43:129-134. [PMID: 29479034 DOI: 10.2131/jts.43.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The aim of the present study is to investigate the "chronotoxicity" of seven metal compounds (Hg, Pb, Ni, Cr, Cu, Zn, or Fe) by assessing how their toxicity varies with circadian periodicity. Male ICR mice were injected with each metal compound intraperitoneally at 6 different time points over the course of a day (zeitgeber time [ZT]: ZT2, ZT6, ZT10, ZT14, ZT18 and ZT22). Mortality was then monitored until 14 days after the injection. Our investigation demonstrated that mice were tolerant against Ni toxicity during dark phase, on the other hand, they were tolerant against Cr toxicity during light phase. The chronotoxicity of Hg and Pb seemed to be biphasic. Further, mice were susceptible to toxicities against Cu and Zn in the time zone during which light and dark were reversed. Interestingly, no significant differences were observed for Fe exposure at any time of the day. Our results propose that the chronotoxicology may provide valuable information regarding the importance of injection timing for not only toxicity evaluation tests but also the reproducibility of animal experiments. Furthermore, our data suggests that chronotoxicology may be an important consideration when evaluating the quality of risk assessments for night shift workers who may be exposed to toxic substances at various times of the day.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- College of Pharmacy, Kinjo Gakuin University.,Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences
| | | | | | - Masumi Suzui
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences
| | - Yurie Mori
- College of Pharmacy, Kinjo Gakuin University
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Katsumi Ohtani
- Division of Hazard Evaluation and Epidemiology Research, Japan National Institute of Occupational Safety and Health
| | - Nobuhiko Miura
- Division of Health Effects Research, Japan National Institute of Occupational Safety and Health
| |
Collapse
|
6
|
Identification of ARNT-regulated BIRC3 as the target factor in cadmium renal toxicity. Sci Rep 2017; 7:17287. [PMID: 29229987 PMCID: PMC5725491 DOI: 10.1038/s41598-017-17494-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/27/2017] [Indexed: 01/16/2023] Open
Abstract
Cadmium (Cd) is an environmental contaminant that exhibits renal toxicity. The target transcription factors involved in Cd renal toxicity are still unknown. In this study, we demonstrated that Cd decreased the activity of the ARNT transcription factor, and knockdown of ARNT significantly decreased the viability of human proximal tubular HK-2 cells. Microarray analysis in ARNT knockdown cells revealed a decrease in the expression of a number of genes, including a known apoptosis inhibitor, BIRC3, whose gene and protein expression level was also decreased by Cd treatment. Although the BIRC family consists of 8 members, Cd suppressed only BIRC3 gene expression. BIRC3 is known to suppress apoptosis through the inhibition effect on caspase-3. Knockdown of BIRC3 by siRNA as well as Cd treatment increased the level of active caspase-3. Moreover, knockdown of BIRC3 not only triggered cell toxicity and apoptosis but also strengthened Cd toxicity in HK-2 cells. Meanwhile, the activation of caspase-3 by suppression of BIRC3 gene expression was mostly specific to Cd and to proximal tubular cells. These results suggest that Cd induces apoptosis through the inhibition of ARNT-regulated BIRC3 in human proximal tubular cells.
Collapse
|
7
|
Bridges CC, Zalups RK. The aging kidney and the nephrotoxic effects of mercury. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:55-80. [PMID: 28339347 PMCID: PMC6088787 DOI: 10.1080/10937404.2016.1243501] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Owing to advances in modern medicine, life expectancies are lengthening and leading to an increase in the population of older individuals. The aging process leads to significant alterations in many organ systems, with the kidney being particularly susceptible to age-related changes. Within the kidney, aging leads to ultrastructural changes such as glomerular and tubular hypertrophy, glomerulosclerosis, and tubulointerstitial fibrosis, which may compromise renal plasma flow (RPF) and glomerular filtration rate (GFR). These alterations may reduce the functional reserve of the kidneys, making them more susceptible to pathological events when challenged or stressed, such as following exposure to nephrotoxicants. An important and prevalent environmental toxicant that induces nephrotoxic effects is mercury (Hg). Since exposure of normal kidneys to mercuric ions might induce glomerular and tubular injury, aged kidneys, which may not be functioning at full capacity, may be more sensitive to the effects of Hg than normal kidneys. Age-related renal changes and the effects of Hg in the kidney have been characterized separately. However, little is known regarding the influence of nephrotoxicants, such as Hg, on aged kidneys. The purpose of this review was to summarize known findings related to exposure of aged and diseased kidneys to the environmentally relevant nephrotoxicant Hg.
Collapse
Affiliation(s)
- Christy C Bridges
- a Mercer University School of Medicine , Division of Basic Medical Sciences , Macon , Georgia , USA
| | - Rudolfs K Zalups
- a Mercer University School of Medicine , Division of Basic Medical Sciences , Macon , Georgia , USA
| |
Collapse
|
8
|
Ahmad AS, Shah ZA, Doré S. Protective Role of Arginase II in Cerebral Ischemia and Excitotoxicity. ACTA ACUST UNITED AC 2016; 7. [PMID: 27308186 DOI: 10.21767/2171-6625.100088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Arginase (Arg), one of the enzymes involved in the urea cycle, provides an essential route for the disposal of excess nitrogen resulting from amino acid and nucleotide metabolism. Two reported subtypes of Arg (ArgI and II) compete with nitric oxide synthase (NOS) to use L-arginine as a substrate, and subsequently regulate NOS activity. It has been reported that Arg has significant effects on circulation that suggest the potential role of this enzyme in regulating vascular function. However, the role of Arg following brain damage has not been elucidated. In this study, we hypothesize that the deletion of ArgII will lead to aggravated brain injury following cerebral ischemia and excitotoxicity. METHODS AND FINDINGS To test our hypothesis, male C57BL/6 wildtype (WT) and ArgII-/- mice were subjected to permanent distal middle cerebral artery occlusion and survived for 7 d. Cerebral blood flow (CBF) data revealed a statistically non-significant decrease in CBF in ArgII-/- mice. However, ArgII-/- mice had significantly higher neurologic deficit scores and brain infarctions. The hypothesis was further tested in a more specific N-methyl-D-aspartate (NMDA)-induced acute excitotoxic model. WT and ArgII-/- mice were given a single intrastriatal injection of 15 nmol NMDA. Forty-eight hours later, the excitotoxic brain damage was significantly worse in ArgII-/- mice. The data from both models confirm the neuroprotective effect of ArgII. CONCLUSION Targeting ArgII could be considered an integrative part of a multi-modal approach to fight acute brain damage excitotoxicity, ischemic brain injury, and other forms of brain trauma.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology, University of Florida, Gainesville, 32610, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, 32610, FL, USA
| | - Zahoor Ahmad Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo 43614, OH, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, 32610, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, 32610, FL, USA; Departments of Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, 32610 FL, USA
| |
Collapse
|
9
|
Carneiro MFH, Morais C, Small DM, Vesey DA, Barbosa F, Gobe GC. Thimerosal induces apoptotic and fibrotic changes to kidney epithelial cells in vitro. ENVIRONMENTAL TOXICOLOGY 2015; 30:1423-1433. [PMID: 24942245 DOI: 10.1002/tox.22012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Thimerosal is an ethyl mercury-containing compound used mainly in vaccines as a bactericide. Although the kidney is a key target for mercury toxicity, thimerosal nephrotoxicity has not received the same attention as other mercury species. The aim of this study was to determine the potential cytotoxic mechanisms of thimerosal on human kidney cells. Human kidney proximal tubular epithelial (HK2) cells were exposed for 24 h to thimerosal (0-2 µM), and assessed for cell viability, apoptosis, and cell proliferation; expression of proteins Bax, nuclear factor-κB subunits, and transforming growth factor-β1 (TGFβ1); mitochondrial health (JC-1, MitoTracker Red CMXRos); and fibronectin levels (enzyme-linked immunosorbent assay). Thimerosal diminished HK2 cell viability and mitosis, promoted apoptosis, impaired the mitochondrial permeability transition, enhanced Bax and TGFβ1 expression, and augmented fibronectin secretion. This is the first report about kidney cell death and pro-fibrotic mechanisms promoted by thimerosal. Collectively, these in vitro results demonstrate that (1) thimerosal induces kidney epithelial cell apoptosis via upregulating Bax and the mitochondrial apoptotic pathway, and (2) thimerosal is a potential pro-fibrotic agent in human kidney cells. We suggest that new evidence on toxicity as well as continuous surveillance in terms of fibrogenesis is required concerning thimerosal use.
Collapse
Affiliation(s)
- Maria Fernanda Hornos Carneiro
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Do Café, s/n, Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Christudas Morais
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
| | - David M Small
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
| | - David A Vesey
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
| | - Fernando Barbosa
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Do Café, s/n, Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Glenda C Gobe
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Sancho-Martínez SM, López-Novoa JM, López-Hernández FJ. Pathophysiological role of different tubular epithelial cell death modes in acute kidney injury. Clin Kidney J 2015; 8:548-59. [PMID: 26413280 PMCID: PMC4581387 DOI: 10.1093/ckj/sfv069] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/30/2015] [Indexed: 12/14/2022] Open
Abstract
The histological substrate of many forms of intrinsic acute kidney injury (AKI) has been classically attributed to tubular necrosis. However, more recent studies indicate that necrosis is not the main form of cell death in AKI and that other forms such as apoptosis, regulated necrosis (i.e. necroptosis and parthanatos), autophagic cell death and mitotic catastrophe, also participate in AKI and that their contribution depends on the cause and stage of AKI. Herein, we briefly summarize the main characteristics of the major types of cell death and we also critically review the existing evidence on the occurrence of different types of cell death reported in the most common experimental models of AKI and human specimens. We also discuss the pathophysiological mechanisms linking tubule epithelial cell death with reduced glomerular filtration, azotaemia and hydroelectrolytic imbalance. For instance, special relevance is given to the analysis of the inflammatory component of some forms of cell death over that of others, as an important and differential pathophysiological determinant. Finally, known molecular mechanisms and signalling pathways involved in each cell death type pose appropriate targets to specifically prevent or reverse AKI, provided that further knowledge of their participation and repercussion in each AKI syndrome is progressively increased in the near future.
Collapse
Affiliation(s)
- Sandra M Sancho-Martínez
- Departamento de Fisiología y Farmacología , Universidad de Salamanca , Salamanca , Spain ; Instituto de Investigación Biomédica de Salamanca (IBSAL) , Salamanca , Spain ; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo , Madrid , Spain
| | - José M López-Novoa
- Departamento de Fisiología y Farmacología , Universidad de Salamanca , Salamanca , Spain ; Instituto de Investigación Biomédica de Salamanca (IBSAL) , Salamanca , Spain ; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo , Madrid , Spain ; Critical Care Biomedical Research Group (BioCritic) , Valladolid , Spain
| | - Francisco J López-Hernández
- Departamento de Fisiología y Farmacología , Universidad de Salamanca , Salamanca , Spain ; Instituto de Investigación Biomédica de Salamanca (IBSAL) , Salamanca , Spain ; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo , Madrid , Spain ; Critical Care Biomedical Research Group (BioCritic) , Valladolid , Spain ; Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL) , Salamanca , Spain
| |
Collapse
|
11
|
Ilyushin MA, Shugaley IV, Tselinskii IV, Garabadzhiu AV. Environmental problems and their solutions of using energy-rich substances for initiating devices. RUSS J GEN CHEM+ 2014. [DOI: 10.1134/s1070363213130070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Tokumoto M, Lee JY, Fujiwara Y, Uchiyama M, Satoh M. Inorganic arsenic induces apoptosis through downregulation of Ube2d genes and p53 accumulation in rat proximal tubular cells. J Toxicol Sci 2013; 38:815-20. [DOI: 10.2131/jts.38.815] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Maki Tokumoto
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
- Elements Chemistry Laboratory, RIKEN
| | - Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Yasuyuki Fujiwara
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Masanobu Uchiyama
- Elements Chemistry Laboratory, RIKEN
- Advanced Elements Chemistry Laboratory, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| |
Collapse
|
13
|
Liu W, Xu Z, Yang H, Deng Y, Xu B, Wei Y. The protective effects of tea polyphenols and schisandrin B on nephrotoxicity of mercury. Biol Trace Elem Res 2011; 143:1651-65. [PMID: 21369715 DOI: 10.1007/s12011-011-8996-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
Abstract
Mercury (Hg) is an occupational and environmental contaminant that is a well-recognized health hazard. To approach the concrete mechanisms of mercury nephrotoxicity and find out a new way to prevent it, the rats were subcutaneously injected with different dosages of mercuric chloride (HgCl(2))--0, 2.2, 4.4, and 8.8 μmol/kg. The levels of Hg, blood urea nitrogen (BUN), urine protein, glutathione (GSH), malondialdehyde (MDA) and activities of N-acetyl-beta-D-glucosaminidase (NAG), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were investigated, and the levels of reactive oxygen species (ROS) and apoptosis and the pathological changes were also observed. In addition, the effects of 1 mmol/kg tea polyphenols (TP) and 0.04 mmol/kg schisandrin B (Sch B) were studied at 8.8 μmol/kg HgCl(2). It was observed that the levels of Hg, BUN, urine protein, GSH, and MDA and activities of NAG, ALP, and LDH increased significantly; the activities of SOD and GSH-Px decreased significantly; the levels of ROS and apoptosis increased obviously; and many pathological changes occurred dose-dependently in the HgCl(2) injection groups. Further investigation indicated that pretreatment with TP and Sch B significantly reversed the toxic effects of HgCl(2). These results suggested that TP and Sch B might antagonize the nephrotoxicity caused by HgCl(2) exposure.
Collapse
Affiliation(s)
- Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110001, Peoples Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Di Giusto G, Torres AM. Organic anion transporter 5 renal expression and urinary excretion in rats exposed to mercuric chloride: a potential biomarker of mercury-induced nephropathy. Arch Toxicol 2010; 84:741-9. [DOI: 10.1007/s00204-010-0541-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
|