1
|
Dayan AD, Hesse E, Dayan J. The arsenic eaters of Styria, the toxicophagi. Clin Toxicol (Phila) 2024; 62:468-471. [PMID: 38966917 DOI: 10.1080/15563650.2024.2371514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION From at least the fifteenth to late nineteenth centuries, peasants in the Austrian province of Styria ate up to several hundred milligrams of arsenic trioxide or sulfide daily or weekly for periods up to a number of years. Taking these doses of arsenic was believed to increase muscular power and enhance the beauty and sexual attractiveness of peasant girls. There do not appear to be contemporaneous records of the known consequences of chronic arsenic exposure. The historical records of arsenic eating there are reviewed and appear to be valid. The benefits are subjective judgements by arsenic eaters. The lack of objective reports of the anticipated external and internal clinical and pathological effects of arsenic poisoning depends on a smaller number of clinical accounts and autopsy reports and the general medical literature of those times, so it is weaker, but it is consistent. CAN THE CLAIMED BENEFITS OF ARSENIC EATING AND THE APPARENT ABSENCE OF HARMFUL TOXIC EFFECTS BE TRUE? Why the arsenic eaters did not show the well-known consequences of prolonged exposure to high doses of arsenic is not known. Possible explanations include increases in detoxifying metabolism in the consumers due to induced genomic changes and selection in people and in the gut microbiome, as shown in other populations. Whether these effects would suffice to protect people against their high doses of arsenic has not been explored. CONCLUSION Although the nature and mechanisms of arsenic toxicity have been extensively described, much still remains to be discovered.
Collapse
|
2
|
Vázquez Cervantes GI, González Esquivel DF, Ramírez Ortega D, Blanco Ayala T, Ramos Chávez LA, López-López HE, Salazar A, Flores I, Pineda B, Gómez-Manzo S, Pérez de la Cruz V. Mechanisms Associated with Cognitive and Behavioral Impairment Induced by Arsenic Exposure. Cells 2023; 12:2537. [PMID: 37947615 PMCID: PMC10649068 DOI: 10.3390/cells12212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Dinora Fabiola González Esquivel
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Daniela Ramírez Ortega
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Tonali Blanco Ayala
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Lucio Antonio Ramos Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Humberto Emanuel López-López
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| |
Collapse
|
3
|
Irshad K, Rehman K, Akash MSH, Hussain I. Biochemical Investigation of Therapeutic Potential of Resveratrol Against Arsenic Intoxication. Dose Response 2021; 19:15593258211060941. [PMID: 34887717 PMCID: PMC8649462 DOI: 10.1177/15593258211060941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Arsenic has been reported to cause damaging effects on different body organs.
This study was designed to evaluate the protective effect of resveratrol (RSV)
against arsenic trioxide (ATO)–induced intoxication in experimental animals.
Twenty-four Wistar rats were allocated in 4 groups: group 1: control group,
received normal diet; group 2: received ATO (3 mg/kg); group 3: received RSV
(8 mg/kg) 30 minutes before administration of ATO; and group 4: received
ascorbic acid (25 mg/kg) 30 minutes before administration of ATO. Treatments
were given to experimental rats daily for consecutive 8 days. At the end of
experimental period, bioaccumulation of arsenic in liver and kidney was assessed
by hydride generation-atomic absorption spectrophotometer to investigate the
association of arsenic accumulation with histological aberrations. Following
parameters were also investigated: serum biochemical profile (alanine
aminotransferase, aspartate transaminase, alkaline phosphatase, blood urea
nitrogen, and creatinine) for evaluation of liver and kidney functions and lipid
peroxidation and oxidative stress (malondialdehyde, glutathione, superoxide
dismutase, catalase, and glutathione peroxidase) in tissue homogenates of liver
and kidney for estimation of oxidative status. The findings of this study
indicate that RSV remarkably ameliorated the hepatic and renal toxicity in
arsenic-exposed rat model due to its strong antioxidant potential.
Collapse
Affiliation(s)
- Kanwal Irshad
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | | - Iqbal Hussain
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
4
|
Al-Forkan M, Wali FB, Khaleda L, Alam MJ, Chowdhury RH, Datta A, Rahman MZ, Hosain N, Maruf MF, Chowdhury MAQ, Hasan NKMM, Shawon II, Raqib R. Association of arsenic-induced cardiovascular disease susceptibility with genetic polymorphisms. Sci Rep 2021; 11:6263. [PMID: 33737636 PMCID: PMC7973792 DOI: 10.1038/s41598-021-85780-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Inorganic arsenic (iAs) exposure has been reported to have an impact on cardiovascular diseases (CVD). However, there is not much known about the cardiac tissue injury of CVD patients in relation to iAs exposure and potential role of single nucleotide polymorphisms (SNPs) of genes related to iAs metabolism, oxidative stress, endothelial dysfunction and inflammation which may play important roles in such CVD cases. In this dual center cross-sectional study, based on the exclusion and inclusion criteria, we have recruited 50 patients out of 270, who came from known arsenic-affected and- unaffected areas of mainly Chittagong, Dhaka and Rajshahi divisions of Bangladesh and underwent open-heart surgery at the selected centers during July 2017 to June 2018. We found that the patients from arsenic affected areas contained significantly higher average iAs concentrations in their urine (6.72 ± 0.54 ppb, P = 0.028), nail (529.29 ± 38.76 ppb, P < 0.05) and cardiac tissue (4.83 ± 0.50 ppb, P < 0.05) samples. Patients' age, sex, BMI, hypertension and diabetes status adjusted analysis showed that patients from arsenic-affected areas had significantly higher iAs concentration in cardiac tissue (2.854, 95%CI 1.017-8.012, P = 0.046) reflecting higher cardiac tissue injury among them (1.831, 95%CI 1.032-3.249, P = 0.039), which in turn allowed the analysis to assume that the iAs exposure have played a vital role in patients' disease condition. Adjusted analysis showed significant association between urinary iAs concentration with AA (P = 0.012) and AG (P = 0.034) genotypes and cardiac iAs concentration with AA (P = 0.017) genotype of AS3MT rs10748835. The AG genotype of AS3MT rs10748835 (13.333 95%CI 1.280-138.845, P = 0.013), AA genotype of NOS3 rs3918181 (25.333 95%CI 2.065-310.757, P = 0.002), GG genotype of ICAM1 rs281432 (12.000 95%CI 1.325-108.674, P = 0.010) and AA genotype of SOD2 rs2758331 (13.333 95%CI 1.280-138.845, P = 0.013) were found significantly associated with CVD patients from arsenic-affected areas. Again, adjusted analysis showed significant association of AA genotype of AS3MT rs10748835 with CVD patients from arsenic affected areas. In comparison to the reference genotypes of the selected SNPs, AA of AS3MT 10748835, AG of NOS3 rs3918181 and AC of rs3918188, GG of ICAM1 rs281432, TT of VCAM1 rs3176867, AA of SOD2 rs2758331 and GT of APOE rs405509 significantly increased odds of cardiac tissue injury of CVD patients from arsenic affected areas. The results showed that the selected SNPs played a susceptibility role towards cardiac tissue iAs concentration and injury among CVD patients from iAs affected areas.
Collapse
Affiliation(s)
- Mohammad Al-Forkan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh.
| | - Fahmida Binta Wali
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh.,Department of Biochemistry and Biotechnology, University of Science and Technology, Chittagong (USTC), Foy's Lake, Chittagong, 4202, Bangladesh
| | - Laila Khaleda
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Jibran Alam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Rahee Hasan Chowdhury
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Amit Datta
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Zillur Rahman
- Department of Pathology, Chittagong Medical College, Chittagong, 4203, Bangladesh
| | - Nazmul Hosain
- Department of Cardiac Surgery, Chittagong Medical College Hospital, Chittagong, 4203, Bangladesh
| | - Mohammad Fazle Maruf
- Department of Cardiac Surgery, Chittagong Medical College Hospital, Chittagong, 4203, Bangladesh
| | | | - N K M Mirazul Hasan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Injamamul Ismail Shawon
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Rubhana Raqib
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh
| |
Collapse
|
5
|
Association between arsenic metabolism gene polymorphisms and arsenic-induced skin lesions in individuals exposed to high-dose inorganic arsenic in northwest China. Sci Rep 2018; 8:413. [PMID: 29323258 PMCID: PMC5765042 DOI: 10.1038/s41598-017-18925-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/19/2017] [Indexed: 12/03/2022] Open
Abstract
Individuals in a given environment contaminated with arsenic have different susceptibilities to disease, which may be related to arsenic metabolism, age, gender, genetics and other factors. This study recruited 850 subjects, including 331 cases and 519 controls, from populations exposed to high levels of arsenic in drinking water in northwest China. Genotypes were determined using a custom-by-design 48-Plex SNPscanTM kit. The results indicated that subjects who carried at least one C allele for GSTO1 rs11191979 polymorphism, at least one A allele for GSTO1 rs2164624, at least one A allele for GSTO1 rs4925, the AG genotype for GSTO2 rs156697, the AG genotype or at least one G allele for GSTO2 rs2297235 or the GG genotype or at least one G allele for PNP rs3790064 had an increased risk of arsenic-related skin lesions. In addition, the haplotype CT between rs4925 and rs11191979 appeared to confer a high risk of arsenic-included skin lesions (OR = 1.377, 95% CI = 1.03–1.84), as did the haplotype GCG among rs156697, rs157077 and rs2297235 (OR = 2.197, 95% CI = 1.08–4.44). The results showed that the variants of GSTO1, GSTO2 and PNP render the susceptible toward developing arsenic-induced skin lesions in individuals exposed to high-dose inorganic arsenic in northwest China.
Collapse
|
6
|
Srivastava P, Dhuriya YK, Gupta R, Shukla RK, Yadav RS, Dwivedi HN, Pant AB, Khanna VK. Protective Effect of Curcumin by Modulating BDNF/DARPP32/CREB in Arsenic-Induced Alterations in Dopaminergic Signaling in Rat Corpus Striatum. Mol Neurobiol 2016; 55:445-461. [DOI: 10.1007/s12035-016-0288-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023]
|
7
|
Gribble MO, Voruganti VS, Cole SA, Haack K, Balakrishnan P, Laston SL, Tellez-Plaza M, Francesconi KA, Goessler W, Umans JG, Thomas DC, Gilliland F, North KE, Franceschini N, Navas-Acien A. Linkage Analysis of Urine Arsenic Species Patterns in the Strong Heart Family Study. Toxicol Sci 2015. [PMID: 26209557 DOI: 10.1093/toxsci/kfv164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arsenic toxicokinetics are important for disease risks in exposed populations, but genetic determinants are not fully understood. We examined urine arsenic species patterns measured by HPLC-ICPMS among 2189 Strong Heart Study participants 18 years of age and older with data on ~400 genome-wide microsatellite markers spaced ~10 cM and arsenic speciation (683 participants from Arizona, 684 from Oklahoma, and 822 from North and South Dakota). We logit-transformed % arsenic species (% inorganic arsenic, %MMA, and %DMA) and also conducted principal component analyses of the logit % arsenic species. We used inverse-normalized residuals from multivariable-adjusted polygenic heritability analysis for multipoint variance components linkage analysis. We also examined the contribution of polymorphisms in the arsenic metabolism gene AS3MT via conditional linkage analysis. We localized a quantitative trait locus (QTL) on chromosome 10 (LOD 4.12 for %MMA, 4.65 for %DMA, and 4.84 for the first principal component of logit % arsenic species). This peak was partially but not fully explained by measured AS3MT variants. We also localized a QTL for the second principal component of logit % arsenic species on chromosome 5 (LOD 4.21) that was not evident from considering % arsenic species individually. Some other loci were suggestive or significant for 1 geographical area but not overall across all areas, indicating possible locus heterogeneity. This genome-wide linkage scan suggests genetic determinants of arsenic toxicokinetics to be identified by future fine-mapping, and illustrates the utility of principal component analysis as a novel approach that considers % arsenic species jointly.
Collapse
Affiliation(s)
- Matthew O Gribble
- *Department of Preventive Medicine, University of Southern California, Los Angeles, California;
| | - Venkata Saroja Voruganti
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina; UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - Poojitha Balakrishnan
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Sandra L Laston
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center, San Antonio-Regional Academic Health Center, Brownsville, Texas
| | - Maria Tellez-Plaza
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland; Biomedical Research Institute, Hospital Clinic de Valencia-INCLIVA, Valencia, Spain
| | - Kevin A Francesconi
- Institute of Chemistry-Analytical Chemistry, University of Graz, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry-Analytical Chemistry, University of Graz, Graz, Austria
| | - Jason G Umans
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, District of Columbia; MedStar Health Research Institute, Hyattsville, Maryland
| | - Duncan C Thomas
- *Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Frank Gilliland
- *Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland; Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
8
|
Gribble MO, Tang WY, Shang Y, Pollak J, Umans JG, Francesconi KA, Goessler W, Silbergeld EK, Guallar E, Cole SA, Fallin MD, Navas-Acien A. Differential methylation of the arsenic (III) methyltransferase promoter according to arsenic exposure. Arch Toxicol 2013; 88:275-82. [PMID: 24154821 DOI: 10.1007/s00204-013-1146-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
Inorganic arsenic is methylated in the body by arsenic (III) methyltransferase (AS3MT). Arsenic methylation is thought to play a role in arsenic-related epigenetic phenomena, including aberrant DNA and histone methylation. However, it is unclear whether the promoter of the AS3MT gene, which codes for AS3MT, is differentially methylated as a function of arsenic exposure. In this study, we evaluated AS3MT promoter methylation according to exposure, assessed by urinary arsenic excretion in a stratified random sample of 48 participants from the Strong Heart Study who had urine arsenic measured at baseline and DNA available from 1989 to 1991 and 1998-1999. For this study, all data are from the 1989-1991 visit. We measured AS3MT promoter methylation at its 48 CpG loci by bisulphite sequencing. We compared mean % methylation at each CpG locus by arsenic exposure group using linear regression adjusted for study centre, age and sex. A hypomethylated region in the AS3MT promoter was associated with higher arsenic exposure. In vitro, arsenic induced AS3MT promoter hypomethylation, and it increased AS3MT expression in human peripheral blood mononuclear cells. These findings may suggest that arsenic exposure influences the epigenetic regulation of a major arsenic metabolism gene.
Collapse
Affiliation(s)
- Matthew O Gribble
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gribble MO, Voruganti VS, Cropp CD, Francesconi KA, Goessler W, Umans JG, Silbergeld EK, Laston SL, Haack K, Kao WHL, Fallin MD, Maccluer JW, Cole SA, Navas-Acien A. SLCO1B1 variants and urine arsenic metabolites in the Strong Heart Family Study. Toxicol Sci 2013; 136:19-25. [PMID: 23970802 DOI: 10.1093/toxsci/kft181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Arsenic species patterns in urine are associated with risk for cancer and cardiovascular diseases. The organic anion transporter coded by the gene SLCO1B1 may transport arsenic species, but its association with arsenic metabolites in human urine has not yet been studied. The objective of this study is to evaluate associations of urine arsenic metabolites with variants in the candidate gene SLCO1B1 in adults from the Strong Heart Family Study. We estimated associations between % arsenic species biomarker traits and 5 single-nucleotide polymorphisms (SNPs) in the SLCO1B1 gene in 157 participants, assuming additive genetics. Linear regression models for each SNP accounted for kinships and were adjusted for sex, body mass index, and study center. The minor allele of rs1564370 was associated with lower %MMA (p = .0003) and higher %DMA (p = .0002), accounting for 8% of the variance for %MMA and 9% for %DMA. The rs1564370 minor allele homozygote frequency was 17% and the heterozygote frequency was 43%. The minor allele of rs2291075 was associated with lower %MMA (p = .0006) and higher %DMA (p = .0014), accounting for 7% of the variance for %MMA and 5% for %DMA. The frequency of rs2291075 minor allele homozygotes was 1% and of heterozygotes was 15%. Common variants in SLCO1B1 were associated with differences in arsenic metabolites in a preliminary candidate gene study. Replication of this finding in other populations and analyses with respect to disease outcomes are needed to determine whether this novel candidate gene is important for arsenic-associated disease risks.
Collapse
Affiliation(s)
- Matthew O Gribble
- * Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Resveratrol protects against arsenic trioxide-induced nephrotoxicity by facilitating arsenic metabolism and decreasing oxidative stress. Arch Toxicol 2013; 87:1025-35. [DOI: 10.1007/s00204-013-1026-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/25/2013] [Indexed: 12/11/2022]
|
11
|
Stewart JD, Marchan R. Polymorphisms hit the headlines. Arch Toxicol 2012; 86:1799-801. [PMID: 23135550 DOI: 10.1007/s00204-012-0973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Stewart JD, Marchan R. Polymorphisms hit the headlines. Arch Toxicol 2012; 86:1637-9. [DOI: 10.1007/s00204-012-0941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Hossain MB, Vahter M, Concha G, Broberg K. Environmental arsenic exposure and DNA methylation of the tumor suppressor gene p16 and the DNA repair gene MLH1: effect of arsenic metabolism and genotype. Metallomics 2012; 4:1167-75. [PMID: 23073540 DOI: 10.1039/c2mt20120h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Arsenic is carcinogenic, possibly partly through epigenetic mechanisms. We evaluated the effects of arsenic exposure and metabolism on DNA methylation. Arsenic exposure and methylation efficiency in 202 women in the Argentinean Andes were assessed from concentrations of arsenic metabolites in urine (inorganic arsenic, methylarsonic acid [MMA], and dimethylarsinic acid [DMA]), measured by HPLC-ICPMS. Methylation of CpGs of the tumor suppressor gene p16, the DNA repair gene MLH1, and the repetitive elements LINE1 was measured by PCR pyrosequencing of blood DNA. Genotyping (N = 172) for AS3MT was performed using Sequenom™, and gene expression (N = 90) using Illumina DirectHyb HumanHT-12 v3.0. Median arsenic concentration in urine was 230 μg L(-1) (range 10.1-1251). In linear regression analysis, log(2)-transformed urinary arsenic concentrations were positively associated with methylation of p16 (β = 0.14, P = 0.0028) and MLH1 (β = 0.28, P = 0.0011), but not with LINE1. Arsenic concentrations were of borderline significance negatively correlated with expression of p16 (r(s) = -0.20; P = 0.066)), but not with MLH1. The fraction of inorganic arsenic was positively (β = 0.026; P = 0.010) and DMA was negatively (β = -0.017, P = 0.043) associated with p16 methylation with no effect of MMA. Carriers of the slow-metabolizing AS3MT haplotype were associated with more p16 methylation (P = 0.022). Arsenic exposure was correlated with increased methylation, in blood, of genes encoding enzymes that suppress carcinogenesis, and the arsenic metabolism efficiency modified the degree of epigenetic alterations.
Collapse
Affiliation(s)
- Mohammad Bakhtiar Hossain
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, SE-22185, Sweden
| | | | | | | |
Collapse
|
14
|
Wen J, Wen W, Li L, Liu H. Methylation capacity of arsenic and skin lesions in smelter plant workers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:624-630. [PMID: 22885843 DOI: 10.1016/j.etap.2012.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 06/01/2023]
Abstract
Potential occupational arsenic exposure is a significant problem in smelting plants. The metabolites containing arsenic with an oxidation of +3 have been considered more cytotoxic and genotoxic than their parent inorganic species. The current study examined the capacity of arsenic methylation and its risk on skin lesions. The primary aim of this study is to determine if methylation capacity, as measured by urinary arsenic metabolites, differed in workers with skin lesions compared to workers without skin lesions. Hydride generation-atomic absorption spectrometry was used to determine three arsenic species in urine of workers who had been working in arsenic plants, and primary and secondary methylation indexes were calculated. Skin lesions were examined at the same time. Many workers had obvious skin lesions (36/91). The mean concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in urine of workers are obviously higher than those of the control group. There are more iAs, MMA, and DMA in urine, higher MMA%, lower iAs% for workers with skin lesions compared with those without skin lesions. Workers with skin lesions have the lowest SMI (3.50±1.21), and they may be in danger. Our results support the viewpoint that individuals who metabolize inorganic arsenic to MMA easily, but metabolize MMA to DMA difficulty have more risk of skin lesions.
Collapse
Affiliation(s)
- Jinghua Wen
- Guizhou University of Finance and Economics, No. 276, Chongguan Road, Guiyang, Guizhou 550004, People's Republic of China
| | - Weihua Wen
- Department of Occupational Health, Yunnan Provincial Center for Disease Control and Prevention, No. 158, Dongsi Street, Kunming, Yunnan 650022, People's Republic of China.
| | - Liang Li
- Honghe Zhou Center for Disease Control and Prevention, No. 1, Guannan Road, Mengzi City, Yunnan 661100, People's Republic of China
| | - Hua Liu
- The First Affiliated Hospital of Kunming Medical College, No. 295, Xichang Road, Kunming, Yunnan 650032, People's Republic of China
| |
Collapse
|
15
|
Genome-wide association study identifies chromosome 10q24.32 variants associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet 2012; 8:e1002522. [PMID: 22383894 PMCID: PMC3285587 DOI: 10.1371/journal.pgen.1002522] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/20/2011] [Indexed: 02/05/2023] Open
Abstract
Arsenic contamination of drinking water is a major public health issue in many countries, increasing risk for a wide array of diseases, including cancer. There is inter-individual variation in arsenic metabolism efficiency and susceptibility to arsenic toxicity; however, the basis of this variation is not well understood. Here, we have performed the first genome-wide association study (GWAS) of arsenic-related metabolism and toxicity phenotypes to improve our understanding of the mechanisms by which arsenic affects health. Using data on urinary arsenic metabolite concentrations and approximately 300,000 genome-wide single nucleotide polymorphisms (SNPs) for 1,313 arsenic-exposed Bangladeshi individuals, we identified genome-wide significant association signals (P<5×10−8) for percentages of both monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) near the AS3MT gene (arsenite methyltransferase; 10q24.32), with five genetic variants showing independent associations. In a follow-up analysis of 1,085 individuals with arsenic-induced premalignant skin lesions (the classical sign of arsenic toxicity) and 1,794 controls, we show that one of these five variants (rs9527) is also associated with skin lesion risk (P = 0.0005). Using a subset of individuals with prospectively measured arsenic (n = 769), we show that rs9527 interacts with arsenic to influence incident skin lesion risk (P = 0.01). Expression quantitative trait locus (eQTL) analyses of genome-wide expression data from 950 individual's lymphocyte RNA suggest that several of our lead SNPs represent cis-eQTLs for AS3MT (P = 10−12) and neighboring gene C10orf32 (P = 10−44), which are involved in C10orf32-AS3MT read-through transcription. This is the largest and most comprehensive genomic investigation of arsenic metabolism and toxicity to date, the only GWAS of any arsenic-related trait, and the first study to implicate 10q24.32 variants in both arsenic metabolism and arsenical skin lesion risk. The observed patterns of associations suggest that MMA% and DMA% have distinct genetic determinants and support the hypothesis that DMA is the less toxic of these two methylated arsenic species. These results have potential translational implications for the prevention and treatment of arsenic-associated toxicities worldwide. Exposure to arsenic through drinking water is a serious public health issue in many countries, including Bangladesh and the United States. Although there is substantial inter-individual variation in arsenic metabolism and toxicity, the biological basis of this variation is not well understood. Here, we have conducted the first genome-wide association study of arsenic-related traits within a unique population cohort of arsenic-exposed Bangladeshi individuals. Using data on 1,313 well-characterized individuals, we identify multiple association signals for urinary arsenic metabolite concentrations in the 10q24.32 regions, near the AS3MT (arsenite methyltransferase) gene. In a subsequent analysis of >2,000 individuals, we show for the first time that variants that influence arsenic metabolism can also influence risk for arsenical skin lesions (the classical sign of arsenic toxicity) through interaction with arsenic exposure. Using array-based genome-wide gene expression data, we show that several of our lead genetic variants are associated with expression of AS3MT and neighboring gene C10orf32, providing a potential mechanism by which 10q24.32 variants influence arsenic metabolism and toxicity. Knowledge of variation in this region and associated biological processes could be used to develop intervention and pharmacological strategies aimed at preventing large numbers of arsenic-related deaths in arsenic-exposed populations.
Collapse
|