1
|
Awad MM, Chailapakul P, Brown MA, Kato TA. Mechanisms of piperonyl butoxide cytotoxicity and its enhancement with imidacloprid and metals in Chinese hamster ovary cells. Mutat Res 2024; 828:111853. [PMID: 38401335 DOI: 10.1016/j.mrfmmm.2024.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
The widespread use of chemicals and the presence of chemical and metal residues in various foods, beverages, and other consumables have raised concerns about the potential for enhanced toxicity. This study assessed the cytotoxic effects of Piperonyl butoxide (PBO) and its enhancement by combination with major contamination chemicals including Imidacloprid and metals, using different cytotoxic and genotoxic assays in Chinese hamster ovary (CHO) cells. PBO exhibited elevated cytotoxic effects in poly (ADP-ribose) polymerase (PARP) deficient CHO mutants but not in Glutathione S-transferase deficient CHO mutants. PBO cytotoxicity was enhanced by PARP inhibitor, Olaparib. PBO cytotoxicity was also enhanced with co-exposure to Imidacloprid, Lead Chloride, or Sodium Selenite. PBO induces γH2AX foci formation and apoptosis. The induction of DNA damage markers was elevated with PARP deficiency and co-exposure to Imidacloprid, Lead Chloride, or Sodium Selenite. Moreover, PBO triggers to form etch pits on plastic surfaces. These results revealed novel mechanisms of PBO cytotoxicity associated with PARP and synergistic effects with other environmental pollutants. The toxicological mechanisms underlying exposure to various combinations at different concentrations, including concentrations below the permitted limit of intake or the level of concern, require further study.
Collapse
Affiliation(s)
- Mai M Awad
- Department of Ecosystem Science and Sustainability, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523-1052, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1052, USA
| | - Piyawan Chailapakul
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1052, USA
| | - Mark A Brown
- Department of Clinical Sciences, Graduate Degree Program in Ecology, and Epidemiology Section, Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523-1052, USA
| | - Takamitsu A Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1052, USA.
| |
Collapse
|
2
|
Henderson CJ, Cameron AR, Chatham L, Stanley LA, Wolf CR. Evidence that the capacity of nongenotoxic carcinogens to induce oxidative stress is subject to marked variability. Toxicol Sci 2015; 145:138-48. [PMID: 25690736 PMCID: PMC4833039 DOI: 10.1093/toxsci/kfv039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Many drugs and environmental chemicals which are not directly mutagenic have the capacity to increase the incidence of tumors in the liver and other tissues. For this reason, such compounds are known as nongenotoxic carcinogens. The mechanisms underlying their effects remain unclear; however, their capacity to induce oxidative stress is considered to be a critical step in the carcinogenic process, although the evidence that this is actually the case remains equivocal and sparse. We have exploited a novel heme oxygenase-1 reporter mouse to evaluate the capacity of nongenotoxic carcinogens with different mechanisms of action to induce oxidative stress in the liver in vivo. When these compounds were administered at doses reported to cause liver tumors, marked differences in activation of the reporter were observed. 1,4-Dichlorobenzene and nafenopin were strong inducers of oxidative stress, whereas phenobarbital, piperonyl butoxide, cyproterone acetate, and WY14,643 were, at best, only very weak inducers. In the case of phenobarbital and thioacetamide, the number of LacZ-positive hepatocytes increased with time, and for the latter also with dose. The data obtained demonstrate that although some nongenotoxic carcinogens can induce oxidative stress, it is not a dominant feature of the response to these compounds. Therefore in contrast to the current models, these data suggest that oxidative stress is not a key determinant in the mechanism of nongenotoxic carcinogenesis but may contribute to the effects in a compound-specific manner.
Collapse
Affiliation(s)
- Colin J Henderson
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Amy R Cameron
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Lynsey Chatham
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Lesley A Stanley
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Charles Roland Wolf
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
3
|
Tumor suppression effects of bilberry extracts and enzymatically modified isoquercitrin in early preneoplastic liver cell lesions induced by piperonyl butoxide promotion in a two-stage rat hepatocarcinogenesis model. ACTA ACUST UNITED AC 2014; 66:225-34. [DOI: 10.1016/j.etp.2014.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/05/2014] [Accepted: 02/24/2014] [Indexed: 02/06/2023]
|
4
|
Yafune A, Kawai M, Itahashi M, Kimura M, Nakane F, Mitsumori K, Shibutani M. Global DNA methylation screening of liver in piperonyl butoxide-treated mice in a two-stage hepatocarcinogenesis model. Toxicol Lett 2013; 222:295-302. [PMID: 23968726 DOI: 10.1016/j.toxlet.2013.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/04/2013] [Accepted: 08/06/2013] [Indexed: 12/18/2022]
Abstract
Disruptive epigenetic gene control has been shown to be involved in carcinogenesis. To identify key molecules in piperonyl butoxide (PBO)-induced hepatocarcinogenesis, we searched hypermethylated genes using CpG island (CGI) microarrays in non-neoplastic liver cells as a source of proliferative lesions at 25 weeks after tumor promotion with PBO using mice. We further performed methylation-specific polymerase chain reaction (PCR), real-time reverse transcription PCR, and immunohistochemical analysis in PBO-promoted liver tissues. Ebp4.1, Wdr6 and Cmtm6 increased methylation levels in the promoter region by PBO promotion, although Cmtm6 levels were statistically non-significant. These results suggest that PBO promotion may cause altered epigenetic gene regulation in non-neoplastic liver cells surrounding proliferative lesions to allow the facilitation of hepatocarcinogenesis. Both Wdr6 and Cmtm6 showed decreased expression in non-neoplastic liver cells in contrast to positive immunoreactivity in the majority of proliferative lesions produced by PBO promotion. These results suggest that both Wdr6 and Cmtm6 were spared from epigenetic gene modification in proliferative lesions by PBO promotion in contrast to the hypermethylation-mediated downregulation in surrounding liver cells. Considering the effective detection of proliferative lesions, these molecules could be used as detection markers of hepatocellular proliferative lesions and played an important role in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Atsunori Yafune
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Ohsugi T, Ishida T, Shimasaki T, Okada S, Umezawa K. p53 dysfunction precedes the activation of nuclear factor-κB during disease progression in mice expressing Tax, a human T-cell leukemia virus type 1 oncoprotein. Carcinogenesis 2013; 34:2129-36. [PMID: 23633516 DOI: 10.1093/carcin/bgt144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transgenic (Tg) mice expressing Tax, a human T-cell leukemia virus type 1 (HTLV-1) oncoprotein, develop mature T-cell leukemia/lymphoma. The leukemic cells in Tg mice expressing Tax show p53 dysfunction and nuclear factor-κB (NF-κB) activation, similar to that seen in adult T-cell leukemia/lymphoma (ATLL) cells from patients infected with HTLV-1. However, it is unclear when these effects occur in HTLV-1 carriers during the development of ATLL. Here, we examined p53 function and NF-κB activity before the onset of leukemia in Tax-expressing Tg (Tax-Tg) mice between 4 and 25 months of age. At 4-10 months of age, 71% of mice showed p53 inactivation, without evidence for NF-κB activation, even though tax expression was consistent from 4 to 25 months of age. The decline in p53 function resulted from decreased p53 accumulation after DNA damage. From 11 months of age onward, 75% of mice showed p53 dysfunction and 37.5% showed constitutive NF-κB activation with the components of p50 and RelB. An NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced NF-κB activity (i.e. p50/RelB) but did not restore p53 function. In vivo, treatment with DHMEQ until 24 months of age prevented the onset of T-cell leukemia in Tax-Tg mice. These results suggest that the Tax-induced decline in p53 function, which is independent of NF-κB activation in the early stage, might be the first stage in the onset of ATLL. NF-κB activity is involved in the later stages of ATLL onset.
Collapse
Affiliation(s)
- Takeo Ohsugi
- Division of Microbiology and Genetics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|
6
|
Bolt HM, Marchan R, Hengstler JG. Nanotoxicology and oxidative stress control: cutting-edge topics in toxicology. Arch Toxicol 2012; 86:1629-35. [DOI: 10.1007/s00204-012-0953-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Xie XL, Wei M, Kakehashi A, Yamano S, Okabe K, Tajiri M, Wanibuchi H. Dammar resin, a non-mutagen, inducts oxidative stress and metabolic enzymes in the liver of gpt delta transgenic mouse which is different from a mutagen, 2-amino-3-methylimidazo[4,5-f]quinoline. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 748:29-35. [DOI: 10.1016/j.mrgentox.2012.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/06/2012] [Accepted: 06/23/2012] [Indexed: 10/28/2022]
|
8
|
Tasaki M, Kuroiwa Y, Inoue T, Hibi D, Matsushita K, Ishii Y, Maruyama S, Nohmi T, Nishikawa A, Umemura T. Oxidative DNA damage andin vivomutagenicity caused by reactive oxygen species generated in the livers ofp53-proficient or -deficientgptdelta mice treated with non-genotoxic hepatocarcinogens. J Appl Toxicol 2012; 33:1433-41. [DOI: 10.1002/jat.2807] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/28/2012] [Accepted: 06/28/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Masako Tasaki
- Division of Pathology; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Yuichi Kuroiwa
- Division of Pathology; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Tomoki Inoue
- Division of Pathology; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Daisuke Hibi
- Division of Pathology; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Kohei Matsushita
- Division of Pathology; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Yuji Ishii
- Division of Pathology; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Soichi Maruyama
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Science; Nihon University; 1866, Kameino Fujisawa-city Kanagawa 252-8510 Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Akiyoshi Nishikawa
- Biological Safety Research Center; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| | - Takashi Umemura
- Division of Pathology; National Institute of Health Sciences; 1-18-1, Kamiyoga, Setagaya-ku Tokyo 158-8501 Japan
| |
Collapse
|
9
|
Wang J, Lu J, Mook RA, Zhang M, Zhao S, Barak LS, Freedman JH, Lyerly HK, Chen W. The insecticide synergist piperonyl butoxide inhibits hedgehog signaling: assessing chemical risks. Toxicol Sci 2012; 128:517-23. [PMID: 22552772 DOI: 10.1093/toxsci/kfs165] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The spread of chemicals, including insecticides, into the environment often raises public health concerns, as exemplified by a recent epidemiologic study associating in utero piperonyl butoxide (PBO) exposure with delayed mental development. The insecticide synergist PBO is listed among the top 10 chemicals detected in indoor dust; a systematic assessment of risks from PBO exposure, as for many toxicants unfortunately, may be underdeveloped when important biological targets that can cause toxicity are unknown. Hedgehog/Smoothened signaling is critical in neurological development. This study was designed to use novel high-throughput in vitro drug screening technology to identify modulators of Hedgehog signaling in environmental chemicals to assist the assessment of their potential risks. A directed library of 1408 environmental toxicants was screened for Hedgehog/Smoothened antagonist activity using a high-content assay that evaluated the interaction between Smoothened and βarrestin2 green fluorescent protein. PBO was identified as a Hedgehog/Smoothened antagonist capable of inhibiting Hedgehog signaling. We found that PBO bound Smoothened and blocked Smoothened overexpression-induced Gli-luciferase reporter activity but had no effect on Gli-1 downstream transcriptional factor-induced Gli activity. PBO inhibited Sonic Hedgehog ligand-induced Gli signaling and mouse cerebellar granular precursor cell proliferation. Moreover, PBO disrupted zebrafish development. Our findings demonstrate the value of high-throughput target-based screening strategies that can successfully evaluate large numbers of environmental toxicants and identify key targets and unknown biological activity that is helpful in properly assessing potential risks.
Collapse
Affiliation(s)
- Jiangbo Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shimamoto K, Hayashi H, Taniai E, Morita R, Imaoka M, Ishii Y, Suzuki K, Shibutani M, Mitsumori K. Antioxidant N-acetyl-L-cysteine (NAC) supplementation reduces reactive oxygen species (ROS)-mediated hepatocellular tumor promotion of indole-3-carbinol (I3C) in rats. J Toxicol Sci 2012; 36:775-86. [PMID: 22129741 DOI: 10.2131/jts.36.775] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Indole-3-carbinol (I3C) has a liver tumor promoting activity in rats, and is also known as a cytochrome p450 1A (CYP1A) inducer. The generation of reactive oxygen species (ROS) resulting from CYP1A induction due to I3C, is probably involved in the tumor promotion. To clarify whether ROS generation contributes to I3C's induction of hepatocellular altered foci, partially hepatectomized rats were fed a diet containing 0.5% of I3C for 8 weeks with or without 0.3% N-acetyl-L-cysteine (NAC), an antioxidant, in their drinking water after N-diethylnitrosamine (DEN) initiation. Immunohistochemical analysis showed that the glutathione-S-transferase placental form (GST-P) positive foci promoted by I3C were suppressed by the administration of NAC. The mRNAs of members of the phase II nuclear factor, erythroid derived 2, like 2 (Nrf2) gene batteries, whose promoter region is called as antioxidant response element (ARE), were down-regulated in the DEN-I3C-NAC group compared to the DEN-I3C group, but Cyp1a1 was not suppressed in the DEN-I3C-NAC group compared to the DEN-I3C group. There was no marked difference in production of microsomal ROS and genomic 8-hydroxy-2'-deoxygunosine (8-OHdG) as an oxidative DNA marker between the DEN-I3C-NAC and DEN-I3C groups, while mapkapk3 and Myc were decreased by the NAC treatment. These results indicate that oxidative stress plays an important role for I3C's tumor promotion, and NAC suppresses induction of hepatocellular altered foci with suppressed cytoplasmic oxidative stress.
Collapse
Affiliation(s)
- Keisuke Shimamoto
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Low-dose Cd induces hepatic gene hypermethylation, along with the persistent reduction of cell death and increase of cell proliferation in rats and mice. PLoS One 2012; 7:e33853. [PMID: 22457795 PMCID: PMC3311546 DOI: 10.1371/journal.pone.0033853] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/22/2012] [Indexed: 12/26/2022] Open
Abstract
Background Cadmium (Cd) is classified as a human carcinogen probably associated with epigenetic changes. DNA methylation is one of epigenetic mechanisms by which cells control gene expression. Therefore, the present study genome-widely screened the methylation-altered genes in the liver of rats previously exposed to low-dose Cd. Methodology Principal Findings Rats were exposed to Cd at 20 nmol/kg every other day for 4 weeks and gene methylation was analyzed at the 48th week with methylated DNA immunoprecipitation-CpG island microarray. Among the 1629 altered genes, there were 675 genes whose promoter CpG islands (CGIs) were hypermethylated, 899 genes whose promoter CGIs were hypomethylated, and 55 genes whose promoter CGIs were mixed with hyper- and hypo-methylation. Caspase-8 gene promoter CGIs and TNF gene promoter CGIs were hypermethylated and hypomethylated, respectively, along with a low apoptosis rate in Cd-treated rat livers. To link the aberrant methylation of caspase-8 and TNF genes to the low apoptosis induced by low-dose Cd, mice were given chronic exposure to low-dose Cd with and without methylation inhibitor (5-aza-2′-deoxyctidene, 5-aza). At the 48th week after Cd exposure, livers from Cd-treated mice displayed the increased caspase-8 CGI methylation and decreased caspase-8 protein expression, along with significant increases in cell proliferation and overexpression of TGF-β1 and cytokeratin 8/18 (the latter is a new marker of mouse liver preneoplastic lesions), all which were prevented by 5-aza treatment. Conclusion/Significance These results suggest that Cd-induced global gene hypermethylation, most likely caspase-8 gene promoter hypermethylation that down-regulated its expression, leading to the decreased hepatic apoptosis and increased preneoplastic lesions.
Collapse
|
12
|
Taniai E, Yafune A, Kimura M, Morita R, Nakane F, Suzuki K, Mitsumori K, Shibutani M. Fluctuations in cell proliferation, apoptosis, and cell cycle regulation at the early stage of tumor promotion in rat two-stage carcinogenesis models. J Toxicol Sci 2012. [DOI: 10.2131/jts.37.1113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Eriko Taniai
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Atsunori Yafune
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Masayuki Kimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Reiko Morita
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Fumiyuki Nakane
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Kazuhiko Suzuki
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Kunitoshi Mitsumori
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| |
Collapse
|
13
|
Most cited articles: ethanol-induced hepatotoxicity, anticarcinogenic effects of polyphenolic compounds in tea, dose–response modeling, novel roles of epoxide hydrolases and arsenic-induced suicidal erythrocyte death. Arch Toxicol 2011; 85:1485-9. [DOI: 10.1007/s00204-011-0784-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
|
15
|
Shimamoto K, Dewa Y, Ishii Y, Kemmochi S, Taniai E, Hayashi H, Imaoka M, Morita R, Kuwata K, Suzuki K, Shibutani M, Mitsumori K. Indole-3-carbinol enhances oxidative stress responses resulting in the induction of preneoplastic liver cell lesions in partially hepatectomized rats initiated with diethylnitrosamine. Toxicology 2011; 283:109-17. [PMID: 21396975 DOI: 10.1016/j.tox.2011.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 02/25/2011] [Accepted: 03/03/2011] [Indexed: 12/22/2022]
Abstract
The liver tumor-promoting effects of indole-3-carbinol (I3C), a cytochrome P450 (CYP) 1A inducer found in cruciferous vegetables, were investigated using a medium-term hepatocarcinogenesis model in rats. Six-week-old male F344 rats received an intraperitoneal injection of N-diethylnitrosamine (DEN) and were fed a diet containing 0 (DEN-alone), 0.25, 0.50 or 1.0% of I3C for 8 weeks from 2 weeks after DEN-initiation. The number and area of liver cell foci positive for glutathione S-transferase placental form (GST-P) significantly increased in the livers of rats given 0.5% I3C or more, compared to those in the DEN-alone group. The number of GST-P positive foci also increased in the 0.25% I3C group. The number of liver cells positive for proliferating cell nuclear antigen (PCNA) significantly increased in all I3C groups compared to that in the DEN-alone group. Real-time RT-PCR analysis showed that I3C increased transcript levels of not only Cyp1a1 but also aryl hydrocarbon receptor (AhR) and/or nuclear factor (erythroid-derived 2)-like 2 (Nrf2) gene batteries, such as Cyp1a2, Cyp1b1, Ugt1a6, Nrf2, Nqo1, Gsta5, Gstm2, Ggt1and Gpx2. Reactive oxygen species (ROS) in the microsomal fraction significantly increased in all I3C-treated groups compared to the DEN-alone group, and thiobarbituric acid-reactive substances (TBARS) levels and 8-hydroxy-2'-deoxyguanosine (8-OHdG) content significantly increased in all of the I3C-treated groups and 1.0% I3C group, respectively. These results suggest that I3C is an AhR activator and enhances microsomal ROS production resulting in the upregulation of Nrf2 gene batteries, but the oxidative stress generated overcomes the antioxidant effect of Nrf2-related genes. Such 'a redox imbalance' subsequently induces liver tumor-promoting effects by enhancing cellular proliferation in rats.
Collapse
Affiliation(s)
- Keisuke Shimamoto
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kuwata K, Shibutani M, Hayashi H, Shimamoto K, Hayashi SM, Suzuki K, Mitsumori K. Concomitant apoptosis and regeneration of liver cells as a mechanism of liver-tumor promotion by β-naphthoflavone involving TNFα-signaling due to oxidative cellular stress in rats. Toxicology 2011; 283:8-17. [PMID: 21295105 DOI: 10.1016/j.tox.2011.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/21/2011] [Accepted: 01/26/2011] [Indexed: 02/06/2023]
Abstract
β-naphthoflavone (BNF) is a strong inducer of cytochrome P450 1A enzymes, and exerts liver tumor-promoting activity through enhancement of oxidative stress responses in rats. This study investigated the role of the tissue environment surrounding hepatocellular preneoplastic lesions in the early tumor-promotion stage by BNF, using enzymatically modified isoquercitrin (EMIQ) as an anti-oxidative chemopreventive agent. Male F344 rats were fed a diet containing BNF (0.5%) for 6 weeks, with or without EMIQ (0.2%) in the drinking water, 2 weeks after initiation with N-diethylnitrosamine, and were subjected to two-thirds partial hepatectomy 1 week after starting BNF-promotion. BNF-treatment increased concentrations of liver thiobarbituric acid-reactive substances, single liver cells expressing glutathione S-transferase placental form or heme oxygenase (HO)-1, and concomitant apoptosis and proliferation of liver cells. Transcript upregulation of anti-oxidative enzymes (Aldh1a1 and Nqo1), cell cycle-related molecules (Cdc20 and Cdkn2b) and inflammation-related molecules including proinflammatory cytokines (Ccl2, Col1a1, Il6, Nos2 and Serpine1) was also evident. Furthermore, BNF increased HO-1-expressing Kupffer cells and liver cells expressing tumor necrosis factor receptor 1 (TNFR1) and the TNFR1-associated death domain. Most of these BNF-induced fluctuations disappeared or were suppressed by EMIQ in conjunction with suppression of tumor-promotion. Tnf transcript levels with BNF were also suppressed by EMIQ. These results suggest that BNF-induced oxidative stress causes single liver cell toxicity, allowing subsequent concomitant apoptosis and regeneration involving inflammatory responses including TNFα-signaling, contributing to tumor promotion. Kupffer cells may act to protect against inflammatory stimuli induced as a result of oxidative cellular stress by BNF, causing proinflammatory cytokine level fluctuations.
Collapse
Affiliation(s)
- Kazunori Kuwata
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Tasaki M, Umemura T, Suzuki Y, Hibi D, Inoue T, Okamura T, Ishii Y, Maruyama S, Nohmi T, Nishikawa A. Oxidative DNA damage and reporter gene mutation in the livers of gpt delta rats given non-genotoxic hepatocarcinogens with cytochrome P450-inducible potency. Cancer Sci 2010; 101:2525-30. [PMID: 20735435 PMCID: PMC11159437 DOI: 10.1111/j.1349-7006.2010.01705.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous reports have proposed that reactive oxygen species resulting from induction of cytochrome P450 (CYP) isozymes might be involved in the modes of action of hepatocarcinogens with CYP-inducible potency. In the present study, we investigated 8-hydroxydeoxyguanosine (8-OHdG) levels, in vivo mutagenicity and glutathione S-transferase placental form (GST-P)-positive foci in the livers of gpt delta rats treated with piperonyl butoxide (PBO) or phenobarbital (PhB) for 4 and 13 weeks. Significant elevations in Cyp 1A1 and Cyp 1A2 mRNA levels after PBO treatment, and in Cyp 2B1 mRNA levels after PBO or PhB treatment, appeared together with remarkable hepatomegaly through the experimental period. Time-dependent and statistically significant increases in 8-OHdG levels were observed in the PBO treatment group along with significant increases in proliferating cell nuclear antigen (PCNA)-positive hepatocytes at 4 weeks, while no increase in 8-OHdG levels was found in PhB-treated rats. No changes in mutant frequencies of gpt and red/gam (Spi(-)) genes in liver DNA from PBO- or PhB-treated rats were observed at 4 or 13 weeks. A 13-week exposure to either PBO or PhB did not affect the number and area of GST-P-positive hepatocytes. CYP 1A1 and 1A2 induction may be responsible for elevated levels of 8-OHdG in PBO-treated rats. However, neither GC:TA transversions nor deletion mutations, typically regarded as 8-OHdG-related mutations, were observed in any of the treated rats. We conclude that reactive oxygen species, possibly produced through CYP catalytic pathways, likely induced genomic DNA damage but did not give rise to permanent gene mutation.
Collapse
Affiliation(s)
- Masako Tasaki
- Division of Pathology, National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tanaka M, Han S, Song H, Küpfer PA, Leumann CJ, Sonntag WE. An assay for RNA oxidation induced abasic sites using the Aldehyde Reactive Probe. Free Radic Res 2010; 45:237-47. [PMID: 21062214 DOI: 10.3109/10715762.2010.535529] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
There have been several reports describing elevation of oxidized RNA in ageing or age-related diseases, however RNA oxidation has been assessed solely based on 8-hydroxy-guanosine levels. In this study, Aldehyde Reactive Probe (ARP), which was originally developed to detect DNA abasic sites, was used to assess RNA oxidation. It was found that ARP reacted with depurinated tRNA(Phe) or chemically synthesized RNA containing abasic sites quantitatively to as little as 10 fmoles, indicating that abasic RNA is recognized by ARP. RNA oxidized by Fenton-type reactions, γ-irradiation or peroxynitrite increased ARP reactivity dose-dependently, indicating that ARP is capable of monitoring oxidized RNA mediated by reactive oxygen species or reactive nitrogen species. Furthermore, oxidative stress increased levels of ARP reactive RNA in cultured cells. These results indicate the versatility of the assay method for biologically relevant oxidation of RNA. Thus, this study developed a sensitive assay for analysis of oxidized RNA.
Collapse
Affiliation(s)
- Mikiei Tanaka
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th street, Stanton L. Young BRC 1305, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Mizukami S, Ichimura R, Kemmochi S, Wang L, Taniai E, Mitsumori K, Shibutani M. Tumor promotion by copper-overloading and its enhancement by excess iron accumulation involving oxidative stress responses in the early stage of a rat two-stage hepatocarcinogenesis model. Chem Biol Interact 2010; 185:189-201. [DOI: 10.1016/j.cbi.2010.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/07/2010] [Accepted: 03/09/2010] [Indexed: 11/27/2022]
|
20
|
Bolt HM, Hengstler JG. Oxidative stress and hepatic carcinogenesis: new insights and applications. Arch Toxicol 2010; 84:87-8. [DOI: 10.1007/s00204-010-0510-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Jin M, Dewa Y, Kawai M, Nishimura J, Saegusa Y, Kemmochi S, Harada T, Shibutani M, Mitsumori K. The threshold dose for liver tumor promoting effects of dicyclanil in ICR mice. J Toxicol Sci 2010; 35:69-78. [DOI: 10.2131/jts.35.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Meilan Jin
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Division of Pathology, Biological Safety Research Center, National Institute of Health Sciences
| | - Yasuaki Dewa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Masaomi Kawai
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Jihei Nishimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Yukie Saegusa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Sayaka Kemmochi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Tomoaki Harada
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Kunitoshi Mitsumori
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| |
Collapse
|