1
|
Su HY, Lai CS, Lee KH, Chiang YW, Chen CC, Hsu PC. Prenatal exposure to low-dose di-(2-ethylhexyl) phthalate (DEHP) induces potentially hepatic lipid accumulation and fibrotic changes in rat offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115776. [PMID: 38056127 DOI: 10.1016/j.ecoenv.2023.115776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is widely used to enhance the flexibility and durability of various products. As an endocrine disruptor, DEHP can interfere with normal hormonal functions, posing substantial health risks to organisms. Given the critical role of the liver in DEHP metabolism, we investigated potential liver damage in offspring induced by prenatal exposure to low doses of DEHP in Sprague Dawley rats. Pregnant rats were divided into three groups and administered 20 or 200 μg/kg/day of DEHP or corn oil vehicle control via oral gavage from gestation days 0-20. Male rat offspring were euthanized on postnatal day 84, and blood and liver specimens were collected for analysis. We observed fibrotic changes in the livers of the exposed groups, accompanied by the proliferation and activation of hepatic stellate cells and upregulated expression of TGF-B and collagen 1A1. Additionally, an inflammatory response, characterized by increased macrophage infiltration and elevated levels of pro-inflammatory cytokines, was evident. Third, hepatic and serum triglyceride and serum cholesterol were notably increased, along with upregulated expression of lipid metabolism-related proteins, such as sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase, fatty acid synthase, and diacylglycerol O-acyltransferase 1, particularly in the low-dose group. These results suggest that prenatal exposure to DEHP can disrupt lipid metabolism, resulting in hepatic lipid accumulation in the offspring. This exposure may also induce an inflammatory response that contributes to the development of liver fibrosis. Thus, even at relatively low doses, such exposure can precipitate latent liver damage in offspring.
Collapse
Affiliation(s)
- Hung-Yuan Su
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 824, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Kuo-Hsin Lee
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| | - Yu-Wei Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chia-Chi Chen
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 824, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan; Department of Physical Therapy, I-Shou University, Kaohsiung 824, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
2
|
Al-Saleh I, Elkhatib R, Alrushud N, Alnuwaysir H, Alnemer M, Aldhalaan H, Shoukri M, McWalter P, Alkhenizan A. Potential health risks of maternal phthalate exposure during the first trimester - The Saudi Early Autism and Environment Study (SEAES). ENVIRONMENTAL RESEARCH 2021; 195:110882. [PMID: 33621597 DOI: 10.1016/j.envres.2021.110882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Phthalates are the most ubiquitous contaminants that we are exposed to daily due to their wide use as plasticizers in various consumer products. A few studies have suggested that in utero exposure to phthalates can disturb fetal growth and development in humans, because phthalates can interfere with endocrine function. We collected spot urine samples from 291 pregnant women in their first trimester (9.8 ± 2.3 gestational weeks) recruited in an ongoing prospective cohort study in Saudi Arabia. A second urine sample was collected within 1-7 d after enrollment. The aims of this study were to: (1) assess the extent of exposure to phthalates during the first trimester and (2) estimate the risk from single and cumulative exposures to phthalates. Most phthalate metabolites' urinary levels were high, several-fold higher than those reported in relevant studies from other countries. The highest median levels of monoethyl phthalate, mono-n-butyl phthalate (MnBP), mono-iso-butyl phthalate (MiBP), and mono-(2-ethylhexyl) phthalate (MEHP) in μg/l (μg/g creatinine) were 245.62 (197.23), 114.26 (99.45), 39.59 (34.02), and 23.51 (19.92), respectively. The MEHP levels were highest among three di (2-ethylhexyl) phthalate (DEHP) metabolites. %MEHP4, the ratio of MEHP to four di (2-ethylhexyl) phthalate metabolites (∑4DEHP), was 44%, indicating interindividual differences in metabolism and excretion. The hazard quotient (HQ) of individual phthalates estimated based on the reference dose (RfD) of the U.S. Environmental Protection Agency indicated that 58% (volume-based) and 37% (creatinine-based) of the women were at risk of exposure to ∑4DEHP (HQ > 1). Based on the tolerable daily intake (TDI) from the European Food Safety Authority, 35/12% (volume-/creatinine-based data) of the women were at risk of exposure to two dibutyl phthalate (∑DBP) metabolites (MiBP and MnBP). The cumulative risk was assessed using the hazard index (HI), the sum of HQs of all phthalates. The percentages of women (volume-/creatinine-based data) at health risks with an HI > 1 were 64/40% and 42/22% based on RfD and TDI, respectively. In view of these indices for assessing risk, our results for the anti-androgenic effects of exposing pregnant women to ∑4DEHP and ∑DBP early during pregnancy are alarming.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Nujud Alrushud
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Maha Alnemer
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Mohamed Shoukri
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Patricia McWalter
- Family Medicine and Polyclinics Department, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Abdullah Alkhenizan
- Family Medicine and Polyclinics Department, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
3
|
Ito Y, Kamijima M, Nakajima T. Di(2-ethylhexyl) phthalate-induced toxicity and peroxisome proliferator-activated receptor alpha: a review. Environ Health Prev Med 2019; 24:47. [PMID: 31279339 PMCID: PMC6612219 DOI: 10.1186/s12199-019-0802-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/28/2019] [Indexed: 11/10/2022] Open
Abstract
The plasticizer di(2-ethylhexyl) phthalate (DEHP) has been widely used in the manufacture of polyvinyl chloride-containing products such as medical and consumer goods. Humans can easily be exposed to it because DEHP is ubiquitous in the environment. Recent research on the adverse effects of DEHP has focused on reproductive and developmental toxicity in rodents and/or humans. DEHP is a representative of the peroxisome proliferators. Therefore, peroxisome proliferator-activated receptor alpha (PPARα)-dependent pathways are the expected mode of action of several kinds of DEHP-induced toxicities. In this review, we summarize DEHP kinetics and its mechanisms of carcinogenicity and reproductive and developmental toxicity in relation to PPARα. Additionally, we give an overview of the impacts of science policy on exposure sources.
Collapse
Affiliation(s)
- Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601 Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601 Japan
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| |
Collapse
|
4
|
Hayashi Y, Ito Y, Naito H, Tamada H, Yamagishi N, Kondo T, Ishikawa T, Gonzalez FJ, Nakajima T. In utero exposure to di(2-ethylhexyl)phthalate suppresses blood glucose and leptin levels in the offspring of wild-type mice. Toxicology 2019; 415:49-55. [PMID: 30660623 DOI: 10.1016/j.tox.2019.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/09/2023]
Abstract
Exposure of pregnant mice to di(2-ethylhexyl)phthalate (DEHP) induces maternal lipid malnutrition and decreases the number of live fetuses/pups. In this study, we aimed to clarify the relationship between maternal lipid malnutrition and the nutritional status of the neonatal, lactational, and adult offspring, as well as the role of peroxisome proliferator-activated receptor α (PPARα) in these relationships. Sv/129 wild-type (mPPARA), Ppara-null, and PPARα-humanized (hPPARA) mice were fed diets containing 0, 0.01, 0.05, or 0.1% DEHP in utero and/or during the lactational stage. The male offspring were killed on postnatal day 2 or 21, or after 11 weeks. Exposure to either 0.05% or 0.1% DEHP during both the in utero and lactational periods decreased serum glucose concentrations in 2-day-old mPPARA offspring. These dosages also decreased both serum and plasma leptin levels in both 2- and 21-day-old mPPARA offspring. In contrast, exposure to DEHP only during the lactational period did not decrease leptin levels, suggesting the importance of in utero exposure to DEHP. Exposure to 0.05% DEHP during the in utero and lactational periods also increased food consumption after weaning in both mPPARA and hPPARA mice; this was not observed in Ppara-null offspring. In conclusion, in utero exposure to DEHP induces neonatal serum glucose malnutrition via PPARα. DEHP also decreases serum and plasma leptin concentrations in offspring during the neonatal and weaning periods, in association with PPARα, which presumably results in increased of food consumption after weaning.
Collapse
Affiliation(s)
- Yumi Hayashi
- Pathophysiological Laboratory Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan; In vivo Real-time Omics Laboratory, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Hisao Naito
- Department of Public Health, Fujita Health University School of Medicine, Dengakugakubo 1-98, Kutsukake-cho, Toyoake, 470-1192, Japan.
| | - Hazuki Tamada
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Nozomi Yamagishi
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Takaaki Kondo
- Pathophysiological Laboratory Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan.
| | - Tetsuya Ishikawa
- Pathophysiological Laboratory Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan.
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan.
| |
Collapse
|
5
|
Zhao H, Li J, Zhou Y, Zhu L, Zheng Y, Xia W, Li Y, Xiang L, Chen W, Xu S, Cai Z. Investigation on Metabolism of Di(2-Ethylhexyl) Phthalate in Different Trimesters of Pregnant Women. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12851-12858. [PMID: 30257557 DOI: 10.1021/acs.est.8b04519] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer but shows diverse toxicity. To investigate the time- and maternal age-differences in metabolism process of DEHP in pregnant women, three urine samples were collected from each pregnant woman ( n = 847) at the first (T1, mean 13.04 gestational weeks), the second (T2, mean 23.63 gestational weeks) and the third time point (T3, mean 35.91 gestational weeks), respectively. Four metabolites of DEHP were analyzed in 2541 urine samples (847 × 3) by using ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry. The level of urinary mono(2-ethylhexyl) phthalate (MEHP) had a decreasing trend across the pregnancy periods. The geometric mean concentrations of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) were significantly decreased in T2 than T1, and recovered slightly in T3. The transformation rate of MEHP to MEHHP in T3 was significantly higher than those in other two time points. The transformation rate of MEHHP to MEOHP in T2 and T3 was significantly higher than that in T1, indicating the oxidation was more efficient in late pregnancy compared with early and middle pregnancy. The percentages of oxidation products MEHHP and MECPP were higher in the higher-age group compared with the lower-age group in the second trimester samples. It is therefore concluded that DEHP metabolism may be influenced by the pregnancy stage and maternal age. The findings may benefit the risk assessment and toxicity evaluation of DEHP.
Collapse
Affiliation(s)
- Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Yuanyuan Zheng
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Wei Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| |
Collapse
|
6
|
Brehm E, Rattan S, Gao L, Flaws JA. Prenatal Exposure to Di(2-Ethylhexyl) Phthalate Causes Long-Term Transgenerational Effects on Female Reproduction in Mice. Endocrinology 2018; 159:795-809. [PMID: 29228129 PMCID: PMC5774227 DOI: 10.1210/en.2017-03004] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer in many consumer products. Although DEHP is a known endocrine disruptor, little is known about the effects of DEHP exposure on female reproduction. Thus, this study tested the hypothesis that prenatal DEHP exposure affects follicle numbers, estrous cyclicity, and hormone levels in multiple generations of mice. Pregnant CD-1 mice were orally dosed with corn oil (vehicle control) or DEHP (20 and 200 µg/kg/d and 500 and 750 mg/kg/d) from gestational day 11 until birth. The F1 females were mated with untreated males to create the F2 generation, and the F2 females were mated with untreated males to create the F3 generation. At 1 year, ovaries, hormones, and estrous cycles were analyzed in each generation. Prenatal DEHP exposure altered estrous cyclicity (750 mg/kg/d), increased the presence of ovarian cysts (750 mg/kg/d), and decreased total follicle numbers (750 mg/kg/d) in the F1 generation. It also decreased anogenital distance (200 µg/kg/d) and altered follicle numbers (200 µg/kg/d and 500 mg/kg/d) in the F2 generation, and it altered estrous cyclicity (20 and 200 µg/kg/d and 500 and 750 mg/kg/d) and decreased folliculogenesis (200 µg/kg/d and 500 mg/kg/d) in the F3 generation. Further, prenatal DEHP increased estradiol levels (F1 and F3), decreased testosterone levels (F1, F2, and F3), decreased progesterone levels (F2), altered gonadotropin hormone levels (F1 and F3), and decreased inhibin B levels (F1 and F3). Collectively, these data show that prenatal exposure to DEHP has multigenerational and transgenerational effects on female reproduction and it may accelerate reproductive aging.
Collapse
Affiliation(s)
- Emily Brehm
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| | - Saniya Rattan
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| | - Liying Gao
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| |
Collapse
|
7
|
Ungewitter E, Rotgers E, Bantukul T, Kawakami Y, Kissling GE, Yao HHC. From the Cover: Teratogenic Effects of in Utero Exposure to Di-(2-Ethylhexyl)-Phthalate (DEHP) in B6:129S4 Mice. Toxicol Sci 2017; 157:8-19. [PMID: 28123099 PMCID: PMC6074946 DOI: 10.1093/toxsci/kfx019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intrauterine exposure to phthalates is known to cause disorders of male reproductive function including androgen insufficiency, decreased fertility, and germ cell defects in rodents. In this study, we set out to investigate the effects of intrauterine exposure to di-(2-ethylhexyl)-phthalate (DEHP) on fetal development of the B6:129S4 mouse strain. Time-mated pregnant C57BL/6 dams were exposed to 0, 5, 250, or 500 mg/kg DEHP with corn oil as the vehicle via oral gavage from embryonic days (E)7 to 16. Survival and gross morphology of the pups were analyzed one day after the last treatment. Anogenital distance (AGD) and testicular cell functions were examined in male embryos to confirm the known effects of phthalate exposure. DEHP exposure significantly reduced the survival rate of fetuses in the 250 and 500 mg/kg dosage groups compared with the control and 5 mg/kg groups. Exposure to 250 and 500 mg/kg DEHP was teratogenic and induced exencephaly and limb malformations such as polydactyly in the B6:126S4 embryos. No gross malformations were observed in control or 5 mg/kg DEHP groups. In male embryos, exposure to both 5 and 250 mg/kg DEHP in utero was sufficient to induce the formation of multinucleated germ cells in the testes and widespread changes in mRNA expression of germ cell, interstitium and Sertoli cell-associated genes. These findings reveal that intrauterine DEHP exposure has a strong teratogenic, and lethal impact on the fetuses of B6:129S4 mouse strain.
Collapse
Affiliation(s)
| | | | | | - Yasuhiko Kawakami
- Gennetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Grace E. Kissling
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
8
|
Iqbal K, Tran DA, Li AX, Warden C, Bai AY, Singh P, Wu X, Pfeifer GP, Szabó PE. Deleterious effects of endocrine disruptors are corrected in the mammalian germline by epigenome reprogramming. Genome Biol 2015; 16:59. [PMID: 25853433 PMCID: PMC4376074 DOI: 10.1186/s13059-015-0619-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/23/2015] [Indexed: 11/13/2022] Open
Abstract
Background Exposure to environmental endocrine-disrupting chemicals during pregnancy reportedly causes transgenerationally inherited reproductive defects. We hypothesized that to affect the grandchild, endocrine-disrupting chemicals must alter the epigenome of the germ cells of the in utero-exposed G1 male fetus. Additionally, to affect the great-grandchild, the aberration must persist in the germ cells of the unexposed G2 grandchild. Results Here, we treat gestating female mice with vinclozolin, bisphenol A, or di-(2-ethylhexyl)phthalate during the time when global de novo DNA methylation and imprint establishment occurs in the germ cells of the G1 male fetus. We map genome-wide features in purified G1 and G2 prospermatogonia, in order to detect immediate and persistent epigenetic aberrations, respectively. We detect changes in transcription and methylation in the G1 germline immediately after endocrine-disrupting chemicals exposure, but changes do not persist into the G2 germline. Additional analysis of genomic imprints shows no persistent aberrations in DNA methylation at the differentially methylated regions of imprinted genes between the G1 and G2 prospermatogonia, or in the allele-specific transcription of imprinted genes between the G2 and G3 soma. Conclusions Our results suggest that endocrine-disrupting chemicals exert direct epigenetic effects in exposed fetal germ cells, which are corrected by reprogramming events in the next generation. Avoiding transgenerational inheritance of environmentally-caused epigenetic aberrations may have played an evolutionary role in the development of dual waves of global epigenome reprogramming in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0619-z) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Hayashi Y, Ito Y, Nakajima T. Effects of exposure to Di(2-ethylhexyl)phthalate
during fetal period on next generation. Nihon Eiseigaku Zasshi 2015; 69:86-91. [PMID: 24858501 DOI: 10.1265/jjh.69.86] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The concept of the Developmental Origins of Health and Disease (DOHaD) is bringing new insights into the origin of lifestyle diseases: unbalanced nutrition in utero and during infancy is associated with an increased risk of lifestyle diseases. In order to clarify this association, experimental and epidemiological studies have been conducted. Maternal exposure to di(2-ethylhexyl)phthalate (DEHP), an agonist of peroxisome proliferator-activated receptor α (PPARα), decreases the number of live fetuses and newborn pups, and their body weights, and it enhances fetal desorption in wild-type mice. Similarly, these DEHP were also observed in mice expressing human PPARα, but not in PPARα-null mice. These results suggest that the DEHP toxicity in offspring is caused dependently on PPARα. DEHP suppresses the increase in the levels of plasma triglyceride (TG)/fatty acids (FAs) only in wild-type pregnant mice, suggesting that the decreased lipid levels in utero may affect the fetus development, because TG/FAs are essential in the development of fetuses. Additionally, maternal DEHP exposure decreases estrogen and progesterone balances, which may also explain the effects on fetuses and pups mentioned above. Indeed, DEHP itself or metabolite(s) may induce the toxicity, because a difference in the metabolic route is observed between the wild-type and PPARα-null mice. Thus, we were unable to conclude the causal factor(s) for the DEHP-induced offspring toxicity, that is, whether it is a direct or an indirect effect of the chemical or metabolite(s) via the toxic effects on maternal mice; however, PPARα is indeed associated with in offspring toxicity.
Collapse
Affiliation(s)
- Yumi Hayashi
- Pathophysiological Laboratory Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University
Graduate School of Medicine
| | | | | |
Collapse
|
10
|
Prenatal Exposure to Di(2-ethylhexyl) phthalate and Subsequent Infant and Child Health Effects. Food Saf (Tokyo) 2015. [DOI: 10.14252/foodsafetyfscj.2015011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Araki A, Mitsui T, Miyashita C, Nakajima T, Naito H, Ito S, Sasaki S, Cho K, Ikeno T, Nonomura K, Kishi R. Association between maternal exposure to di(2-ethylhexyl) phthalate and reproductive hormone levels in fetal blood: the Hokkaido study on environment and children's health. PLoS One 2014; 9:e109039. [PMID: 25296284 PMCID: PMC4189794 DOI: 10.1371/journal.pone.0109039] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/28/2014] [Indexed: 01/12/2023] Open
Abstract
Prenatal di(2-ethylhexyl) phthalate (DEHP) exposure can produce reproductive toxicity in animal models. Only limited data exist from human studies on maternal DEHP exposure and its effects on infants. We aimed to examine the associations between DEHP exposure in utero and reproductive hormone levels in cord blood. Between 2002 and 2005, 514 pregnant women agreed to participate in the Hokkaido Study Sapporo Cohort. Maternal blood samples were taken from 23-35 weeks of gestation and the concentration of the primary metabolite of DEHP, mono(2-ethylhexyl) phthalate (MEHP), was measured. Concentrations of infant reproductive hormones including estradiol (E2), total testosterone (T), and progesterone (P4), inhibin B, insulin-like factor 3 (INSL3), steroid hormone binding globulin, follicle-stimulating hormone, and luteinizing hormone were measured from cord blood. Two hundred and two samples with both MEHP and hormones' data were included in statistical analysis. The participants completed a self-administered questionnaire regarding information on maternal characteristics. Gestational age, birth weight and infant sex were obtained from birth records. In an adjusted linear regression analysis fit to all study participants, maternal MEHP levels were found to be associated with reduced levels of T/E2, P4, and inhibin B. For the stratified analyses for sex, inverse associations between maternal MEHP levels T/E2, P4, inhibin B, and INSL3 were statistically significant for males only. In addition, the MEHP quartile model showed a significant p-value trend for P4, inhibin B, and INSL3 decrease in males. Since inhibin B and INSL3 are major secretory products of Sertoli and Leydig cell, respectively, the results of this study suggest that DEHP exposure in utero may have adverse effects on both Sertoli and Leydig cell development in males, which agrees with the results obtained from animal studies. Comprehensive studies investigating phthalates' exposure in humans, as well as their long-term effects on reproductive development are needed.
Collapse
Affiliation(s)
- Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takahiko Mitsui
- Department of Urology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tamie Nakajima
- Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Hisao Naito
- Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Sachiko Ito
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Seiko Sasaki
- Department of Public Health, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazutoshi Cho
- Department of Obstetrics and Genecology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Tamiko Ikeno
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Katsuya Nonomura
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
12
|
Di-(2-ethylhexyl) phthalate adjuvantly induces imbalanced humoral immunity in ovalbumin-sensitized BALB/c mice ascribing to T follicular helper cells hyperfunction. Toxicology 2014; 324:88-97. [DOI: 10.1016/j.tox.2014.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022]
|
13
|
Species and inter-individual differences in metabolic capacity of di(2-ethylhexyl)phthalate (DEHP) between human and mouse livers. Environ Health Prev Med 2013; 19:117-25. [PMID: 24078404 DOI: 10.1007/s12199-013-0362-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES This study was conducted to assess inter-species and inter-individual differences in the metabolism of di(2-ethylhexyl)phthalate (DEHP) in humans and mice. METHODS The activities of four DEHP-metabolizing enzymes [lipase, UDP-glucuronocyltransferase (UGT), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH)] were measured in the livers of 38 human subjects of various ages and in eight 129/Sv male mice. RESULTS Microsomal lipase activity was significantly lower in humans than in mice. The V max/K m value in humans was one-seventh of that in mice, microsomal UGT activity in humans was a sixth of that in mice, and cytosolic ALDH activity for 2-ethylhexanal in humans was one-half of that in mice. In contrast, ADH activity for 2-ethylhexanol was twofold higher in humans than in mice. The total amount of DEHP urinary metabolites and the concentration of mono(2-ethylhexyl)phthalate (MEHP) were much higher in intact mice than in the U.S. general population based on data reported elsewhere, regardless of the similar estimated DEHP intake between these mice and the human reference population. However, mono(2-ethyl-5-oxo-hexyl)phthalate (5oxo-MEHP) and mono(2-ethyl-5-carboxypentyl)phthalate (5cx-MEPP) levels were higher in the latter than in the former. Of note, inter-subject variability in the activities of all enzymes measured was 10-26-fold. CONCLUSION The inter-individual variation in the metabolism of DEHP in humans may be greater than the difference between mice and humans (inter-species variation), and both may affects the risk assessment of DEHP.
Collapse
|
14
|
Do RP, Stahlhut RW, Ponzi D, Vom Saal FS, Taylor JA. Non-monotonic dose effects of in utero exposure to di(2-ethylhexyl) phthalate (DEHP) on testicular and serum testosterone and anogenital distance in male mouse fetuses. Reprod Toxicol 2012; 34:614-21. [PMID: 23041310 DOI: 10.1016/j.reprotox.2012.09.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/24/2012] [Accepted: 09/24/2012] [Indexed: 11/28/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental contaminant. Epidemiological studies suggest that DEHP decreases masculinization of male fetuses. Numerous rat studies report DEHP reduces fetal testosterone production at doses greatly exceeding human exposure. We fed pregnant CD-1 mice 0.5-500,000 μg/kg/day DEHP from gestation day (GD) 9-18 and examined mothers and male fetuses on GD 18. We assessed non-monotonic dose-response by adding a quadratic term to a simple linear regression model. Except at the 500,000 μg/kg/day dose, DEHP stimulated an increase in maternal and fetal serum testosterone and increased anogenital distance (AGD). Non-monotonic dose-response curves were noted for AGD and maternal, and testis testosterone (P values 0.013-0.021). Because data from our highest dose (500,000 μg/kg/day) did not differ significantly from controls, this dose could have been incorrectly assumed to be the NOAEL had we only tested very high doses, as is typical in studies for regulatory agencies.
Collapse
Affiliation(s)
- Rylee Phuong Do
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|